Identifier
Values
[1] => [1,0,1,0] => [(1,2),(3,4)] => 2
[2] => [1,1,0,0,1,0] => [(1,4),(2,3),(5,6)] => 4
[1,1] => [1,0,1,1,0,0] => [(1,2),(3,6),(4,5)] => 2
[3] => [1,1,1,0,0,0,1,0] => [(1,6),(2,5),(3,4),(7,8)] => 2
[2,1] => [1,0,1,0,1,0] => [(1,2),(3,4),(5,6)] => 2
[1,1,1] => [1,0,1,1,1,0,0,0] => [(1,2),(3,8),(4,7),(5,6)] => 2
[4] => [1,1,1,1,0,0,0,0,1,0] => [(1,8),(2,7),(3,6),(4,5),(9,10)] => 2
[3,1] => [1,1,0,1,0,0,1,0] => [(1,6),(2,3),(4,5),(7,8)] => 2
[2,2] => [1,1,0,0,1,1,0,0] => [(1,4),(2,3),(5,8),(6,7)] => 4
[2,1,1] => [1,0,1,1,0,1,0,0] => [(1,2),(3,8),(4,5),(6,7)] => 2
[1,1,1,1] => [1,0,1,1,1,1,0,0,0,0] => [(1,2),(3,10),(4,9),(5,8),(6,7)] => 2
[4,1] => [1,1,1,0,1,0,0,0,1,0] => [(1,8),(2,7),(3,4),(5,6),(9,10)] => 2
[3,2] => [1,1,0,0,1,0,1,0] => [(1,4),(2,3),(5,6),(7,8)] => 4
[3,1,1] => [1,0,1,1,0,0,1,0] => [(1,2),(3,6),(4,5),(7,8)] => 2
[2,2,1] => [1,0,1,0,1,1,0,0] => [(1,2),(3,4),(5,8),(6,7)] => 2
[2,1,1,1] => [1,0,1,1,1,0,1,0,0,0] => [(1,2),(3,10),(4,9),(5,6),(7,8)] => 2
[4,2] => [1,1,1,0,0,1,0,0,1,0] => [(1,8),(2,5),(3,4),(6,7),(9,10)] => 3
[4,1,1] => [1,1,0,1,1,0,0,0,1,0] => [(1,8),(2,3),(4,7),(5,6),(9,10)] => 2
[3,3] => [1,1,1,0,0,0,1,1,0,0] => [(1,6),(2,5),(3,4),(7,10),(8,9)] => 6
[3,2,1] => [1,0,1,0,1,0,1,0] => [(1,2),(3,4),(5,6),(7,8)] => 2
[3,1,1,1] => [1,0,1,1,1,0,0,1,0,0] => [(1,2),(3,10),(4,7),(5,6),(8,9)] => 2
[2,2,2] => [1,1,0,0,1,1,1,0,0,0] => [(1,4),(2,3),(5,10),(6,9),(7,8)] => 4
[2,2,1,1] => [1,0,1,1,0,1,1,0,0,0] => [(1,2),(3,10),(4,5),(6,9),(7,8)] => 2
[4,3] => [1,1,1,0,0,0,1,0,1,0] => [(1,6),(2,5),(3,4),(7,8),(9,10)] => 6
[4,2,1] => [1,1,0,1,0,1,0,0,1,0] => [(1,8),(2,3),(4,5),(6,7),(9,10)] => 4
[4,1,1,1] => [1,0,1,1,1,0,0,0,1,0] => [(1,2),(3,8),(4,7),(5,6),(9,10)] => 2
[3,3,1] => [1,1,0,1,0,0,1,1,0,0] => [(1,6),(2,3),(4,5),(7,10),(8,9)] => 6
[3,2,2] => [1,1,0,0,1,1,0,1,0,0] => [(1,4),(2,3),(5,10),(6,7),(8,9)] => 4
[3,2,1,1] => [1,0,1,1,0,1,0,1,0,0] => [(1,2),(3,10),(4,5),(6,7),(8,9)] => 2
[2,2,2,1] => [1,0,1,0,1,1,1,0,0,0] => [(1,2),(3,4),(5,10),(6,9),(7,8)] => 2
[4,3,1] => [1,1,0,1,0,0,1,0,1,0] => [(1,6),(2,3),(4,5),(7,8),(9,10)] => 6
[4,2,2] => [1,1,0,0,1,1,0,0,1,0] => [(1,4),(2,3),(5,8),(6,7),(9,10)] => 4
[4,2,1,1] => [1,0,1,1,0,1,0,0,1,0] => [(1,2),(3,8),(4,5),(6,7),(9,10)] => 2
[3,3,2] => [1,1,0,0,1,0,1,1,0,0] => [(1,4),(2,3),(5,6),(7,10),(8,9)] => 4
[3,3,1,1] => [1,0,1,1,0,0,1,1,0,0] => [(1,2),(3,6),(4,5),(7,10),(8,9)] => 2
[3,2,2,1] => [1,0,1,0,1,1,0,1,0,0] => [(1,2),(3,4),(5,10),(6,7),(8,9)] => 2
[4,3,2] => [1,1,0,0,1,0,1,0,1,0] => [(1,4),(2,3),(5,6),(7,8),(9,10)] => 4
[4,3,1,1] => [1,0,1,1,0,0,1,0,1,0] => [(1,2),(3,6),(4,5),(7,8),(9,10)] => 2
[4,2,2,1] => [1,0,1,0,1,1,0,0,1,0] => [(1,2),(3,4),(5,8),(6,7),(9,10)] => 2
[3,3,2,1] => [1,0,1,0,1,0,1,1,0,0] => [(1,2),(3,4),(5,6),(7,10),(8,9)] => 2
[2,2,2,2,1] => [1,0,1,0,1,1,1,1,0,0,0,0] => [(1,2),(3,4),(5,12),(6,11),(7,10),(8,9)] => 2
[4,3,2,1] => [1,0,1,0,1,0,1,0,1,0] => [(1,2),(3,4),(5,6),(7,8),(9,10)] => 2
[3,2,2,2,1] => [1,0,1,0,1,1,1,0,1,0,0,0] => [(1,2),(3,4),(5,12),(6,11),(7,8),(9,10)] => 2
[4,2,2,2,1] => [1,0,1,0,1,1,1,0,0,1,0,0] => [(1,2),(3,4),(5,12),(6,9),(7,8),(10,11)] => 2
[3,3,2,2,1] => [1,0,1,0,1,1,0,1,1,0,0,0] => [(1,2),(3,4),(5,12),(6,7),(8,11),(9,10)] => 2
[5,2,2,2,1] => [1,0,1,0,1,1,1,0,0,0,1,0] => [(1,2),(3,4),(5,10),(6,9),(7,8),(11,12)] => 2
[4,3,2,2,1] => [1,0,1,0,1,1,0,1,0,1,0,0] => [(1,2),(3,4),(5,12),(6,7),(8,9),(10,11)] => 2
[3,3,3,2,1] => [1,0,1,0,1,0,1,1,1,0,0,0] => [(1,2),(3,4),(5,6),(7,12),(8,11),(9,10)] => 2
[5,3,2,2,1] => [1,0,1,0,1,1,0,1,0,0,1,0] => [(1,2),(3,4),(5,10),(6,7),(8,9),(11,12)] => 2
[4,4,2,2,1] => [1,0,1,0,1,1,0,0,1,1,0,0] => [(1,2),(3,4),(5,8),(6,7),(9,12),(10,11)] => 2
[4,3,3,2,1] => [1,0,1,0,1,0,1,1,0,1,0,0] => [(1,2),(3,4),(5,6),(7,12),(8,9),(10,11)] => 2
[5,4,2,2,1] => [1,0,1,0,1,1,0,0,1,0,1,0] => [(1,2),(3,4),(5,8),(6,7),(9,10),(11,12)] => 2
[5,3,3,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0] => [(1,2),(3,4),(5,6),(7,10),(8,9),(11,12)] => 2
[4,4,3,2,1] => [1,0,1,0,1,0,1,0,1,1,0,0] => [(1,2),(3,4),(5,6),(7,8),(9,12),(10,11)] => 2
[5,4,3,2,1] => [1,0,1,0,1,0,1,0,1,0,1,0] => [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)] => 2
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The smallest label in the subtree rooted at the sister of 1 in the decreasing labelled binary unordered tree associated with the perfect matching.
The bijection between perfect matchings of $\{1,\dots,2n\}$ and trees with $n+1$ leaves is described in Example 5.2.6 of [1].
Map
to Dyck path
Description
Sends a partition to the shortest Dyck path tracing the shape of its Ferrers diagram.
Map
to tunnel matching
Description
Sends a Dyck path of semilength n to the noncrossing perfect matching given by matching an up-step with the corresponding down-step.
This is, for a Dyck path $D$ of semilength $n$, the perfect matching of $\{1,\dots,2n\}$ with $i < j$ being matched if $D_i$ is an up-step and $D_j$ is the down-step connected to $D_i$ by a tunnel.