*****************************************************************************
*       www.FindStat.org - The Combinatorial Statistic Finder               *
*                                                                           *
*       Copyright (C) 2019 The FindStatCrew <info@findstat.org>             *
*                                                                           *
*    This information is distributed in the hope that it will be useful,    *
*    but WITHOUT ANY WARRANTY; without even the implied warranty of         *
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                   *
*****************************************************************************

-----------------------------------------------------------------------------
Statistic identifier: St001207

-----------------------------------------------------------------------------
Collection: Permutations

-----------------------------------------------------------------------------
Description: The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$.

-----------------------------------------------------------------------------
References: [1]   Iyama, O., Zhang, X. Classifying Ï„-tilting modules over the Auslander algebra of $K[x]/(x^n)$ [[arXiv:1602.05037]]

-----------------------------------------------------------------------------
Code:


-----------------------------------------------------------------------------
Statistic values:

[1,2]     => 0
[2,1]     => 1
[1,2,3]   => 0
[1,3,2]   => 1
[2,1,3]   => 1
[2,3,1]   => 2
[3,1,2]   => 2
[3,2,1]   => 2
[1,2,3,4] => 0
[1,2,4,3] => 1
[1,3,2,4] => 1
[1,3,4,2] => 2
[1,4,2,3] => 2
[1,4,3,2] => 2
[2,1,3,4] => 1
[2,1,4,3] => 1
[2,3,1,4] => 2
[2,3,4,1] => 3
[2,4,1,3] => 2
[2,4,3,1] => 3
[3,1,2,4] => 2
[3,1,4,2] => 2
[3,2,1,4] => 2
[3,2,4,1] => 3
[3,4,1,2] => 3
[3,4,2,1] => 3
[4,1,2,3] => 3
[4,1,3,2] => 3
[4,2,1,3] => 3
[4,2,3,1] => 3
[4,3,1,2] => 3
[4,3,2,1] => 3

-----------------------------------------------------------------------------
Created: May 24, 2018 at 13:02 by Rene Marczinzik

-----------------------------------------------------------------------------
Last Updated: May 24, 2018 at 13:02 by Rene Marczinzik