*****************************************************************************
*       www.FindStat.org - The Combinatorial Statistic Finder               *
*                                                                           *
*       Copyright (C) 2019 The FindStatCrew <info@findstat.org>             *
*                                                                           *
*    This information is distributed in the hope that it will be useful,    *
*    but WITHOUT ANY WARRANTY; without even the implied warranty of         *
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                   *
*****************************************************************************

-----------------------------------------------------------------------------
Statistic identifier: St001168

-----------------------------------------------------------------------------
Collection: Permutations

-----------------------------------------------------------------------------
Description: The vector space dimension of the tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$.

-----------------------------------------------------------------------------
References: [1]   Iyama, O., Zhang, X. Classifying Ï„-tilting modules over the Auslander algebra of $K[x]/(x^n)$ [[arXiv:1602.05037]]

-----------------------------------------------------------------------------
Code:


-----------------------------------------------------------------------------
Statistic values:

[1,2]     => 5
[2,1]     => 4
[1,2,3]   => 14
[1,3,2]   => 13
[2,1,3]   => 13
[2,3,1]   => 11
[3,1,2]   => 11
[3,2,1]   => 10
[1,2,4,3] => 29
[1,3,2,4] => 29
[1,3,4,2] => 27
[1,4,2,3] => 27
[1,4,3,2] => 26
[2,1,3,4] => 29
[2,1,4,3] => 28
[2,3,1,4] => 27
[2,3,4,1] => 24
[2,4,1,3] => 25
[2,4,3,1] => 23
[3,1,2,4] => 27
[3,1,4,2] => 25
[3,2,1,4] => 26
[3,2,4,1] => 23
[3,4,1,2] => 22
[3,4,2,1] => 21
[4,1,2,3] => 24
[4,1,3,2] => 23
[4,2,1,3] => 23
[4,2,3,1] => 21
[4,3,1,2] => 21
[4,3,2,1] => 20

-----------------------------------------------------------------------------
Created: Apr 30, 2018 at 23:58 by Rene Marczinzik

-----------------------------------------------------------------------------
Last Updated: Apr 30, 2018 at 23:58 by Rene Marczinzik