Identifier
-
Mp00276:
Graphs
—to edge-partition of biconnected components⟶
Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
St001204: Dyck paths ⟶ ℤ
Values
([(0,1)],2) => [1] => [1,0,1,0] => [1,1,0,0] => 0
([(1,2)],3) => [1] => [1,0,1,0] => [1,1,0,0] => 0
([(0,2),(1,2)],3) => [1,1] => [1,0,1,1,0,0] => [1,1,0,1,0,0] => 0
([(0,1),(0,2),(1,2)],3) => [3] => [1,1,1,0,0,0,1,0] => [1,1,0,0,1,0,1,0] => 0
([(2,3)],4) => [1] => [1,0,1,0] => [1,1,0,0] => 0
([(1,3),(2,3)],4) => [1,1] => [1,0,1,1,0,0] => [1,1,0,1,0,0] => 0
([(0,3),(1,3),(2,3)],4) => [1,1,1] => [1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,0] => 0
([(0,3),(1,2)],4) => [1,1] => [1,0,1,1,0,0] => [1,1,0,1,0,0] => 0
([(0,3),(1,2),(2,3)],4) => [1,1,1] => [1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,0] => 0
([(1,2),(1,3),(2,3)],4) => [3] => [1,1,1,0,0,0,1,0] => [1,1,0,0,1,0,1,0] => 0
([(0,3),(1,2),(1,3),(2,3)],4) => [3,1] => [1,1,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0] => 0
([(0,2),(0,3),(1,2),(1,3)],4) => [4] => [1,1,1,1,0,0,0,0,1,0] => [1,1,0,0,1,0,1,0,1,0] => 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [5] => [1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,0,0,1,0,1,0,1,0,1,0] => 0
([(3,4)],5) => [1] => [1,0,1,0] => [1,1,0,0] => 0
([(2,4),(3,4)],5) => [1,1] => [1,0,1,1,0,0] => [1,1,0,1,0,0] => 0
([(1,4),(2,4),(3,4)],5) => [1,1,1] => [1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,0] => 0
([(0,4),(1,4),(2,4),(3,4)],5) => [1,1,1,1] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,0,1,0,1,0,0] => 0
([(1,4),(2,3)],5) => [1,1] => [1,0,1,1,0,0] => [1,1,0,1,0,0] => 0
([(1,4),(2,3),(3,4)],5) => [1,1,1] => [1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,0] => 0
([(0,1),(2,4),(3,4)],5) => [1,1,1] => [1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,0] => 0
([(2,3),(2,4),(3,4)],5) => [3] => [1,1,1,0,0,0,1,0] => [1,1,0,0,1,0,1,0] => 0
([(0,4),(1,4),(2,3),(3,4)],5) => [1,1,1,1] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,0,1,0,1,0,0] => 0
([(1,4),(2,3),(2,4),(3,4)],5) => [3,1] => [1,1,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0] => 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => [3,1,1] => [1,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => 0
([(1,3),(1,4),(2,3),(2,4)],5) => [4] => [1,1,1,1,0,0,0,0,1,0] => [1,1,0,0,1,0,1,0,1,0] => 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => [4,1] => [1,1,1,0,1,0,0,0,1,0] => [1,1,0,0,1,0,1,1,0,0] => 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [5] => [1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,0,0,1,0,1,0,1,0,1,0] => 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => [3,1,1] => [1,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [5,1] => [1,1,1,1,0,1,0,0,0,0,1,0] => [1,1,0,0,1,0,1,0,1,1,0,0] => 0
([(0,4),(1,3),(2,3),(2,4)],5) => [1,1,1,1] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,0,1,0,1,0,0] => 0
([(0,1),(2,3),(2,4),(3,4)],5) => [3,1] => [1,1,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0] => 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => [3,1,1] => [1,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => [3,3] => [1,1,1,0,0,0,1,1,0,0] => [1,1,0,1,0,0,1,0,1,0] => 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [5] => [1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,0,0,1,0,1,0,1,0,1,0] => 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => [5,1] => [1,1,1,1,0,1,0,0,0,0,1,0] => [1,1,0,0,1,0,1,0,1,1,0,0] => 0
([(4,5)],6) => [1] => [1,0,1,0] => [1,1,0,0] => 0
([(3,5),(4,5)],6) => [1,1] => [1,0,1,1,0,0] => [1,1,0,1,0,0] => 0
([(2,5),(3,5),(4,5)],6) => [1,1,1] => [1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,0] => 0
([(1,5),(2,5),(3,5),(4,5)],6) => [1,1,1,1] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,0,1,0,1,0,0] => 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => [1,1,1,1,1] => [1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => 0
([(2,5),(3,4)],6) => [1,1] => [1,0,1,1,0,0] => [1,1,0,1,0,0] => 0
([(2,5),(3,4),(4,5)],6) => [1,1,1] => [1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,0] => 0
([(1,2),(3,5),(4,5)],6) => [1,1,1] => [1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,0] => 0
([(3,4),(3,5),(4,5)],6) => [3] => [1,1,1,0,0,0,1,0] => [1,1,0,0,1,0,1,0] => 0
([(1,5),(2,5),(3,4),(4,5)],6) => [1,1,1,1] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,0,1,0,1,0,0] => 0
([(0,1),(2,5),(3,5),(4,5)],6) => [1,1,1,1] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,0,1,0,1,0,0] => 0
([(2,5),(3,4),(3,5),(4,5)],6) => [3,1] => [1,1,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0] => 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => [1,1,1,1,1] => [1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => 0
([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1] => [1,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,1,0,0] => 0
([(2,4),(2,5),(3,4),(3,5)],6) => [4] => [1,1,1,1,0,0,0,0,1,0] => [1,1,0,0,1,0,1,0,1,0] => 0
([(0,5),(1,5),(2,4),(3,4)],6) => [1,1,1,1] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,0,1,0,1,0,0] => 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => [4,1] => [1,1,1,0,1,0,0,0,1,0] => [1,1,0,0,1,0,1,1,0,0] => 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [1,1,1,1,1] => [1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => 0
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5] => [1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,0,0,1,0,1,0,1,0,1,0] => 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [3,1,1] => [1,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => [1,1,1,1,1] => [1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => 0
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => [4,1,1] => [1,1,0,1,1,0,0,0,1,0] => [1,1,0,0,1,1,0,1,0,0] => 0
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,1] => [1,1,1,1,0,1,0,0,0,0,1,0] => [1,1,0,0,1,0,1,0,1,1,0,0] => 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,1,0,0] => 0
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,1,1] => [1,1,1,0,1,1,0,0,0,0,1,0] => [1,1,0,0,1,0,1,1,0,1,0,0] => 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => [4,1,1] => [1,1,0,1,1,0,0,0,1,0] => [1,1,0,0,1,1,0,1,0,0] => 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,1,1] => [1,1,1,0,1,1,0,0,0,0,1,0] => [1,1,0,0,1,0,1,1,0,1,0,0] => 0
([(0,5),(1,4),(2,3)],6) => [1,1,1] => [1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,0] => 0
([(1,5),(2,4),(3,4),(3,5)],6) => [1,1,1,1] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,0,1,0,1,0,0] => 0
([(0,1),(2,5),(3,4),(4,5)],6) => [1,1,1,1] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,0,1,0,1,0,0] => 0
([(1,2),(3,4),(3,5),(4,5)],6) => [3,1] => [1,1,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0] => 0
([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => [1,1,1,1,1] => [1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => 0
([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => [3,1,1] => [1,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => 0
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1] => [1,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => 0
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [3,1,1,1] => [1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,1,0,0] => 0
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [3,3] => [1,1,1,0,0,0,1,1,0,0] => [1,1,0,1,0,0,1,0,1,0] => 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [3,3,1] => [1,1,0,1,0,0,1,1,0,0] => [1,1,0,1,0,0,1,1,0,0] => 0
([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => [5] => [1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,0,0,1,0,1,0,1,0,1,0] => 0
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => [4,1,1] => [1,1,0,1,1,0,0,0,1,0] => [1,1,0,0,1,1,0,1,0,0] => 0
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => [5,1] => [1,1,1,1,0,1,0,0,0,0,1,0] => [1,1,0,0,1,0,1,0,1,1,0,0] => 0
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [5,1] => [1,1,1,1,0,1,0,0,0,0,1,0] => [1,1,0,0,1,0,1,0,1,1,0,0] => 0
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,1,0,0] => 0
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,1,1] => [1,1,1,0,1,1,0,0,0,0,1,0] => [1,1,0,0,1,0,1,1,0,1,0,0] => 0
([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => [1,1,1,1,1] => [1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => 0
([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => [4,1] => [1,1,1,0,1,0,0,0,1,0] => [1,1,0,0,1,0,1,1,0,0] => 0
([(0,5),(1,5),(2,3),(2,4),(3,4)],6) => [3,1,1] => [1,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => 0
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6) => [4,1,1] => [1,1,0,1,1,0,0,0,1,0] => [1,1,0,0,1,1,0,1,0,0] => 0
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6) => [3,1,1,1] => [1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,1,0,0] => 0
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,1,0,0] => 0
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,1] => [1,1,1,1,0,1,0,0,0,0,1,0] => [1,1,0,0,1,0,1,0,1,1,0,0] => 0
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6) => [3,1,1,1] => [1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,1,0,0] => 0
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6) => [4,3] => [1,1,1,0,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0,1,0] => 0
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6) => [5,1,1] => [1,1,1,0,1,1,0,0,0,0,1,0] => [1,1,0,0,1,0,1,1,0,1,0,0] => 0
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,1] => [1,1,0,1,0,0,1,1,0,0] => [1,1,0,1,0,0,1,1,0,0] => 0
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,3] => [1,1,1,1,0,0,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,0,1,0] => 0
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [5,1,1] => [1,1,1,0,1,1,0,0,0,0,1,0] => [1,1,0,0,1,0,1,1,0,1,0,0] => 0
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => [5,1,1] => [1,1,1,0,1,1,0,0,0,0,1,0] => [1,1,0,0,1,0,1,1,0,1,0,0] => 0
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) => [3,3] => [1,1,1,0,0,0,1,1,0,0] => [1,1,0,1,0,0,1,0,1,0] => 0
([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6) => [5,1,1] => [1,1,1,0,1,1,0,0,0,0,1,0] => [1,1,0,0,1,0,1,1,0,1,0,0] => 0
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6) => [3,3,1] => [1,1,0,1,0,0,1,1,0,0] => [1,1,0,1,0,0,1,1,0,0] => 0
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [5,3] => [1,1,1,1,0,0,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,0,1,0] => 0
([(5,6)],7) => [1] => [1,0,1,0] => [1,1,0,0] => 0
([(4,6),(5,6)],7) => [1,1] => [1,0,1,1,0,0] => [1,1,0,1,0,0] => 0
([(3,6),(4,6),(5,6)],7) => [1,1,1] => [1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,0] => 0
([(2,6),(3,6),(4,6),(5,6)],7) => [1,1,1,1] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,0,1,0,1,0,0] => 0
>>> Load all 262 entries. <<<
search for individual values
searching the database for the individual values of this statistic
Description
Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n−1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra.
Associate to this special CNakayama algebra a Dyck path as follows:
In the list L delete the first entry $c_0$ and substract from all other entries $n$−1 and then append the last element 1. The result is a Kupisch series of an LNakayama algebra.
The statistic gives the $(t-1)/2$ when $t$ is the projective dimension of the simple module $S_{n-2}$.
Associate to this special CNakayama algebra a Dyck path as follows:
In the list L delete the first entry $c_0$ and substract from all other entries $n$−1 and then append the last element 1. The result is a Kupisch series of an LNakayama algebra.
The statistic gives the $(t-1)/2$ when $t$ is the projective dimension of the simple module $S_{n-2}$.
Map
decomposition reverse
Description
This map is recursively defined as follows.
The unique empty path of semilength $0$ is sent to itself.
Let $D$ be a Dyck path of semilength $n > 0$ and decompose it into $1 D_1 0 D_2$ with Dyck paths $D_1, D_2$ of respective semilengths $n_1$ and $n_2$ such that $n_1$ is minimal. One then has $n_1+n_2 = n-1$.
Now let $\tilde D_1$ and $\tilde D_2$ be the recursively defined respective images of $D_1$ and $D_2$ under this map. The image of $D$ is then defined as $1 \tilde D_2 0 \tilde D_1$.
The unique empty path of semilength $0$ is sent to itself.
Let $D$ be a Dyck path of semilength $n > 0$ and decompose it into $1 D_1 0 D_2$ with Dyck paths $D_1, D_2$ of respective semilengths $n_1$ and $n_2$ such that $n_1$ is minimal. One then has $n_1+n_2 = n-1$.
Now let $\tilde D_1$ and $\tilde D_2$ be the recursively defined respective images of $D_1$ and $D_2$ under this map. The image of $D$ is then defined as $1 \tilde D_2 0 \tilde D_1$.
Map
to edge-partition of biconnected components
Description
Sends a graph to the partition recording the number of edges in its biconnected components.
The biconnected components are also known as blocks of a graph.
The biconnected components are also known as blocks of a graph.
Map
to Dyck path
Description
Sends a partition to the shortest Dyck path tracing the shape of its Ferrers diagram.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!