Identifier
-
Mp00276:
Graphs
—to edge-partition of biconnected components⟶
Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St001206: Dyck paths ⟶ ℤ (values match St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$.)
Values
([(0,1)],2) => [1] => [1,0,1,0] => 2
([(1,2)],3) => [1] => [1,0,1,0] => 2
([(0,2),(1,2)],3) => [1,1] => [1,0,1,1,0,0] => 2
([(0,1),(0,2),(1,2)],3) => [3] => [1,1,1,0,0,0,1,0] => 2
([(2,3)],4) => [1] => [1,0,1,0] => 2
([(1,3),(2,3)],4) => [1,1] => [1,0,1,1,0,0] => 2
([(0,3),(1,3),(2,3)],4) => [1,1,1] => [1,0,1,1,1,0,0,0] => 2
([(0,3),(1,2)],4) => [1,1] => [1,0,1,1,0,0] => 2
([(0,3),(1,2),(2,3)],4) => [1,1,1] => [1,0,1,1,1,0,0,0] => 2
([(1,2),(1,3),(2,3)],4) => [3] => [1,1,1,0,0,0,1,0] => 2
([(0,3),(1,2),(1,3),(2,3)],4) => [3,1] => [1,1,0,1,0,0,1,0] => 2
([(0,2),(0,3),(1,2),(1,3)],4) => [4] => [1,1,1,1,0,0,0,0,1,0] => 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [5] => [1,1,1,1,1,0,0,0,0,0,1,0] => 2
([(3,4)],5) => [1] => [1,0,1,0] => 2
([(2,4),(3,4)],5) => [1,1] => [1,0,1,1,0,0] => 2
([(1,4),(2,4),(3,4)],5) => [1,1,1] => [1,0,1,1,1,0,0,0] => 2
([(0,4),(1,4),(2,4),(3,4)],5) => [1,1,1,1] => [1,0,1,1,1,1,0,0,0,0] => 2
([(1,4),(2,3)],5) => [1,1] => [1,0,1,1,0,0] => 2
([(1,4),(2,3),(3,4)],5) => [1,1,1] => [1,0,1,1,1,0,0,0] => 2
([(0,1),(2,4),(3,4)],5) => [1,1,1] => [1,0,1,1,1,0,0,0] => 2
([(2,3),(2,4),(3,4)],5) => [3] => [1,1,1,0,0,0,1,0] => 2
([(0,4),(1,4),(2,3),(3,4)],5) => [1,1,1,1] => [1,0,1,1,1,1,0,0,0,0] => 2
([(1,4),(2,3),(2,4),(3,4)],5) => [3,1] => [1,1,0,1,0,0,1,0] => 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => [3,1,1] => [1,0,1,1,0,0,1,0] => 2
([(1,3),(1,4),(2,3),(2,4)],5) => [4] => [1,1,1,1,0,0,0,0,1,0] => 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => [4,1] => [1,1,1,0,1,0,0,0,1,0] => 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [5] => [1,1,1,1,1,0,0,0,0,0,1,0] => 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => [3,1,1] => [1,0,1,1,0,0,1,0] => 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [5,1] => [1,1,1,1,0,1,0,0,0,0,1,0] => 2
([(0,4),(1,3),(2,3),(2,4)],5) => [1,1,1,1] => [1,0,1,1,1,1,0,0,0,0] => 2
([(0,1),(2,3),(2,4),(3,4)],5) => [3,1] => [1,1,0,1,0,0,1,0] => 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => [3,1,1] => [1,0,1,1,0,0,1,0] => 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => [3,3] => [1,1,1,0,0,0,1,1,0,0] => 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [5] => [1,1,1,1,1,0,0,0,0,0,1,0] => 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => [5,1] => [1,1,1,1,0,1,0,0,0,0,1,0] => 2
([(4,5)],6) => [1] => [1,0,1,0] => 2
([(3,5),(4,5)],6) => [1,1] => [1,0,1,1,0,0] => 2
([(2,5),(3,5),(4,5)],6) => [1,1,1] => [1,0,1,1,1,0,0,0] => 2
([(1,5),(2,5),(3,5),(4,5)],6) => [1,1,1,1] => [1,0,1,1,1,1,0,0,0,0] => 2
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => [1,1,1,1,1] => [1,0,1,1,1,1,1,0,0,0,0,0] => 2
([(2,5),(3,4)],6) => [1,1] => [1,0,1,1,0,0] => 2
([(2,5),(3,4),(4,5)],6) => [1,1,1] => [1,0,1,1,1,0,0,0] => 2
([(1,2),(3,5),(4,5)],6) => [1,1,1] => [1,0,1,1,1,0,0,0] => 2
([(3,4),(3,5),(4,5)],6) => [3] => [1,1,1,0,0,0,1,0] => 2
([(1,5),(2,5),(3,4),(4,5)],6) => [1,1,1,1] => [1,0,1,1,1,1,0,0,0,0] => 2
([(0,1),(2,5),(3,5),(4,5)],6) => [1,1,1,1] => [1,0,1,1,1,1,0,0,0,0] => 2
([(2,5),(3,4),(3,5),(4,5)],6) => [3,1] => [1,1,0,1,0,0,1,0] => 2
([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => [1,1,1,1,1] => [1,0,1,1,1,1,1,0,0,0,0,0] => 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1] => [1,0,1,1,0,0,1,0] => 2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,0,1,1,1,0,0,1,0,0] => 2
([(2,4),(2,5),(3,4),(3,5)],6) => [4] => [1,1,1,1,0,0,0,0,1,0] => 2
([(0,5),(1,5),(2,4),(3,4)],6) => [1,1,1,1] => [1,0,1,1,1,1,0,0,0,0] => 2
([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => [4,1] => [1,1,1,0,1,0,0,0,1,0] => 2
([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [1,1,1,1,1] => [1,0,1,1,1,1,1,0,0,0,0,0] => 2
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5] => [1,1,1,1,1,0,0,0,0,0,1,0] => 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [3,1,1] => [1,0,1,1,0,0,1,0] => 2
([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => [1,1,1,1,1] => [1,0,1,1,1,1,1,0,0,0,0,0] => 2
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => [4,1,1] => [1,1,0,1,1,0,0,0,1,0] => 2
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,1] => [1,1,1,1,0,1,0,0,0,0,1,0] => 2
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,0,1,1,1,0,0,1,0,0] => 2
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,1,1] => [1,1,1,0,1,1,0,0,0,0,1,0] => 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => [4,1,1] => [1,1,0,1,1,0,0,0,1,0] => 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,1,1] => [1,1,1,0,1,1,0,0,0,0,1,0] => 2
([(0,5),(1,4),(2,3)],6) => [1,1,1] => [1,0,1,1,1,0,0,0] => 2
([(1,5),(2,4),(3,4),(3,5)],6) => [1,1,1,1] => [1,0,1,1,1,1,0,0,0,0] => 2
([(0,1),(2,5),(3,4),(4,5)],6) => [1,1,1,1] => [1,0,1,1,1,1,0,0,0,0] => 2
([(1,2),(3,4),(3,5),(4,5)],6) => [3,1] => [1,1,0,1,0,0,1,0] => 2
([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => [1,1,1,1,1] => [1,0,1,1,1,1,1,0,0,0,0,0] => 2
([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => [3,1,1] => [1,0,1,1,0,0,1,0] => 2
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1] => [1,0,1,1,0,0,1,0] => 2
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [3,1,1,1] => [1,0,1,1,1,0,0,1,0,0] => 2
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [3,3] => [1,1,1,0,0,0,1,1,0,0] => 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [3,3,1] => [1,1,0,1,0,0,1,1,0,0] => 2
([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => [5] => [1,1,1,1,1,0,0,0,0,0,1,0] => 2
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => [4,1,1] => [1,1,0,1,1,0,0,0,1,0] => 2
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => [5,1] => [1,1,1,1,0,1,0,0,0,0,1,0] => 2
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [5,1] => [1,1,1,1,0,1,0,0,0,0,1,0] => 2
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,0,1,1,1,0,0,1,0,0] => 2
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,1,1] => [1,1,1,0,1,1,0,0,0,0,1,0] => 2
([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => [1,1,1,1,1] => [1,0,1,1,1,1,1,0,0,0,0,0] => 2
([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => [4,1] => [1,1,1,0,1,0,0,0,1,0] => 2
([(0,5),(1,5),(2,3),(2,4),(3,4)],6) => [3,1,1] => [1,0,1,1,0,0,1,0] => 2
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6) => [4,1,1] => [1,1,0,1,1,0,0,0,1,0] => 2
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6) => [3,1,1,1] => [1,0,1,1,1,0,0,1,0,0] => 2
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,0,1,1,1,0,0,1,0,0] => 2
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,1] => [1,1,1,1,0,1,0,0,0,0,1,0] => 2
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6) => [3,1,1,1] => [1,0,1,1,1,0,0,1,0,0] => 2
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6) => [4,3] => [1,1,1,0,0,0,1,0,1,0] => 2
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6) => [5,1,1] => [1,1,1,0,1,1,0,0,0,0,1,0] => 2
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,1] => [1,1,0,1,0,0,1,1,0,0] => 2
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,3] => [1,1,1,1,0,0,0,1,0,0,1,0] => 2
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [5,1,1] => [1,1,1,0,1,1,0,0,0,0,1,0] => 2
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => [5,1,1] => [1,1,1,0,1,1,0,0,0,0,1,0] => 2
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) => [3,3] => [1,1,1,0,0,0,1,1,0,0] => 2
([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6) => [5,1,1] => [1,1,1,0,1,1,0,0,0,0,1,0] => 2
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6) => [3,3,1] => [1,1,0,1,0,0,1,1,0,0] => 2
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [5,3] => [1,1,1,1,0,0,0,1,0,0,1,0] => 2
([(5,6)],7) => [1] => [1,0,1,0] => 2
([(4,6),(5,6)],7) => [1,1] => [1,0,1,1,0,0] => 2
([(3,6),(4,6),(5,6)],7) => [1,1,1] => [1,0,1,1,1,0,0,0] => 2
([(2,6),(3,6),(4,6),(5,6)],7) => [1,1,1,1] => [1,0,1,1,1,1,0,0,0,0] => 2
>>> Load all 262 entries. <<<
search for individual values
searching the database for the individual values of this statistic
Description
The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$.
Map
to edge-partition of biconnected components
Description
Sends a graph to the partition recording the number of edges in its biconnected components.
The biconnected components are also known as blocks of a graph.
The biconnected components are also known as blocks of a graph.
Map
to Dyck path
Description
Sends a partition to the shortest Dyck path tracing the shape of its Ferrers diagram.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!