*****************************************************************************
*       www.FindStat.org - The Combinatorial Statistic Finder               *
*                                                                           *
*       Copyright (C) 2019 The FindStatCrew <info@findstat.org>             *
*                                                                           *
*    This information is distributed in the hope that it will be useful,    *
*    but WITHOUT ANY WARRANTY; without even the implied warranty of         *
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                   *
*****************************************************************************

-----------------------------------------------------------------------------
Statistic identifier: St001170

-----------------------------------------------------------------------------
Collection: Dyck paths

-----------------------------------------------------------------------------
Description: Number of indecomposable injective modules whose socle has projective dimension at most g-1 when g denotes the global dimension in the corresponding Nakayama algebra.

-----------------------------------------------------------------------------
References: [1]   Marczinzik, René Upper bounds for the dominant dimension of Nakayama and related algebras. [[zbMATH:06820683]]

-----------------------------------------------------------------------------
Code:


-----------------------------------------------------------------------------
Statistic values:

[1,0]                     => 1
[1,0,1,0]                 => 2
[1,1,0,0]                 => 1
[1,0,1,0,1,0]             => 3
[1,0,1,1,0,0]             => 3
[1,1,0,0,1,0]             => 3
[1,1,0,1,0,0]             => 3
[1,1,1,0,0,0]             => 1
[1,0,1,0,1,0,1,0]         => 4
[1,0,1,0,1,1,0,0]         => 4
[1,0,1,1,0,0,1,0]         => 3
[1,0,1,1,0,1,0,0]         => 4
[1,0,1,1,1,0,0,0]         => 4
[1,1,0,0,1,0,1,0]         => 4
[1,1,0,0,1,1,0,0]         => 4
[1,1,0,1,0,0,1,0]         => 4
[1,1,0,1,0,1,0,0]         => 4
[1,1,0,1,1,0,0,0]         => 4
[1,1,1,0,0,0,1,0]         => 4
[1,1,1,0,0,1,0,0]         => 4
[1,1,1,0,1,0,0,0]         => 4
[1,1,1,1,0,0,0,0]         => 1
[1,0,1,0,1,0,1,0,1,0]     => 5
[1,0,1,0,1,0,1,1,0,0]     => 5
[1,0,1,0,1,1,0,0,1,0]     => 5
[1,0,1,0,1,1,0,1,0,0]     => 5
[1,0,1,0,1,1,1,0,0,0]     => 5
[1,0,1,1,0,0,1,0,1,0]     => 5
[1,0,1,1,0,0,1,1,0,0]     => 4
[1,0,1,1,0,1,0,0,1,0]     => 5
[1,0,1,1,0,1,0,1,0,0]     => 5
[1,0,1,1,0,1,1,0,0,0]     => 5
[1,0,1,1,1,0,0,0,1,0]     => 4
[1,0,1,1,1,0,0,1,0,0]     => 4
[1,0,1,1,1,0,1,0,0,0]     => 5
[1,0,1,1,1,1,0,0,0,0]     => 5
[1,1,0,0,1,0,1,0,1,0]     => 5
[1,1,0,0,1,0,1,1,0,0]     => 5
[1,1,0,0,1,1,0,0,1,0]     => 4
[1,1,0,0,1,1,0,1,0,0]     => 5
[1,1,0,0,1,1,1,0,0,0]     => 5
[1,1,0,1,0,0,1,0,1,0]     => 5
[1,1,0,1,0,0,1,1,0,0]     => 5
[1,1,0,1,0,1,0,0,1,0]     => 5
[1,1,0,1,0,1,0,1,0,0]     => 4
[1,1,0,1,0,1,1,0,0,0]     => 5
[1,1,0,1,1,0,0,0,1,0]     => 4
[1,1,0,1,1,0,0,1,0,0]     => 5
[1,1,0,1,1,0,1,0,0,0]     => 5
[1,1,0,1,1,1,0,0,0,0]     => 5
[1,1,1,0,0,0,1,0,1,0]     => 5
[1,1,1,0,0,0,1,1,0,0]     => 5
[1,1,1,0,0,1,0,0,1,0]     => 5
[1,1,1,0,0,1,0,1,0,0]     => 5
[1,1,1,0,0,1,1,0,0,0]     => 5
[1,1,1,0,1,0,0,0,1,0]     => 5
[1,1,1,0,1,0,0,1,0,0]     => 5
[1,1,1,0,1,0,1,0,0,0]     => 5
[1,1,1,0,1,1,0,0,0,0]     => 5
[1,1,1,1,0,0,0,0,1,0]     => 5
[1,1,1,1,0,0,0,1,0,0]     => 5
[1,1,1,1,0,0,1,0,0,0]     => 5
[1,1,1,1,0,1,0,0,0,0]     => 5
[1,1,1,1,1,0,0,0,0,0]     => 1
[1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,0,1,0,1,0,1,1,0,0] => 6
[1,0,1,0,1,0,1,1,0,0,1,0] => 6
[1,0,1,0,1,0,1,1,0,1,0,0] => 6
[1,0,1,0,1,0,1,1,1,0,0,0] => 6
[1,0,1,0,1,1,0,0,1,0,1,0] => 5
[1,0,1,0,1,1,0,0,1,1,0,0] => 6
[1,0,1,0,1,1,0,1,0,0,1,0] => 6
[1,0,1,0,1,1,0,1,0,1,0,0] => 6
[1,0,1,0,1,1,0,1,1,0,0,0] => 6
[1,0,1,0,1,1,1,0,0,0,1,0] => 6
[1,0,1,0,1,1,1,0,0,1,0,0] => 6
[1,0,1,0,1,1,1,0,1,0,0,0] => 6
[1,0,1,0,1,1,1,1,0,0,0,0] => 6
[1,0,1,1,0,0,1,0,1,0,1,0] => 6
[1,0,1,1,0,0,1,0,1,1,0,0] => 6
[1,0,1,1,0,0,1,1,0,0,1,0] => 4
[1,0,1,1,0,0,1,1,0,1,0,0] => 6
[1,0,1,1,0,0,1,1,1,0,0,0] => 5
[1,0,1,1,0,1,0,0,1,0,1,0] => 6
[1,0,1,1,0,1,0,0,1,1,0,0] => 6
[1,0,1,1,0,1,0,1,0,0,1,0] => 6
[1,0,1,1,0,1,0,1,0,1,0,0] => 6
[1,0,1,1,0,1,0,1,1,0,0,0] => 6
[1,0,1,1,0,1,1,0,0,0,1,0] => 6
[1,0,1,1,0,1,1,0,0,1,0,0] => 6
[1,0,1,1,0,1,1,0,1,0,0,0] => 6
[1,0,1,1,0,1,1,1,0,0,0,0] => 6
[1,0,1,1,1,0,0,0,1,0,1,0] => 6
[1,0,1,1,1,0,0,0,1,1,0,0] => 5
[1,0,1,1,1,0,0,1,0,0,1,0] => 6
[1,0,1,1,1,0,0,1,0,1,0,0] => 6
[1,0,1,1,1,0,0,1,1,0,0,0] => 5
[1,0,1,1,1,0,1,0,0,0,1,0] => 6
[1,0,1,1,1,0,1,0,0,1,0,0] => 6
[1,0,1,1,1,0,1,0,1,0,0,0] => 6
[1,0,1,1,1,0,1,1,0,0,0,0] => 6
[1,0,1,1,1,1,0,0,0,0,1,0] => 5
[1,0,1,1,1,1,0,0,0,1,0,0] => 5
[1,0,1,1,1,1,0,0,1,0,0,0] => 5
[1,0,1,1,1,1,0,1,0,0,0,0] => 6
[1,0,1,1,1,1,1,0,0,0,0,0] => 6
[1,1,0,0,1,0,1,0,1,0,1,0] => 6
[1,1,0,0,1,0,1,0,1,1,0,0] => 6
[1,1,0,0,1,0,1,1,0,0,1,0] => 6
[1,1,0,0,1,0,1,1,0,1,0,0] => 6
[1,1,0,0,1,0,1,1,1,0,0,0] => 6
[1,1,0,0,1,1,0,0,1,0,1,0] => 6
[1,1,0,0,1,1,0,0,1,1,0,0] => 5
[1,1,0,0,1,1,0,1,0,0,1,0] => 6
[1,1,0,0,1,1,0,1,0,1,0,0] => 6
[1,1,0,0,1,1,0,1,1,0,0,0] => 6
[1,1,0,0,1,1,1,0,0,0,1,0] => 5
[1,1,0,0,1,1,1,0,0,1,0,0] => 5
[1,1,0,0,1,1,1,0,1,0,0,0] => 6
[1,1,0,0,1,1,1,1,0,0,0,0] => 6
[1,1,0,1,0,0,1,0,1,0,1,0] => 6
[1,1,0,1,0,0,1,0,1,1,0,0] => 6
[1,1,0,1,0,0,1,1,0,0,1,0] => 6
[1,1,0,1,0,0,1,1,0,1,0,0] => 6
[1,1,0,1,0,0,1,1,1,0,0,0] => 6
[1,1,0,1,0,1,0,0,1,0,1,0] => 6
[1,1,0,1,0,1,0,0,1,1,0,0] => 6
[1,1,0,1,0,1,0,1,0,0,1,0] => 6
[1,1,0,1,0,1,0,1,0,1,0,0] => 6
[1,1,0,1,0,1,0,1,1,0,0,0] => 5
[1,1,0,1,0,1,1,0,0,0,1,0] => 6
[1,1,0,1,0,1,1,0,0,1,0,0] => 6
[1,1,0,1,0,1,1,0,1,0,0,0] => 5
[1,1,0,1,0,1,1,1,0,0,0,0] => 6
[1,1,0,1,1,0,0,0,1,0,1,0] => 6
[1,1,0,1,1,0,0,0,1,1,0,0] => 5
[1,1,0,1,1,0,0,1,0,0,1,0] => 6
[1,1,0,1,1,0,0,1,0,1,0,0] => 6
[1,1,0,1,1,0,0,1,1,0,0,0] => 6
[1,1,0,1,1,0,1,0,0,0,1,0] => 6
[1,1,0,1,1,0,1,0,0,1,0,0] => 6
[1,1,0,1,1,0,1,0,1,0,0,0] => 5
[1,1,0,1,1,0,1,1,0,0,0,0] => 6
[1,1,0,1,1,1,0,0,0,0,1,0] => 5
[1,1,0,1,1,1,0,0,0,1,0,0] => 5
[1,1,0,1,1,1,0,0,1,0,0,0] => 6
[1,1,0,1,1,1,0,1,0,0,0,0] => 6
[1,1,0,1,1,1,1,0,0,0,0,0] => 6
[1,1,1,0,0,0,1,0,1,0,1,0] => 6
[1,1,1,0,0,0,1,0,1,1,0,0] => 6
[1,1,1,0,0,0,1,1,0,0,1,0] => 5
[1,1,1,0,0,0,1,1,0,1,0,0] => 6
[1,1,1,0,0,0,1,1,1,0,0,0] => 6
[1,1,1,0,0,1,0,0,1,0,1,0] => 6
[1,1,1,0,0,1,0,0,1,1,0,0] => 6
[1,1,1,0,0,1,0,1,0,0,1,0] => 6
[1,1,1,0,0,1,0,1,0,1,0,0] => 5
[1,1,1,0,0,1,0,1,1,0,0,0] => 6
[1,1,1,0,0,1,1,0,0,0,1,0] => 5
[1,1,1,0,0,1,1,0,0,1,0,0] => 6
[1,1,1,0,0,1,1,0,1,0,0,0] => 6
[1,1,1,0,0,1,1,1,0,0,0,0] => 6
[1,1,1,0,1,0,0,0,1,0,1,0] => 6
[1,1,1,0,1,0,0,0,1,1,0,0] => 6
[1,1,1,0,1,0,0,1,0,0,1,0] => 6
[1,1,1,0,1,0,0,1,0,1,0,0] => 5
[1,1,1,0,1,0,0,1,1,0,0,0] => 6
[1,1,1,0,1,0,1,0,0,0,1,0] => 6
[1,1,1,0,1,0,1,0,0,1,0,0] => 5
[1,1,1,0,1,0,1,0,1,0,0,0] => 5
[1,1,1,0,1,0,1,1,0,0,0,0] => 6
[1,1,1,0,1,1,0,0,0,0,1,0] => 5
[1,1,1,0,1,1,0,0,0,1,0,0] => 6
[1,1,1,0,1,1,0,0,1,0,0,0] => 6
[1,1,1,0,1,1,0,1,0,0,0,0] => 6
[1,1,1,0,1,1,1,0,0,0,0,0] => 6
[1,1,1,1,0,0,0,0,1,0,1,0] => 6
[1,1,1,1,0,0,0,0,1,1,0,0] => 6
[1,1,1,1,0,0,0,1,0,0,1,0] => 6
[1,1,1,1,0,0,0,1,0,1,0,0] => 6
[1,1,1,1,0,0,0,1,1,0,0,0] => 6
[1,1,1,1,0,0,1,0,0,0,1,0] => 6
[1,1,1,1,0,0,1,0,0,1,0,0] => 6
[1,1,1,1,0,0,1,0,1,0,0,0] => 6
[1,1,1,1,0,0,1,1,0,0,0,0] => 6
[1,1,1,1,0,1,0,0,0,0,1,0] => 6
[1,1,1,1,0,1,0,0,0,1,0,0] => 6
[1,1,1,1,0,1,0,0,1,0,0,0] => 6
[1,1,1,1,0,1,0,1,0,0,0,0] => 6
[1,1,1,1,0,1,1,0,0,0,0,0] => 6
[1,1,1,1,1,0,0,0,0,0,1,0] => 6
[1,1,1,1,1,0,0,0,0,1,0,0] => 6
[1,1,1,1,1,0,0,0,1,0,0,0] => 6
[1,1,1,1,1,0,0,1,0,0,0,0] => 6
[1,1,1,1,1,0,1,0,0,0,0,0] => 6
[1,1,1,1,1,1,0,0,0,0,0,0] => 1

-----------------------------------------------------------------------------
Created: Apr 29, 2018 at 14:14 by Rene Marczinzik

-----------------------------------------------------------------------------
Last Updated: May 02, 2018 at 11:34 by Rene Marczinzik