*****************************************************************************
*       www.FindStat.org - The Combinatorial Statistic Finder               *
*                                                                           *
*       Copyright (C) 2019 The FindStatCrew <info@findstat.org>             *
*                                                                           *
*    This information is distributed in the hope that it will be useful,    *
*    but WITHOUT ANY WARRANTY; without even the implied warranty of         *
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                   *
*****************************************************************************

-----------------------------------------------------------------------------
Statistic identifier: St001204

-----------------------------------------------------------------------------
Collection: Dyck paths

-----------------------------------------------------------------------------
Description: Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n−1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra.
Associate to this special CNakayama algebra a Dyck path as follows:
In the list L delete the first entry $c_0$ and substract from all other entries $n$−1 and then append the last element 1. The result is a Kupisch series of an LNakayama algebra.
The statistic gives the $(t-1)/2$ when $t$ is the projective dimension of the simple module $S_{n-2}$.

-----------------------------------------------------------------------------
References: [1]   Marczinzik, René Upper bounds for the dominant dimension of Nakayama and related algebras. [[zbMATH:06820683]]

-----------------------------------------------------------------------------
Code:


-----------------------------------------------------------------------------
Statistic values:

[1,0,1,0]                 => 1
[1,1,0,0]                 => 0
[1,0,1,0,1,0]             => 1
[1,0,1,1,0,0]             => 1
[1,1,0,0,1,0]             => 0
[1,1,0,1,0,0]             => 0
[1,1,1,0,0,0]             => 0
[1,0,1,0,1,0,1,0]         => 1
[1,0,1,0,1,1,0,0]         => 1
[1,0,1,1,0,0,1,0]         => 1
[1,0,1,1,0,1,0,0]         => 1
[1,0,1,1,1,0,0,0]         => 1
[1,1,0,0,1,0,1,0]         => 0
[1,1,0,0,1,1,0,0]         => 0
[1,1,0,1,0,0,1,0]         => 0
[1,1,0,1,0,1,0,0]         => 0
[1,1,0,1,1,0,0,0]         => 0
[1,1,1,0,0,0,1,0]         => 0
[1,1,1,0,0,1,0,0]         => 0
[1,1,1,0,1,0,0,0]         => 0
[1,1,1,1,0,0,0,0]         => 0
[1,0,1,0,1,0,1,0,1,0]     => 1
[1,0,1,0,1,0,1,1,0,0]     => 1
[1,0,1,0,1,1,0,0,1,0]     => 1
[1,0,1,0,1,1,0,1,0,0]     => 1
[1,0,1,0,1,1,1,0,0,0]     => 1
[1,0,1,1,0,0,1,0,1,0]     => 1
[1,0,1,1,0,0,1,1,0,0]     => 1
[1,0,1,1,0,1,0,0,1,0]     => 1
[1,0,1,1,0,1,0,1,0,0]     => 1
[1,0,1,1,0,1,1,0,0,0]     => 1
[1,0,1,1,1,0,0,0,1,0]     => 1
[1,0,1,1,1,0,0,1,0,0]     => 1
[1,0,1,1,1,0,1,0,0,0]     => 1
[1,0,1,1,1,1,0,0,0,0]     => 1
[1,1,0,0,1,0,1,0,1,0]     => 0
[1,1,0,0,1,0,1,1,0,0]     => 0
[1,1,0,0,1,1,0,0,1,0]     => 0
[1,1,0,0,1,1,0,1,0,0]     => 0
[1,1,0,0,1,1,1,0,0,0]     => 0
[1,1,0,1,0,0,1,0,1,0]     => 0
[1,1,0,1,0,0,1,1,0,0]     => 0
[1,1,0,1,0,1,0,0,1,0]     => 0
[1,1,0,1,0,1,0,1,0,0]     => 0
[1,1,0,1,0,1,1,0,0,0]     => 0
[1,1,0,1,1,0,0,0,1,0]     => 0
[1,1,0,1,1,0,0,1,0,0]     => 0
[1,1,0,1,1,0,1,0,0,0]     => 0
[1,1,0,1,1,1,0,0,0,0]     => 0
[1,1,1,0,0,0,1,0,1,0]     => 0
[1,1,1,0,0,0,1,1,0,0]     => 0
[1,1,1,0,0,1,0,0,1,0]     => 0
[1,1,1,0,0,1,0,1,0,0]     => 0
[1,1,1,0,0,1,1,0,0,0]     => 0
[1,1,1,0,1,0,0,0,1,0]     => 0
[1,1,1,0,1,0,0,1,0,0]     => 0
[1,1,1,0,1,0,1,0,0,0]     => 0
[1,1,1,0,1,1,0,0,0,0]     => 0
[1,1,1,1,0,0,0,0,1,0]     => 0
[1,1,1,1,0,0,0,1,0,0]     => 0
[1,1,1,1,0,0,1,0,0,0]     => 0
[1,1,1,1,0,1,0,0,0,0]     => 0
[1,1,1,1,1,0,0,0,0,0]     => 0
[1,0,1,0,1,0,1,0,1,0,1,0] => 1
[1,0,1,0,1,0,1,0,1,1,0,0] => 1
[1,0,1,0,1,0,1,1,0,0,1,0] => 1
[1,0,1,0,1,0,1,1,0,1,0,0] => 1
[1,0,1,0,1,0,1,1,1,0,0,0] => 1
[1,0,1,0,1,1,0,0,1,0,1,0] => 1
[1,0,1,0,1,1,0,0,1,1,0,0] => 1
[1,0,1,0,1,1,0,1,0,0,1,0] => 1
[1,0,1,0,1,1,0,1,0,1,0,0] => 1
[1,0,1,0,1,1,0,1,1,0,0,0] => 1
[1,0,1,0,1,1,1,0,0,0,1,0] => 1
[1,0,1,0,1,1,1,0,0,1,0,0] => 1
[1,0,1,0,1,1,1,0,1,0,0,0] => 1
[1,0,1,0,1,1,1,1,0,0,0,0] => 1
[1,0,1,1,0,0,1,0,1,0,1,0] => 1
[1,0,1,1,0,0,1,0,1,1,0,0] => 1
[1,0,1,1,0,0,1,1,0,0,1,0] => 1
[1,0,1,1,0,0,1,1,0,1,0,0] => 1
[1,0,1,1,0,0,1,1,1,0,0,0] => 1
[1,0,1,1,0,1,0,0,1,0,1,0] => 1
[1,0,1,1,0,1,0,0,1,1,0,0] => 1
[1,0,1,1,0,1,0,1,0,0,1,0] => 1
[1,0,1,1,0,1,0,1,0,1,0,0] => 1
[1,0,1,1,0,1,0,1,1,0,0,0] => 1
[1,0,1,1,0,1,1,0,0,0,1,0] => 1
[1,0,1,1,0,1,1,0,0,1,0,0] => 1
[1,0,1,1,0,1,1,0,1,0,0,0] => 1
[1,0,1,1,0,1,1,1,0,0,0,0] => 1
[1,0,1,1,1,0,0,0,1,0,1,0] => 1
[1,0,1,1,1,0,0,0,1,1,0,0] => 1
[1,0,1,1,1,0,0,1,0,0,1,0] => 1
[1,0,1,1,1,0,0,1,0,1,0,0] => 1
[1,0,1,1,1,0,0,1,1,0,0,0] => 1
[1,0,1,1,1,0,1,0,0,0,1,0] => 1
[1,0,1,1,1,0,1,0,0,1,0,0] => 1
[1,0,1,1,1,0,1,0,1,0,0,0] => 1
[1,0,1,1,1,0,1,1,0,0,0,0] => 1
[1,0,1,1,1,1,0,0,0,0,1,0] => 1
[1,0,1,1,1,1,0,0,0,1,0,0] => 1
[1,0,1,1,1,1,0,0,1,0,0,0] => 1
[1,0,1,1,1,1,0,1,0,0,0,0] => 1
[1,0,1,1,1,1,1,0,0,0,0,0] => 1
[1,1,0,0,1,0,1,0,1,0,1,0] => 0
[1,1,0,0,1,0,1,0,1,1,0,0] => 0
[1,1,0,0,1,0,1,1,0,0,1,0] => 0
[1,1,0,0,1,0,1,1,0,1,0,0] => 0
[1,1,0,0,1,0,1,1,1,0,0,0] => 0
[1,1,0,0,1,1,0,0,1,0,1,0] => 0
[1,1,0,0,1,1,0,0,1,1,0,0] => 0
[1,1,0,0,1,1,0,1,0,0,1,0] => 0
[1,1,0,0,1,1,0,1,0,1,0,0] => 0
[1,1,0,0,1,1,0,1,1,0,0,0] => 0
[1,1,0,0,1,1,1,0,0,0,1,0] => 0
[1,1,0,0,1,1,1,0,0,1,0,0] => 0
[1,1,0,0,1,1,1,0,1,0,0,0] => 0
[1,1,0,0,1,1,1,1,0,0,0,0] => 0
[1,1,0,1,0,0,1,0,1,0,1,0] => 0
[1,1,0,1,0,0,1,0,1,1,0,0] => 0
[1,1,0,1,0,0,1,1,0,0,1,0] => 0
[1,1,0,1,0,0,1,1,0,1,0,0] => 0
[1,1,0,1,0,0,1,1,1,0,0,0] => 0
[1,1,0,1,0,1,0,0,1,0,1,0] => 0
[1,1,0,1,0,1,0,0,1,1,0,0] => 0
[1,1,0,1,0,1,0,1,0,0,1,0] => 0
[1,1,0,1,0,1,0,1,0,1,0,0] => 0
[1,1,0,1,0,1,0,1,1,0,0,0] => 0
[1,1,0,1,0,1,1,0,0,0,1,0] => 0
[1,1,0,1,0,1,1,0,0,1,0,0] => 0
[1,1,0,1,0,1,1,0,1,0,0,0] => 0
[1,1,0,1,0,1,1,1,0,0,0,0] => 0
[1,1,0,1,1,0,0,0,1,0,1,0] => 0
[1,1,0,1,1,0,0,0,1,1,0,0] => 0
[1,1,0,1,1,0,0,1,0,0,1,0] => 0
[1,1,0,1,1,0,0,1,0,1,0,0] => 0
[1,1,0,1,1,0,0,1,1,0,0,0] => 0
[1,1,0,1,1,0,1,0,0,0,1,0] => 0
[1,1,0,1,1,0,1,0,0,1,0,0] => 0
[1,1,0,1,1,0,1,0,1,0,0,0] => 0
[1,1,0,1,1,0,1,1,0,0,0,0] => 0
[1,1,0,1,1,1,0,0,0,0,1,0] => 0
[1,1,0,1,1,1,0,0,0,1,0,0] => 0
[1,1,0,1,1,1,0,0,1,0,0,0] => 0
[1,1,0,1,1,1,0,1,0,0,0,0] => 0
[1,1,0,1,1,1,1,0,0,0,0,0] => 0
[1,1,1,0,0,0,1,0,1,0,1,0] => 0
[1,1,1,0,0,0,1,0,1,1,0,0] => 0
[1,1,1,0,0,0,1,1,0,0,1,0] => 0
[1,1,1,0,0,0,1,1,0,1,0,0] => 0
[1,1,1,0,0,0,1,1,1,0,0,0] => 0
[1,1,1,0,0,1,0,0,1,0,1,0] => 0
[1,1,1,0,0,1,0,0,1,1,0,0] => 0
[1,1,1,0,0,1,0,1,0,0,1,0] => 0
[1,1,1,0,0,1,0,1,0,1,0,0] => 0
[1,1,1,0,0,1,0,1,1,0,0,0] => 0
[1,1,1,0,0,1,1,0,0,0,1,0] => 0
[1,1,1,0,0,1,1,0,0,1,0,0] => 0
[1,1,1,0,0,1,1,0,1,0,0,0] => 0
[1,1,1,0,0,1,1,1,0,0,0,0] => 0
[1,1,1,0,1,0,0,0,1,0,1,0] => 0
[1,1,1,0,1,0,0,0,1,1,0,0] => 0
[1,1,1,0,1,0,0,1,0,0,1,0] => 0
[1,1,1,0,1,0,0,1,0,1,0,0] => 0
[1,1,1,0,1,0,0,1,1,0,0,0] => 0
[1,1,1,0,1,0,1,0,0,0,1,0] => 0
[1,1,1,0,1,0,1,0,0,1,0,0] => 0
[1,1,1,0,1,0,1,0,1,0,0,0] => 0
[1,1,1,0,1,0,1,1,0,0,0,0] => 0
[1,1,1,0,1,1,0,0,0,0,1,0] => 0
[1,1,1,0,1,1,0,0,0,1,0,0] => 0
[1,1,1,0,1,1,0,0,1,0,0,0] => 0
[1,1,1,0,1,1,0,1,0,0,0,0] => 0
[1,1,1,0,1,1,1,0,0,0,0,0] => 0
[1,1,1,1,0,0,0,0,1,0,1,0] => 0
[1,1,1,1,0,0,0,0,1,1,0,0] => 0
[1,1,1,1,0,0,0,1,0,0,1,0] => 0
[1,1,1,1,0,0,0,1,0,1,0,0] => 0
[1,1,1,1,0,0,0,1,1,0,0,0] => 0
[1,1,1,1,0,0,1,0,0,0,1,0] => 0
[1,1,1,1,0,0,1,0,0,1,0,0] => 0
[1,1,1,1,0,0,1,0,1,0,0,0] => 0
[1,1,1,1,0,0,1,1,0,0,0,0] => 0
[1,1,1,1,0,1,0,0,0,0,1,0] => 0
[1,1,1,1,0,1,0,0,0,1,0,0] => 0
[1,1,1,1,0,1,0,0,1,0,0,0] => 0
[1,1,1,1,0,1,0,1,0,0,0,0] => 0
[1,1,1,1,0,1,1,0,0,0,0,0] => 0
[1,1,1,1,1,0,0,0,0,0,1,0] => 0
[1,1,1,1,1,0,0,0,0,1,0,0] => 0
[1,1,1,1,1,0,0,0,1,0,0,0] => 0
[1,1,1,1,1,0,0,1,0,0,0,0] => 0
[1,1,1,1,1,0,1,0,0,0,0,0] => 0
[1,1,1,1,1,1,0,0,0,0,0,0] => 0

-----------------------------------------------------------------------------
Created: May 15, 2018 at 22:34 by Rene Marczinzik

-----------------------------------------------------------------------------
Last Updated: May 15, 2018 at 22:34 by Rene Marczinzik