Identifier
Values
[[[[[]]]]] => [1,1,1,1,0,0,0,0] => [1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,0] => 2
[[],[[[[]]]]] => [1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,0,0,0,0] => 2
[[[[[]]]],[]] => [1,1,1,1,0,0,0,0,1,0] => [1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,0,0,0,0] => 2
[[[],[[[]]]]] => [1,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,0,0,0,0] => 2
[[[[[]]],[]]] => [1,1,1,1,0,0,0,1,0,0] => [1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,0,0,0,0] => 2
[[[[],[[]]]]] => [1,1,1,0,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,0,0,0,0] => 2
[[[[[]],[]]]] => [1,1,1,1,0,0,1,0,0,0] => [1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,0,0,0,0] => 2
[[[[[],[]]]]] => [1,1,1,1,0,1,0,0,0,0] => [1,0,1,1,0,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,0] => 2
[[[[[[]]]]]] => [1,1,1,1,1,0,0,0,0,0] => [1,0,1,1,1,0,0,0,1,0] => [1,0,1,1,0,1,1,0,0,0] => 2
[[],[],[[[[]]]]] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => 2
[[],[[[[]]]],[]] => [1,0,1,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => 2
[[],[[],[[[]]]]] => [1,0,1,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => 2
[[],[[[[]]],[]]] => [1,0,1,1,1,1,0,0,0,1,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => 2
[[],[[[],[[]]]]] => [1,0,1,1,1,0,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => 2
[[],[[[[]],[]]]] => [1,0,1,1,1,1,0,0,1,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => 2
[[],[[[[],[]]]]] => [1,0,1,1,1,1,0,1,0,0,0,0] => [1,0,1,0,1,1,0,1,0,0,1,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => 2
[[],[[[[[]]]]]] => [1,0,1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,1,1,0,0,0,1,0] => [1,0,1,1,0,1,1,1,0,0,0,0] => 2
[[[]],[[[[]]]]] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => 2
[[[[[]]]],[],[]] => [1,1,1,1,0,0,0,0,1,0,1,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => 2
[[[[[]]]],[[]]] => [1,1,1,1,0,0,0,0,1,1,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => 2
[[[],[[[]]]],[]] => [1,1,0,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => 2
[[[[[]]],[]],[]] => [1,1,1,1,0,0,0,1,0,0,1,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => 2
[[[[],[[]]]],[]] => [1,1,1,0,1,1,0,0,0,0,1,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => 2
[[[[[]],[]]],[]] => [1,1,1,1,0,0,1,0,0,0,1,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => 2
[[[[[],[]]]],[]] => [1,1,1,1,0,1,0,0,0,0,1,0] => [1,0,1,1,0,1,0,0,1,0,1,0] => [1,1,1,1,0,0,1,1,0,0,0,0] => 2
[[[[[[]]]]],[]] => [1,1,1,1,1,0,0,0,0,0,1,0] => [1,0,1,1,1,0,0,0,1,0,1,0] => [1,0,1,1,1,0,1,1,0,0,0,0] => 2
[[[],[],[[[]]]]] => [1,1,0,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => 2
[[[],[[[]]],[]]] => [1,1,0,1,1,1,0,0,0,1,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => 2
[[[],[[],[[]]]]] => [1,1,0,1,1,0,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => 2
[[[],[[[]],[]]]] => [1,1,0,1,1,1,0,0,1,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => 2
[[[],[[[],[]]]]] => [1,1,0,1,1,1,0,1,0,0,0,0] => [1,0,1,0,1,1,0,1,0,0,1,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => 2
[[[],[[[[]]]]]] => [1,1,0,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,1,1,0,0,0,1,0] => [1,0,1,1,0,1,1,1,0,0,0,0] => 2
[[[[]],[[[]]]]] => [1,1,1,0,0,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => 2
[[[[[]]],[],[]]] => [1,1,1,1,0,0,0,1,0,1,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => 2
[[[[[]]],[[]]]] => [1,1,1,1,0,0,0,1,1,0,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => 2
[[[[],[[]]],[]]] => [1,1,1,0,1,1,0,0,0,1,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => 2
[[[[[]],[]],[]]] => [1,1,1,1,0,0,1,0,0,1,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => 2
[[[[[],[]]],[]]] => [1,1,1,1,0,1,0,0,0,1,0,0] => [1,0,1,1,0,1,0,0,1,0,1,0] => [1,1,1,1,0,0,1,1,0,0,0,0] => 2
[[[[[[]]]],[]]] => [1,1,1,1,1,0,0,0,0,1,0,0] => [1,0,1,1,1,0,0,0,1,0,1,0] => [1,0,1,1,1,0,1,1,0,0,0,0] => 2
[[[[],[],[[]]]]] => [1,1,1,0,1,0,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => 2
[[[[],[[]],[]]]] => [1,1,1,0,1,1,0,0,1,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => 2
[[[[],[[],[]]]]] => [1,1,1,0,1,1,0,1,0,0,0,0] => [1,0,1,0,1,1,0,1,0,0,1,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => 2
[[[[],[[[]]]]]] => [1,1,1,0,1,1,1,0,0,0,0,0] => [1,0,1,0,1,1,1,0,0,0,1,0] => [1,0,1,1,0,1,1,1,0,0,0,0] => 2
[[[[[]],[],[]]]] => [1,1,1,1,0,0,1,0,1,0,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => 2
[[[[[]],[[]]]]] => [1,1,1,1,0,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => 3
[[[[[],[]],[]]]] => [1,1,1,1,0,1,0,0,1,0,0,0] => [1,0,1,1,0,1,0,0,1,0,1,0] => [1,1,1,1,0,0,1,1,0,0,0,0] => 2
[[[[[[]]],[]]]] => [1,1,1,1,1,0,0,0,1,0,0,0] => [1,0,1,1,1,0,0,0,1,0,1,0] => [1,0,1,1,1,0,1,1,0,0,0,0] => 2
[[[[[],[],[]]]]] => [1,1,1,1,0,1,0,1,0,0,0,0] => [1,0,1,1,0,1,0,1,0,0,1,0] => [1,1,1,1,0,0,0,1,1,0,0,0] => 2
[[[[[],[[]]]]]] => [1,1,1,1,0,1,1,0,0,0,0,0] => [1,0,1,1,0,1,1,0,0,0,1,0] => [1,0,1,1,1,0,0,1,1,0,0,0] => 2
[[[[[[]],[]]]]] => [1,1,1,1,1,0,0,1,0,0,0,0] => [1,0,1,1,1,0,0,1,0,0,1,0] => [1,1,0,1,1,0,0,1,1,0,0,0] => 2
[[[[[[],[]]]]]] => [1,1,1,1,1,0,1,0,0,0,0,0] => [1,0,1,1,1,0,1,0,0,0,1,0] => [1,1,0,0,1,1,0,1,1,0,0,0] => 2
[[[[[[[]]]]]]] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,1,0,1,1,0,0,0] => 2
search for individual values
searching the database for the individual values of this statistic
Description
The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$.
Map
zeta map
Description
The zeta map on Dyck paths.
The zeta map $\zeta$ is a bijection on Dyck paths of semilength $n$.
It was defined in [1, Theorem 1], see also [2, Theorem 3.15] and sends the bistatistic (area, dinv) to the bistatistic (bounce, area). It is defined by sending a Dyck path $D$ with corresponding area sequence $a=(a_1,\ldots,a_n)$ to a Dyck path as follows:
  • First, build an intermediate Dyck path consisting of $d_1$ north steps, followed by $d_1$ east steps, followed by $d_2$ north steps and $d_2$ east steps, and so on, where $d_i$ is the number of $i-1$'s within the sequence $a$.
    For example, given $a=(0,1,2,2,2,3,1,2)$, we build the path
    $$NE\ NNEE\ NNNNEEEE\ NE.$$
  • Next, the rectangles between two consecutive peaks are filled. Observe that such the rectangle between the $k$th and the $(k+1)$st peak must be filled by $d_k$ east steps and $d_{k+1}$ north steps. In the above example, the rectangle between the second and the third peak must be filled by $2$ east and $4$ north steps, the $2$ being the number of $1$'s in $a$, and $4$ being the number of $2$'s. To fill such a rectangle, scan through the sequence a from left to right, and add east or north steps whenever you see a $k-1$ or $k$, respectively. So to fill the $2\times 4$ rectangle, we look for $1$'s and $2$'s in the sequence and see $122212$, so this rectangle gets filled with $ENNNEN$.
    The complete path we obtain in thus
    $$NENNENNNENEEENEE.$$
Map
to Dyck path
Description
Return the Dyck path of the corresponding ordered tree induced by the recurrence of the Catalan numbers, see wikipedia:Catalan_number.
This sends the maximal height of the Dyck path to the depth of the tree.
Map
peeling map
Description
Send a Dyck path to its peeled Dyck path.