Identifier
Identifier
Values
[(1,2)] generating graphics... => 2
[(1,2),(3,4)] generating graphics... => 2
[(1,3),(2,4)] generating graphics... => 3
[(1,4),(2,3)] generating graphics... => 2
[(1,2),(3,4),(5,6)] generating graphics... => 2
[(1,3),(2,4),(5,6)] generating graphics... => 3
[(1,4),(2,3),(5,6)] generating graphics... => 4
[(1,5),(2,3),(4,6)] generating graphics... => 2
[(1,6),(2,3),(4,5)] generating graphics... => 2
[(1,6),(2,4),(3,5)] generating graphics... => 2
[(1,5),(2,4),(3,6)] generating graphics... => 2
[(1,4),(2,5),(3,6)] generating graphics... => 4
[(1,3),(2,5),(4,6)] generating graphics... => 3
[(1,2),(3,5),(4,6)] generating graphics... => 2
[(1,2),(3,6),(4,5)] generating graphics... => 2
[(1,3),(2,6),(4,5)] generating graphics... => 3
[(1,4),(2,6),(3,5)] generating graphics... => 4
[(1,5),(2,6),(3,4)] generating graphics... => 3
[(1,6),(2,5),(3,4)] generating graphics... => 2
[(1,2),(3,4),(5,6),(7,8)] generating graphics... => 2
[(1,3),(2,4),(5,6),(7,8)] generating graphics... => 3
[(1,4),(2,3),(5,6),(7,8)] generating graphics... => 4
[(1,5),(2,3),(4,6),(7,8)] generating graphics... => 5
[(1,6),(2,3),(4,5),(7,8)] generating graphics... => 2
[(1,7),(2,3),(4,5),(6,8)] generating graphics... => 4
[(1,8),(2,3),(4,5),(6,7)] generating graphics... => 2
[(1,8),(2,4),(3,5),(6,7)] generating graphics... => 2
[(1,7),(2,4),(3,5),(6,8)] generating graphics... => 3
[(1,6),(2,4),(3,5),(7,8)] generating graphics... => 2
[(1,5),(2,4),(3,6),(7,8)] generating graphics... => 5
[(1,4),(2,5),(3,6),(7,8)] generating graphics... => 4
[(1,3),(2,5),(4,6),(7,8)] generating graphics... => 3
[(1,2),(3,5),(4,6),(7,8)] generating graphics... => 2
[(1,2),(3,6),(4,5),(7,8)] generating graphics... => 2
[(1,3),(2,6),(4,5),(7,8)] generating graphics... => 3
[(1,4),(2,6),(3,5),(7,8)] generating graphics... => 4
[(1,5),(2,6),(3,4),(7,8)] generating graphics... => 5
[(1,6),(2,5),(3,4),(7,8)] generating graphics... => 2
[(1,7),(2,5),(3,4),(6,8)] generating graphics... => 3
[(1,8),(2,5),(3,4),(6,7)] generating graphics... => 2
[(1,8),(2,6),(3,4),(5,7)] generating graphics... => 2
[(1,7),(2,6),(3,4),(5,8)] generating graphics... => 2
[(1,6),(2,7),(3,4),(5,8)] generating graphics... => 3
[(1,5),(2,7),(3,4),(6,8)] generating graphics... => 5
[(1,4),(2,7),(3,5),(6,8)] generating graphics... => 4
[(1,3),(2,7),(4,5),(6,8)] generating graphics... => 3
[(1,2),(3,7),(4,5),(6,8)] generating graphics... => 2
[(1,2),(3,8),(4,5),(6,7)] generating graphics... => 2
[(1,3),(2,8),(4,5),(6,7)] generating graphics... => 3
[(1,4),(2,8),(3,5),(6,7)] generating graphics... => 4
[(1,5),(2,8),(3,4),(6,7)] generating graphics... => 5
[(1,6),(2,8),(3,4),(5,7)] generating graphics... => 3
[(1,7),(2,8),(3,4),(5,6)] generating graphics... => 3
[(1,8),(2,7),(3,4),(5,6)] generating graphics... => 2
[(1,8),(2,7),(3,5),(4,6)] generating graphics... => 2
[(1,7),(2,8),(3,5),(4,6)] generating graphics... => 3
[(1,6),(2,8),(3,5),(4,7)] generating graphics... => 3
[(1,5),(2,8),(3,6),(4,7)] generating graphics... => 5
[(1,4),(2,8),(3,6),(5,7)] generating graphics... => 4
[(1,3),(2,8),(4,6),(5,7)] generating graphics... => 3
[(1,2),(3,8),(4,6),(5,7)] generating graphics... => 2
[(1,2),(3,7),(4,6),(5,8)] generating graphics... => 2
[(1,3),(2,7),(4,6),(5,8)] generating graphics... => 3
[(1,4),(2,7),(3,6),(5,8)] generating graphics... => 4
[(1,5),(2,7),(3,6),(4,8)] generating graphics... => 5
[(1,6),(2,7),(3,5),(4,8)] generating graphics... => 3
[(1,7),(2,6),(3,5),(4,8)] generating graphics... => 2
[(1,8),(2,6),(3,5),(4,7)] generating graphics... => 2
[(1,8),(2,5),(3,6),(4,7)] generating graphics... => 2
[(1,7),(2,5),(3,6),(4,8)] generating graphics... => 2
[(1,6),(2,5),(3,7),(4,8)] generating graphics... => 2
[(1,5),(2,6),(3,7),(4,8)] generating graphics... => 5
[(1,4),(2,6),(3,7),(5,8)] generating graphics... => 4
[(1,3),(2,6),(4,7),(5,8)] generating graphics... => 3
[(1,2),(3,6),(4,7),(5,8)] generating graphics... => 2
[(1,2),(3,5),(4,7),(6,8)] generating graphics... => 2
[(1,3),(2,5),(4,7),(6,8)] generating graphics... => 3
[(1,4),(2,5),(3,7),(6,8)] generating graphics... => 4
[(1,5),(2,4),(3,7),(6,8)] generating graphics... => 5
[(1,6),(2,4),(3,7),(5,8)] generating graphics... => 2
[(1,7),(2,4),(3,6),(5,8)] generating graphics... => 2
[(1,8),(2,4),(3,6),(5,7)] generating graphics... => 2
[(1,8),(2,3),(4,6),(5,7)] generating graphics... => 2
[(1,7),(2,3),(4,6),(5,8)] generating graphics... => 2
[(1,6),(2,3),(4,7),(5,8)] generating graphics... => 2
[(1,5),(2,3),(4,7),(6,8)] generating graphics... => 5
[(1,4),(2,3),(5,7),(6,8)] generating graphics... => 4
[(1,3),(2,4),(5,7),(6,8)] generating graphics... => 3
[(1,2),(3,4),(5,7),(6,8)] generating graphics... => 2
[(1,2),(3,4),(5,8),(6,7)] generating graphics... => 2
[(1,3),(2,4),(5,8),(6,7)] generating graphics... => 3
[(1,4),(2,3),(5,8),(6,7)] generating graphics... => 4
[(1,5),(2,3),(4,8),(6,7)] generating graphics... => 5
[(1,6),(2,3),(4,8),(5,7)] generating graphics... => 2
[(1,7),(2,3),(4,8),(5,6)] generating graphics... => 2
[(1,8),(2,3),(4,7),(5,6)] generating graphics... => 2
[(1,8),(2,4),(3,7),(5,6)] generating graphics... => 2
[(1,7),(2,4),(3,8),(5,6)] generating graphics... => 2
[(1,6),(2,4),(3,8),(5,7)] generating graphics... => 2
[(1,5),(2,4),(3,8),(6,7)] generating graphics... => 5
[(1,4),(2,5),(3,8),(6,7)] generating graphics... => 4
[(1,3),(2,5),(4,8),(6,7)] generating graphics... => 3
[(1,2),(3,5),(4,8),(6,7)] generating graphics... => 2
[(1,2),(3,6),(4,8),(5,7)] generating graphics... => 2
[(1,3),(2,6),(4,8),(5,7)] generating graphics... => 3
[(1,4),(2,6),(3,8),(5,7)] generating graphics... => 4
[(1,5),(2,6),(3,8),(4,7)] generating graphics... => 5
[(1,6),(2,5),(3,8),(4,7)] generating graphics... => 2
[(1,7),(2,5),(3,8),(4,6)] generating graphics... => 2
[(1,8),(2,5),(3,7),(4,6)] generating graphics... => 2
[(1,8),(2,6),(3,7),(4,5)] generating graphics... => 2
[(1,7),(2,6),(3,8),(4,5)] generating graphics... => 2
[(1,6),(2,7),(3,8),(4,5)] generating graphics... => 4
[(1,5),(2,7),(3,8),(4,6)] generating graphics... => 5
[(1,4),(2,7),(3,8),(5,6)] generating graphics... => 4
[(1,3),(2,7),(4,8),(5,6)] generating graphics... => 3
[(1,2),(3,7),(4,8),(5,6)] generating graphics... => 2
[(1,2),(3,8),(4,7),(5,6)] generating graphics... => 2
[(1,3),(2,8),(4,7),(5,6)] generating graphics... => 3
[(1,4),(2,8),(3,7),(5,6)] generating graphics... => 4
[(1,5),(2,8),(3,7),(4,6)] generating graphics... => 5
[(1,6),(2,8),(3,7),(4,5)] generating graphics... => 4
[(1,7),(2,8),(3,6),(4,5)] generating graphics... => 3
[(1,8),(2,7),(3,6),(4,5)] generating graphics... => 2
[(1,2),(3,4),(5,6),(7,8),(9,10)] generating graphics... => 2
[(1,3),(2,4),(5,6),(7,8),(9,10)] generating graphics... => 3
[(1,4),(2,3),(5,6),(7,8),(9,10)] generating graphics... => 4
[(1,5),(2,3),(4,6),(7,8),(9,10)] generating graphics... => 5
[(1,6),(2,3),(4,5),(7,8),(9,10)] generating graphics... => 6
[(1,7),(2,3),(4,5),(6,8),(9,10)] generating graphics... => 2
[(1,8),(2,3),(4,5),(6,7),(9,10)] generating graphics... => 4
[(1,9),(2,3),(4,5),(6,7),(8,10)] generating graphics... => 2
[(1,10),(2,3),(4,5),(6,7),(8,9)] generating graphics... => 2
[(1,10),(2,4),(3,5),(6,7),(8,9)] generating graphics... => 2
[(1,9),(2,4),(3,5),(6,7),(8,10)] generating graphics... => 2
[(1,8),(2,4),(3,5),(6,7),(9,10)] generating graphics... => 3
[(1,7),(2,4),(3,5),(6,8),(9,10)] generating graphics... => 2
[(1,6),(2,4),(3,5),(7,8),(9,10)] generating graphics... => 6
[(1,5),(2,4),(3,6),(7,8),(9,10)] generating graphics... => 5
[(1,4),(2,5),(3,6),(7,8),(9,10)] generating graphics... => 4
[(1,3),(2,5),(4,6),(7,8),(9,10)] generating graphics... => 3
[(1,2),(3,5),(4,6),(7,8),(9,10)] generating graphics... => 2
[(1,2),(3,6),(4,5),(7,8),(9,10)] generating graphics... => 2
[(1,3),(2,6),(4,5),(7,8),(9,10)] generating graphics... => 3
[(1,4),(2,6),(3,5),(7,8),(9,10)] generating graphics... => 4
[(1,5),(2,6),(3,4),(7,8),(9,10)] generating graphics... => 5
[(1,6),(2,5),(3,4),(7,8),(9,10)] generating graphics... => 6
[(1,7),(2,5),(3,4),(6,8),(9,10)] generating graphics... => 2
[(1,8),(2,5),(3,4),(6,7),(9,10)] generating graphics... => 3
[(1,9),(2,5),(3,4),(6,7),(8,10)] generating graphics... => 2
[(1,10),(2,5),(3,4),(6,7),(8,9)] generating graphics... => 2
[(1,10),(2,6),(3,4),(5,7),(8,9)] generating graphics... => 2
[(1,9),(2,6),(3,4),(5,7),(8,10)] generating graphics... => 2
[(1,8),(2,6),(3,4),(5,7),(9,10)] generating graphics... => 3
[(1,7),(2,6),(3,4),(5,8),(9,10)] generating graphics... => 2
[(1,6),(2,7),(3,4),(5,8),(9,10)] generating graphics... => 6
[(1,5),(2,7),(3,4),(6,8),(9,10)] generating graphics... => 5
[(1,4),(2,7),(3,5),(6,8),(9,10)] generating graphics... => 4
[(1,3),(2,7),(4,5),(6,8),(9,10)] generating graphics... => 3
[(1,2),(3,7),(4,5),(6,8),(9,10)] generating graphics... => 2
[(1,2),(3,8),(4,5),(6,7),(9,10)] generating graphics... => 2
[(1,3),(2,8),(4,5),(6,7),(9,10)] generating graphics... => 3
[(1,4),(2,8),(3,5),(6,7),(9,10)] generating graphics... => 4
[(1,5),(2,8),(3,4),(6,7),(9,10)] generating graphics... => 5
[(1,6),(2,8),(3,4),(5,7),(9,10)] generating graphics... => 6
[(1,7),(2,8),(3,4),(5,6),(9,10)] generating graphics... => 3
[(1,8),(2,7),(3,4),(5,6),(9,10)] generating graphics... => 2
[(1,9),(2,7),(3,4),(5,6),(8,10)] generating graphics... => 5
[(1,10),(2,7),(3,4),(5,6),(8,9)] generating graphics... => 2
[(1,10),(2,8),(3,4),(5,6),(7,9)] generating graphics... => 2
[(1,9),(2,8),(3,4),(5,6),(7,10)] generating graphics... => 2
[(1,8),(2,9),(3,4),(5,6),(7,10)] generating graphics... => 5
[(1,7),(2,9),(3,4),(5,6),(8,10)] generating graphics... => 3
[(1,6),(2,9),(3,4),(5,7),(8,10)] generating graphics... => 6
[(1,5),(2,9),(3,4),(6,7),(8,10)] generating graphics... => 5
[(1,4),(2,9),(3,5),(6,7),(8,10)] generating graphics... => 4
[(1,3),(2,9),(4,5),(6,7),(8,10)] generating graphics... => 3
[(1,2),(3,9),(4,5),(6,7),(8,10)] generating graphics... => 2
[(1,2),(3,10),(4,5),(6,7),(8,9)] generating graphics... => 2
[(1,3),(2,10),(4,5),(6,7),(8,9)] generating graphics... => 3
[(1,4),(2,10),(3,5),(6,7),(8,9)] generating graphics... => 4
[(1,5),(2,10),(3,4),(6,7),(8,9)] generating graphics... => 5
[(1,6),(2,10),(3,4),(5,7),(8,9)] generating graphics... => 6
[(1,7),(2,10),(3,4),(5,6),(8,9)] generating graphics... => 3
[(1,8),(2,10),(3,4),(5,6),(7,9)] generating graphics... => 5
[(1,9),(2,10),(3,4),(5,6),(7,8)] generating graphics... => 3
[(1,10),(2,9),(3,4),(5,6),(7,8)] generating graphics... => 2
[(1,10),(2,9),(3,5),(4,6),(7,8)] generating graphics... => 2
[(1,9),(2,10),(3,5),(4,6),(7,8)] generating graphics... => 3
[(1,8),(2,10),(3,5),(4,6),(7,9)] generating graphics... => 4
[(1,7),(2,10),(3,5),(4,6),(8,9)] generating graphics... => 3
[(1,6),(2,10),(3,5),(4,7),(8,9)] generating graphics... => 6
[(1,5),(2,10),(3,6),(4,7),(8,9)] generating graphics... => 5
[(1,4),(2,10),(3,6),(5,7),(8,9)] generating graphics... => 4
[(1,3),(2,10),(4,6),(5,7),(8,9)] generating graphics... => 3
[(1,2),(3,10),(4,6),(5,7),(8,9)] generating graphics... => 2
[(1,2),(3,9),(4,6),(5,7),(8,10)] generating graphics... => 2
[(1,3),(2,9),(4,6),(5,7),(8,10)] generating graphics... => 3
[(1,4),(2,9),(3,6),(5,7),(8,10)] generating graphics... => 4
[(1,5),(2,9),(3,6),(4,7),(8,10)] generating graphics... => 5
[(1,6),(2,9),(3,5),(4,7),(8,10)] generating graphics... => 6
[(1,7),(2,9),(3,5),(4,6),(8,10)] generating graphics... => 3
[(1,8),(2,9),(3,5),(4,6),(7,10)] generating graphics... => 4
[(1,9),(2,8),(3,5),(4,6),(7,10)] generating graphics... => 2
[(1,10),(2,8),(3,5),(4,6),(7,9)] generating graphics... => 2
[(1,10),(2,7),(3,5),(4,6),(8,9)] generating graphics... => 2
[(1,9),(2,7),(3,5),(4,6),(8,10)] generating graphics... => 4
[(1,8),(2,7),(3,5),(4,6),(9,10)] generating graphics... => 2
[(1,7),(2,8),(3,5),(4,6),(9,10)] generating graphics... => 3
[(1,6),(2,8),(3,5),(4,7),(9,10)] generating graphics... => 6
[(1,5),(2,8),(3,6),(4,7),(9,10)] generating graphics... => 5
[(1,4),(2,8),(3,6),(5,7),(9,10)] generating graphics... => 4
[(1,3),(2,8),(4,6),(5,7),(9,10)] generating graphics... => 3
[(1,2),(3,8),(4,6),(5,7),(9,10)] generating graphics... => 2
[(1,2),(3,7),(4,6),(5,8),(9,10)] generating graphics... => 2
[(1,3),(2,7),(4,6),(5,8),(9,10)] generating graphics... => 3
[(1,4),(2,7),(3,6),(5,8),(9,10)] generating graphics... => 4
[(1,5),(2,7),(3,6),(4,8),(9,10)] generating graphics... => 5
[(1,6),(2,7),(3,5),(4,8),(9,10)] generating graphics... => 6
[(1,7),(2,6),(3,5),(4,8),(9,10)] generating graphics... => 2
[(1,8),(2,6),(3,5),(4,7),(9,10)] generating graphics... => 3
[(1,9),(2,6),(3,5),(4,7),(8,10)] generating graphics... => 2
[(1,10),(2,6),(3,5),(4,7),(8,9)] generating graphics... => 2
[(1,10),(2,5),(3,6),(4,7),(8,9)] generating graphics... => 2
[(1,9),(2,5),(3,6),(4,7),(8,10)] generating graphics... => 2
[(1,8),(2,5),(3,6),(4,7),(9,10)] generating graphics... => 3
[(1,7),(2,5),(3,6),(4,8),(9,10)] generating graphics... => 2
[(1,6),(2,5),(3,7),(4,8),(9,10)] generating graphics... => 6
[(1,5),(2,6),(3,7),(4,8),(9,10)] generating graphics... => 5
[(1,4),(2,6),(3,7),(5,8),(9,10)] generating graphics... => 4
[(1,3),(2,6),(4,7),(5,8),(9,10)] generating graphics... => 3
[(1,2),(3,6),(4,7),(5,8),(9,10)] generating graphics... => 2
[(1,2),(3,5),(4,7),(6,8),(9,10)] generating graphics... => 2
[(1,3),(2,5),(4,7),(6,8),(9,10)] generating graphics... => 3
[(1,4),(2,5),(3,7),(6,8),(9,10)] generating graphics... => 4
[(1,5),(2,4),(3,7),(6,8),(9,10)] generating graphics... => 5
[(1,6),(2,4),(3,7),(5,8),(9,10)] generating graphics... => 6
[(1,7),(2,4),(3,6),(5,8),(9,10)] generating graphics... => 2
[(1,8),(2,4),(3,6),(5,7),(9,10)] generating graphics... => 3
[(1,9),(2,4),(3,6),(5,7),(8,10)] generating graphics... => 2
[(1,10),(2,4),(3,6),(5,7),(8,9)] generating graphics... => 2
[(1,10),(2,3),(4,6),(5,7),(8,9)] generating graphics... => 2
[(1,9),(2,3),(4,6),(5,7),(8,10)] generating graphics... => 2
[(1,8),(2,3),(4,6),(5,7),(9,10)] generating graphics... => 4
[(1,7),(2,3),(4,6),(5,8),(9,10)] generating graphics... => 2
[(1,6),(2,3),(4,7),(5,8),(9,10)] generating graphics... => 6
[(1,5),(2,3),(4,7),(6,8),(9,10)] generating graphics... => 5
[(1,4),(2,3),(5,7),(6,8),(9,10)] generating graphics... => 4
[(1,3),(2,4),(5,7),(6,8),(9,10)] generating graphics... => 3
[(1,2),(3,4),(5,7),(6,8),(9,10)] generating graphics... => 2
[(1,2),(3,4),(5,8),(6,7),(9,10)] generating graphics... => 2
[(1,3),(2,4),(5,8),(6,7),(9,10)] generating graphics... => 3
[(1,4),(2,3),(5,8),(6,7),(9,10)] generating graphics... => 4
[(1,5),(2,3),(4,8),(6,7),(9,10)] generating graphics... => 5
[(1,6),(2,3),(4,8),(5,7),(9,10)] generating graphics... => 6
[(1,7),(2,3),(4,8),(5,6),(9,10)] generating graphics... => 2
[(1,8),(2,3),(4,7),(5,6),(9,10)] generating graphics... => 2
[(1,9),(2,3),(4,7),(5,6),(8,10)] generating graphics... => 5
[(1,10),(2,3),(4,7),(5,6),(8,9)] generating graphics... => 2
[(1,10),(2,4),(3,7),(5,6),(8,9)] generating graphics... => 2
[(1,9),(2,4),(3,7),(5,6),(8,10)] generating graphics... => 5
[(1,8),(2,4),(3,7),(5,6),(9,10)] generating graphics... => 2
[(1,7),(2,4),(3,8),(5,6),(9,10)] generating graphics... => 2
[(1,6),(2,4),(3,8),(5,7),(9,10)] generating graphics... => 6
[(1,5),(2,4),(3,8),(6,7),(9,10)] generating graphics... => 5
[(1,4),(2,5),(3,8),(6,7),(9,10)] generating graphics... => 4
[(1,3),(2,5),(4,8),(6,7),(9,10)] generating graphics... => 3
[(1,2),(3,5),(4,8),(6,7),(9,10)] generating graphics... => 2
[(1,2),(3,6),(4,8),(5,7),(9,10)] generating graphics... => 2
[(1,3),(2,6),(4,8),(5,7),(9,10)] generating graphics... => 3
[(1,4),(2,6),(3,8),(5,7),(9,10)] generating graphics... => 4
[(1,5),(2,6),(3,8),(4,7),(9,10)] generating graphics... => 5
[(1,6),(2,5),(3,8),(4,7),(9,10)] generating graphics... => 6
[(1,7),(2,5),(3,8),(4,6),(9,10)] generating graphics... => 2
[(1,8),(2,5),(3,7),(4,6),(9,10)] generating graphics... => 2
[(1,9),(2,5),(3,7),(4,6),(8,10)] generating graphics... => 4
[(1,10),(2,5),(3,7),(4,6),(8,9)] generating graphics... => 2
[(1,10),(2,6),(3,7),(4,5),(8,9)] generating graphics... => 2
[(1,9),(2,6),(3,7),(4,5),(8,10)] generating graphics... => 4
[(1,8),(2,6),(3,7),(4,5),(9,10)] generating graphics... => 2
[(1,7),(2,6),(3,8),(4,5),(9,10)] generating graphics... => 2
[(1,6),(2,7),(3,8),(4,5),(9,10)] generating graphics... => 6
[(1,5),(2,7),(3,8),(4,6),(9,10)] generating graphics... => 5
[(1,4),(2,7),(3,8),(5,6),(9,10)] generating graphics... => 4
[(1,3),(2,7),(4,8),(5,6),(9,10)] generating graphics... => 3
[(1,2),(3,7),(4,8),(5,6),(9,10)] generating graphics... => 2
[(1,2),(3,8),(4,7),(5,6),(9,10)] generating graphics... => 2
[(1,3),(2,8),(4,7),(5,6),(9,10)] generating graphics... => 3
[(1,4),(2,8),(3,7),(5,6),(9,10)] generating graphics... => 4
[(1,5),(2,8),(3,7),(4,6),(9,10)] generating graphics... => 5
[(1,6),(2,8),(3,7),(4,5),(9,10)] generating graphics... => 6
[(1,7),(2,8),(3,6),(4,5),(9,10)] generating graphics... => 3
[(1,8),(2,7),(3,6),(4,5),(9,10)] generating graphics... => 2
[(1,9),(2,7),(3,6),(4,5),(8,10)] generating graphics... => 4
[(1,10),(2,7),(3,6),(4,5),(8,9)] generating graphics... => 2
[(1,10),(2,8),(3,6),(4,5),(7,9)] generating graphics... => 2
[(1,9),(2,8),(3,6),(4,5),(7,10)] generating graphics... => 2
[(1,8),(2,9),(3,6),(4,5),(7,10)] generating graphics... => 4
[(1,7),(2,9),(3,6),(4,5),(8,10)] generating graphics... => 3
[(1,6),(2,9),(3,7),(4,5),(8,10)] generating graphics... => 6
[(1,5),(2,9),(3,7),(4,6),(8,10)] generating graphics... => 5
[(1,4),(2,9),(3,7),(5,6),(8,10)] generating graphics... => 4
[(1,3),(2,9),(4,7),(5,6),(8,10)] generating graphics... => 3
[(1,2),(3,9),(4,7),(5,6),(8,10)] generating graphics... => 2
[(1,2),(3,10),(4,7),(5,6),(8,9)] generating graphics... => 2
[(1,3),(2,10),(4,7),(5,6),(8,9)] generating graphics... => 3
[(1,4),(2,10),(3,7),(5,6),(8,9)] generating graphics... => 4
[(1,5),(2,10),(3,7),(4,6),(8,9)] generating graphics... => 5
[(1,6),(2,10),(3,7),(4,5),(8,9)] generating graphics... => 6
[(1,7),(2,10),(3,6),(4,5),(8,9)] generating graphics... => 3
[(1,8),(2,10),(3,6),(4,5),(7,9)] generating graphics... => 4
[(1,9),(2,10),(3,6),(4,5),(7,8)] generating graphics... => 3
[(1,10),(2,9),(3,6),(4,5),(7,8)] generating graphics... => 2
[(1,10),(2,9),(3,7),(4,5),(6,8)] generating graphics... => 2
[(1,9),(2,10),(3,7),(4,5),(6,8)] generating graphics... => 3
[(1,8),(2,10),(3,7),(4,5),(6,9)] generating graphics... => 3
[(1,7),(2,10),(3,8),(4,5),(6,9)] generating graphics... => 4
[(1,6),(2,10),(3,8),(4,5),(7,9)] generating graphics... => 6
[(1,5),(2,10),(3,8),(4,6),(7,9)] generating graphics... => 5
[(1,4),(2,10),(3,8),(5,6),(7,9)] generating graphics... => 4
[(1,3),(2,10),(4,8),(5,6),(7,9)] generating graphics... => 3
[(1,2),(3,10),(4,8),(5,6),(7,9)] generating graphics... => 2
[(1,2),(3,9),(4,8),(5,6),(7,10)] generating graphics... => 2
[(1,3),(2,9),(4,8),(5,6),(7,10)] generating graphics... => 3
[(1,4),(2,9),(3,8),(5,6),(7,10)] generating graphics... => 4
[(1,5),(2,9),(3,8),(4,6),(7,10)] generating graphics... => 5
[(1,6),(2,9),(3,8),(4,5),(7,10)] generating graphics... => 6
[(1,7),(2,9),(3,8),(4,5),(6,10)] generating graphics... => 4
[(1,8),(2,9),(3,7),(4,5),(6,10)] generating graphics... => 3
[(1,9),(2,8),(3,7),(4,5),(6,10)] generating graphics... => 2
[(1,10),(2,8),(3,7),(4,5),(6,9)] generating graphics... => 2
[(1,10),(2,7),(3,8),(4,5),(6,9)] generating graphics... => 2
[(1,9),(2,7),(3,8),(4,5),(6,10)] generating graphics... => 2
[(1,8),(2,7),(3,9),(4,5),(6,10)] generating graphics... => 2
[(1,7),(2,8),(3,9),(4,5),(6,10)] generating graphics... => 4
[(1,6),(2,8),(3,9),(4,5),(7,10)] generating graphics... => 6
[(1,5),(2,8),(3,9),(4,6),(7,10)] generating graphics... => 5
[(1,4),(2,8),(3,9),(5,6),(7,10)] generating graphics... => 4
[(1,3),(2,8),(4,9),(5,6),(7,10)] generating graphics... => 3
[(1,2),(3,8),(4,9),(5,6),(7,10)] generating graphics... => 2
[(1,2),(3,7),(4,9),(5,6),(8,10)] generating graphics... => 2
[(1,3),(2,7),(4,9),(5,6),(8,10)] generating graphics... => 3
[(1,4),(2,7),(3,9),(5,6),(8,10)] generating graphics... => 4
[(1,5),(2,7),(3,9),(4,6),(8,10)] generating graphics... => 5
[(1,6),(2,7),(3,9),(4,5),(8,10)] generating graphics... => 6
[(1,7),(2,6),(3,9),(4,5),(8,10)] generating graphics... => 2
[(1,8),(2,6),(3,9),(4,5),(7,10)] generating graphics... => 4
[(1,9),(2,6),(3,8),(4,5),(7,10)] generating graphics... => 3
[(1,10),(2,6),(3,8),(4,5),(7,9)] generating graphics... => 2
[(1,10),(2,5),(3,8),(4,6),(7,9)] generating graphics... => 2
[(1,9),(2,5),(3,8),(4,6),(7,10)] generating graphics... => 3
[(1,8),(2,5),(3,9),(4,6),(7,10)] generating graphics... => 4
[(1,7),(2,5),(3,9),(4,6),(8,10)] generating graphics... => 2
[(1,6),(2,5),(3,9),(4,7),(8,10)] generating graphics... => 6
[(1,5),(2,6),(3,9),(4,7),(8,10)] generating graphics... => 5
[(1,4),(2,6),(3,9),(5,7),(8,10)] generating graphics... => 4
[(1,3),(2,6),(4,9),(5,7),(8,10)] generating graphics... => 3
[(1,2),(3,6),(4,9),(5,7),(8,10)] generating graphics... => 2
[(1,2),(3,5),(4,9),(6,7),(8,10)] generating graphics... => 2
[(1,3),(2,5),(4,9),(6,7),(8,10)] generating graphics... => 3
[(1,4),(2,5),(3,9),(6,7),(8,10)] generating graphics... => 4
[(1,5),(2,4),(3,9),(6,7),(8,10)] generating graphics... => 5
[(1,6),(2,4),(3,9),(5,7),(8,10)] generating graphics... => 6
[(1,7),(2,4),(3,9),(5,6),(8,10)] generating graphics... => 2
[(1,8),(2,4),(3,9),(5,6),(7,10)] generating graphics... => 5
[(1,9),(2,4),(3,8),(5,6),(7,10)] generating graphics... => 3
[(1,10),(2,4),(3,8),(5,6),(7,9)] generating graphics... => 2
[(1,10),(2,3),(4,8),(5,6),(7,9)] generating graphics... => 2
[(1,9),(2,3),(4,8),(5,6),(7,10)] generating graphics... => 4
[(1,8),(2,3),(4,9),(5,6),(7,10)] generating graphics... => 5
[(1,7),(2,3),(4,9),(5,6),(8,10)] generating graphics... => 2
[(1,6),(2,3),(4,9),(5,7),(8,10)] generating graphics... => 6
[(1,5),(2,3),(4,9),(6,7),(8,10)] generating graphics... => 5
[(1,4),(2,3),(5,9),(6,7),(8,10)] generating graphics... => 4
[(1,3),(2,4),(5,9),(6,7),(8,10)] generating graphics... => 3
[(1,2),(3,4),(5,9),(6,7),(8,10)] generating graphics... => 2
[(1,2),(3,4),(5,10),(6,7),(8,9)] generating graphics... => 2
[(1,3),(2,4),(5,10),(6,7),(8,9)] generating graphics... => 3
[(1,4),(2,3),(5,10),(6,7),(8,9)] generating graphics... => 4
[(1,5),(2,3),(4,10),(6,7),(8,9)] generating graphics... => 5
[(1,6),(2,3),(4,10),(5,7),(8,9)] generating graphics... => 6
[(1,7),(2,3),(4,10),(5,6),(8,9)] generating graphics... => 2
[(1,8),(2,3),(4,10),(5,6),(7,9)] generating graphics... => 5
[(1,9),(2,3),(4,10),(5,6),(7,8)] generating graphics... => 2
[(1,10),(2,3),(4,9),(5,6),(7,8)] generating graphics... => 2
[(1,10),(2,4),(3,9),(5,6),(7,8)] generating graphics... => 2
[(1,9),(2,4),(3,10),(5,6),(7,8)] generating graphics... => 2
[(1,8),(2,4),(3,10),(5,6),(7,9)] generating graphics... => 5
[(1,7),(2,4),(3,10),(5,6),(8,9)] generating graphics... => 2
[(1,6),(2,4),(3,10),(5,7),(8,9)] generating graphics... => 6
[(1,5),(2,4),(3,10),(6,7),(8,9)] generating graphics... => 5
[(1,4),(2,5),(3,10),(6,7),(8,9)] generating graphics... => 4
[(1,3),(2,5),(4,10),(6,7),(8,9)] generating graphics... => 3
[(1,2),(3,5),(4,10),(6,7),(8,9)] generating graphics... => 2
[(1,2),(3,6),(4,10),(5,7),(8,9)] generating graphics... => 2
[(1,3),(2,6),(4,10),(5,7),(8,9)] generating graphics... => 3
[(1,4),(2,6),(3,10),(5,7),(8,9)] generating graphics... => 4
[(1,5),(2,6),(3,10),(4,7),(8,9)] generating graphics... => 5
[(1,6),(2,5),(3,10),(4,7),(8,9)] generating graphics... => 6
[(1,7),(2,5),(3,10),(4,6),(8,9)] generating graphics... => 2
[(1,8),(2,5),(3,10),(4,6),(7,9)] generating graphics... => 4
[(1,9),(2,5),(3,10),(4,6),(7,8)] generating graphics... => 2
[(1,10),(2,5),(3,9),(4,6),(7,8)] generating graphics... => 2
[(1,10),(2,6),(3,9),(4,5),(7,8)] generating graphics... => 2
[(1,9),(2,6),(3,10),(4,5),(7,8)] generating graphics... => 2
[(1,8),(2,6),(3,10),(4,5),(7,9)] generating graphics... => 4
[(1,7),(2,6),(3,10),(4,5),(8,9)] generating graphics... => 2
[(1,6),(2,7),(3,10),(4,5),(8,9)] generating graphics... => 6
[(1,5),(2,7),(3,10),(4,6),(8,9)] generating graphics... => 5
[(1,4),(2,7),(3,10),(5,6),(8,9)] generating graphics... => 4
[(1,3),(2,7),(4,10),(5,6),(8,9)] generating graphics... => 3
[(1,2),(3,7),(4,10),(5,6),(8,9)] generating graphics... => 2
[(1,2),(3,8),(4,10),(5,6),(7,9)] generating graphics... => 2
[(1,3),(2,8),(4,10),(5,6),(7,9)] generating graphics... => 3
[(1,4),(2,8),(3,10),(5,6),(7,9)] generating graphics... => 4
[(1,5),(2,8),(3,10),(4,6),(7,9)] generating graphics... => 5
[(1,6),(2,8),(3,10),(4,5),(7,9)] generating graphics... => 6
[(1,7),(2,8),(3,10),(4,5),(6,9)] generating graphics... => 4
[(1,8),(2,7),(3,10),(4,5),(6,9)] generating graphics... => 2
[(1,9),(2,7),(3,10),(4,5),(6,8)] generating graphics... => 2
[(1,10),(2,7),(3,9),(4,5),(6,8)] generating graphics... => 2
[(1,10),(2,8),(3,9),(4,5),(6,7)] generating graphics... => 2
[(1,9),(2,8),(3,10),(4,5),(6,7)] generating graphics... => 2
[(1,8),(2,9),(3,10),(4,5),(6,7)] generating graphics... => 4
[(1,7),(2,9),(3,10),(4,5),(6,8)] generating graphics... => 4
[(1,6),(2,9),(3,10),(4,5),(7,8)] generating graphics... => 6
[(1,5),(2,9),(3,10),(4,6),(7,8)] generating graphics... => 5
[(1,4),(2,9),(3,10),(5,6),(7,8)] generating graphics... => 4
[(1,3),(2,9),(4,10),(5,6),(7,8)] generating graphics... => 3
[(1,2),(3,9),(4,10),(5,6),(7,8)] generating graphics... => 2
[(1,2),(3,10),(4,9),(5,6),(7,8)] generating graphics... => 2
[(1,3),(2,10),(4,9),(5,6),(7,8)] generating graphics... => 3
[(1,4),(2,10),(3,9),(5,6),(7,8)] generating graphics... => 4
[(1,5),(2,10),(3,9),(4,6),(7,8)] generating graphics... => 5
[(1,6),(2,10),(3,9),(4,5),(7,8)] generating graphics... => 6
[(1,7),(2,10),(3,9),(4,5),(6,8)] generating graphics... => 4
[(1,8),(2,10),(3,9),(4,5),(6,7)] generating graphics... => 4
[(1,9),(2,10),(3,8),(4,5),(6,7)] generating graphics... => 3
[(1,10),(2,9),(3,8),(4,5),(6,7)] generating graphics... => 2
[(1,10),(2,9),(3,8),(4,6),(5,7)] generating graphics... => 2
[(1,9),(2,10),(3,8),(4,6),(5,7)] generating graphics... => 3
[(1,8),(2,10),(3,9),(4,6),(5,7)] generating graphics... => 4
[(1,7),(2,10),(3,9),(4,6),(5,8)] generating graphics... => 4
[(1,6),(2,10),(3,9),(4,7),(5,8)] generating graphics... => 6
[(1,5),(2,10),(3,9),(4,7),(6,8)] generating graphics... => 5
[(1,4),(2,10),(3,9),(5,7),(6,8)] generating graphics... => 4
[(1,3),(2,10),(4,9),(5,7),(6,8)] generating graphics... => 3
[(1,2),(3,10),(4,9),(5,7),(6,8)] generating graphics... => 2
[(1,2),(3,9),(4,10),(5,7),(6,8)] generating graphics... => 2
[(1,3),(2,9),(4,10),(5,7),(6,8)] generating graphics... => 3
[(1,4),(2,9),(3,10),(5,7),(6,8)] generating graphics... => 4
[(1,5),(2,9),(3,10),(4,7),(6,8)] generating graphics... => 5
[(1,6),(2,9),(3,10),(4,7),(5,8)] generating graphics... => 6
[(1,7),(2,9),(3,10),(4,6),(5,8)] generating graphics... => 4
[(1,8),(2,9),(3,10),(4,6),(5,7)] generating graphics... => 4
[(1,9),(2,8),(3,10),(4,6),(5,7)] generating graphics... => 2
[(1,10),(2,8),(3,9),(4,6),(5,7)] generating graphics... => 2
[(1,10),(2,7),(3,9),(4,6),(5,8)] generating graphics... => 2
[(1,9),(2,7),(3,10),(4,6),(5,8)] generating graphics... => 2
[(1,8),(2,7),(3,10),(4,6),(5,9)] generating graphics... => 2
[(1,7),(2,8),(3,10),(4,6),(5,9)] generating graphics... => 4
[(1,6),(2,8),(3,10),(4,7),(5,9)] generating graphics... => 6
[(1,5),(2,8),(3,10),(4,7),(6,9)] generating graphics... => 5
[(1,4),(2,8),(3,10),(5,7),(6,9)] generating graphics... => 4
[(1,3),(2,8),(4,10),(5,7),(6,9)] generating graphics... => 3
[(1,2),(3,8),(4,10),(5,7),(6,9)] generating graphics... => 2
[(1,2),(3,7),(4,10),(5,8),(6,9)] generating graphics... => 2
[(1,3),(2,7),(4,10),(5,8),(6,9)] generating graphics... => 3
[(1,4),(2,7),(3,10),(5,8),(6,9)] generating graphics... => 4
[(1,5),(2,7),(3,10),(4,8),(6,9)] generating graphics... => 5
[(1,6),(2,7),(3,10),(4,8),(5,9)] generating graphics... => 6
[(1,7),(2,6),(3,10),(4,8),(5,9)] generating graphics... => 2
[(1,8),(2,6),(3,10),(4,7),(5,9)] generating graphics... => 2
[(1,9),(2,6),(3,10),(4,7),(5,8)] generating graphics... => 2
[(1,10),(2,6),(3,9),(4,7),(5,8)] generating graphics... => 2
[(1,10),(2,5),(3,9),(4,7),(6,8)] generating graphics... => 2
[(1,9),(2,5),(3,10),(4,7),(6,8)] generating graphics... => 2
[(1,8),(2,5),(3,10),(4,7),(6,9)] generating graphics... => 2
[(1,7),(2,5),(3,10),(4,8),(6,9)] generating graphics... => 2
[(1,6),(2,5),(3,10),(4,8),(7,9)] generating graphics... => 6
[(1,5),(2,6),(3,10),(4,8),(7,9)] generating graphics... => 5
[(1,4),(2,6),(3,10),(5,8),(7,9)] generating graphics... => 4
[(1,3),(2,6),(4,10),(5,8),(7,9)] generating graphics... => 3
[(1,2),(3,6),(4,10),(5,8),(7,9)] generating graphics... => 2
[(1,2),(3,5),(4,10),(6,8),(7,9)] generating graphics... => 2
[(1,3),(2,5),(4,10),(6,8),(7,9)] generating graphics... => 3
[(1,4),(2,5),(3,10),(6,8),(7,9)] generating graphics... => 4
[(1,5),(2,4),(3,10),(6,8),(7,9)] generating graphics... => 5
[(1,6),(2,4),(3,10),(5,8),(7,9)] generating graphics... => 6
[(1,7),(2,4),(3,10),(5,8),(6,9)] generating graphics... => 2
[(1,8),(2,4),(3,10),(5,7),(6,9)] generating graphics... => 2
[(1,9),(2,4),(3,10),(5,7),(6,8)] generating graphics... => 2
[(1,10),(2,4),(3,9),(5,7),(6,8)] generating graphics... => 2
[(1,10),(2,3),(4,9),(5,7),(6,8)] generating graphics... => 2
[(1,9),(2,3),(4,10),(5,7),(6,8)] generating graphics... => 2
[(1,8),(2,3),(4,10),(5,7),(6,9)] generating graphics... => 2
[(1,7),(2,3),(4,10),(5,8),(6,9)] generating graphics... => 2
[(1,6),(2,3),(4,10),(5,8),(7,9)] generating graphics... => 6
[(1,5),(2,3),(4,10),(6,8),(7,9)] generating graphics... => 5
[(1,4),(2,3),(5,10),(6,8),(7,9)] generating graphics... => 4
[(1,3),(2,4),(5,10),(6,8),(7,9)] generating graphics... => 3
[(1,2),(3,4),(5,10),(6,8),(7,9)] generating graphics... => 2
[(1,2),(3,4),(5,9),(6,8),(7,10)] generating graphics... => 2
[(1,3),(2,4),(5,9),(6,8),(7,10)] generating graphics... => 3
[(1,4),(2,3),(5,9),(6,8),(7,10)] generating graphics... => 4
[(1,5),(2,3),(4,9),(6,8),(7,10)] generating graphics... => 5
[(1,6),(2,3),(4,9),(5,8),(7,10)] generating graphics... => 6
[(1,7),(2,3),(4,9),(5,8),(6,10)] generating graphics... => 2
[(1,8),(2,3),(4,9),(5,7),(6,10)] generating graphics... => 2
[(1,9),(2,3),(4,8),(5,7),(6,10)] generating graphics... => 2
[(1,10),(2,3),(4,8),(5,7),(6,9)] generating graphics... => 2
[(1,10),(2,4),(3,8),(5,7),(6,9)] generating graphics... => 2
[(1,9),(2,4),(3,8),(5,7),(6,10)] generating graphics... => 2
[(1,8),(2,4),(3,9),(5,7),(6,10)] generating graphics... => 2
[(1,7),(2,4),(3,9),(5,8),(6,10)] generating graphics... => 2
[(1,6),(2,4),(3,9),(5,8),(7,10)] generating graphics... => 6
[(1,5),(2,4),(3,9),(6,8),(7,10)] generating graphics... => 5
[(1,4),(2,5),(3,9),(6,8),(7,10)] generating graphics... => 4
[(1,3),(2,5),(4,9),(6,8),(7,10)] generating graphics... => 3
[(1,2),(3,5),(4,9),(6,8),(7,10)] generating graphics... => 2
[(1,2),(3,6),(4,9),(5,8),(7,10)] generating graphics... => 2
[(1,3),(2,6),(4,9),(5,8),(7,10)] generating graphics... => 3
[(1,4),(2,6),(3,9),(5,8),(7,10)] generating graphics... => 4
[(1,5),(2,6),(3,9),(4,8),(7,10)] generating graphics... => 5
[(1,6),(2,5),(3,9),(4,8),(7,10)] generating graphics... => 6
[(1,7),(2,5),(3,9),(4,8),(6,10)] generating graphics... => 2
[(1,8),(2,5),(3,9),(4,7),(6,10)] generating graphics... => 2
[(1,9),(2,5),(3,8),(4,7),(6,10)] generating graphics... => 2
[(1,10),(2,5),(3,8),(4,7),(6,9)] generating graphics... => 2
[(1,10),(2,6),(3,8),(4,7),(5,9)] generating graphics... => 2
[(1,9),(2,6),(3,8),(4,7),(5,10)] generating graphics... => 2
[(1,8),(2,6),(3,9),(4,7),(5,10)] generating graphics... => 2
[(1,7),(2,6),(3,9),(4,8),(5,10)] generating graphics... => 2
[(1,6),(2,7),(3,9),(4,8),(5,10)] generating graphics... => 6
[(1,5),(2,7),(3,9),(4,8),(6,10)] generating graphics... => 5
[(1,4),(2,7),(3,9),(5,8),(6,10)] generating graphics... => 4
[(1,3),(2,7),(4,9),(5,8),(6,10)] generating graphics... => 3
[(1,2),(3,7),(4,9),(5,8),(6,10)] generating graphics... => 2
[(1,2),(3,8),(4,9),(5,7),(6,10)] generating graphics... => 2
[(1,3),(2,8),(4,9),(5,7),(6,10)] generating graphics... => 3
[(1,4),(2,8),(3,9),(5,7),(6,10)] generating graphics... => 4
[(1,5),(2,8),(3,9),(4,7),(6,10)] generating graphics... => 5
[(1,6),(2,8),(3,9),(4,7),(5,10)] generating graphics... => 6
[(1,7),(2,8),(3,9),(4,6),(5,10)] generating graphics... => 4
[(1,8),(2,7),(3,9),(4,6),(5,10)] generating graphics... => 2
[(1,9),(2,7),(3,8),(4,6),(5,10)] generating graphics... => 2
[(1,10),(2,7),(3,8),(4,6),(5,9)] generating graphics... => 2
[(1,10),(2,8),(3,7),(4,6),(5,9)] generating graphics... => 2
[(1,9),(2,8),(3,7),(4,6),(5,10)] generating graphics... => 2
[(1,8),(2,9),(3,7),(4,6),(5,10)] generating graphics... => 3
[(1,7),(2,9),(3,8),(4,6),(5,10)] generating graphics... => 4
[(1,6),(2,9),(3,8),(4,7),(5,10)] generating graphics... => 6
[(1,5),(2,9),(3,8),(4,7),(6,10)] generating graphics... => 5
[(1,4),(2,9),(3,8),(5,7),(6,10)] generating graphics... => 4
[(1,3),(2,9),(4,8),(5,7),(6,10)] generating graphics... => 3
[(1,2),(3,9),(4,8),(5,7),(6,10)] generating graphics... => 2
[(1,2),(3,10),(4,8),(5,7),(6,9)] generating graphics... => 2
[(1,3),(2,10),(4,8),(5,7),(6,9)] generating graphics... => 3
[(1,4),(2,10),(3,8),(5,7),(6,9)] generating graphics... => 4
[(1,5),(2,10),(3,8),(4,7),(6,9)] generating graphics... => 5
[(1,6),(2,10),(3,8),(4,7),(5,9)] generating graphics... => 6
[(1,7),(2,10),(3,8),(4,6),(5,9)] generating graphics... => 4
[(1,8),(2,10),(3,7),(4,6),(5,9)] generating graphics... => 3
[(1,9),(2,10),(3,7),(4,6),(5,8)] generating graphics... => 3
[(1,10),(2,9),(3,7),(4,6),(5,8)] generating graphics... => 2
[(1,10),(2,9),(3,6),(4,7),(5,8)] generating graphics... => 2
[(1,9),(2,10),(3,6),(4,7),(5,8)] generating graphics... => 3
[(1,8),(2,10),(3,6),(4,7),(5,9)] generating graphics... => 3
[(1,7),(2,10),(3,6),(4,8),(5,9)] generating graphics... => 3
[(1,6),(2,10),(3,7),(4,8),(5,9)] generating graphics... => 6
[(1,5),(2,10),(3,7),(4,8),(6,9)] generating graphics... => 5
[(1,4),(2,10),(3,7),(5,8),(6,9)] generating graphics... => 4
[(1,3),(2,10),(4,7),(5,8),(6,9)] generating graphics... => 3
[(1,2),(3,10),(4,7),(5,8),(6,9)] generating graphics... => 2
[(1,2),(3,9),(4,7),(5,8),(6,10)] generating graphics... => 2
[(1,3),(2,9),(4,7),(5,8),(6,10)] generating graphics... => 3
[(1,4),(2,9),(3,7),(5,8),(6,10)] generating graphics... => 4
[(1,5),(2,9),(3,7),(4,8),(6,10)] generating graphics... => 5
[(1,6),(2,9),(3,7),(4,8),(5,10)] generating graphics... => 6
[(1,7),(2,9),(3,6),(4,8),(5,10)] generating graphics... => 3
[(1,8),(2,9),(3,6),(4,7),(5,10)] generating graphics... => 3
[(1,9),(2,8),(3,6),(4,7),(5,10)] generating graphics... => 2
[(1,10),(2,8),(3,6),(4,7),(5,9)] generating graphics... => 2
[(1,10),(2,7),(3,6),(4,8),(5,9)] generating graphics... => 2
[(1,9),(2,7),(3,6),(4,8),(5,10)] generating graphics... => 2
[(1,8),(2,7),(3,6),(4,9),(5,10)] generating graphics... => 2
[(1,7),(2,8),(3,6),(4,9),(5,10)] generating graphics... => 3
[(1,6),(2,8),(3,7),(4,9),(5,10)] generating graphics... => 6
[(1,5),(2,8),(3,7),(4,9),(6,10)] generating graphics... => 5
[(1,4),(2,8),(3,7),(5,9),(6,10)] generating graphics... => 4
[(1,3),(2,8),(4,7),(5,9),(6,10)] generating graphics... => 3
[(1,2),(3,8),(4,7),(5,9),(6,10)] generating graphics... => 2
[(1,2),(3,7),(4,8),(5,9),(6,10)] generating graphics... => 2
[(1,3),(2,7),(4,8),(5,9),(6,10)] generating graphics... => 3
[(1,4),(2,7),(3,8),(5,9),(6,10)] generating graphics... => 4
[(1,5),(2,7),(3,8),(4,9),(6,10)] generating graphics... => 5
[(1,6),(2,7),(3,8),(4,9),(5,10)] generating graphics... => 6
[(1,7),(2,6),(3,8),(4,9),(5,10)] generating graphics... => 2
[(1,8),(2,6),(3,7),(4,9),(5,10)] generating graphics... => 2
[(1,9),(2,6),(3,7),(4,8),(5,10)] generating graphics... => 2
[(1,10),(2,6),(3,7),(4,8),(5,9)] generating graphics... => 2
[(1,10),(2,5),(3,7),(4,8),(6,9)] generating graphics... => 2
[(1,9),(2,5),(3,7),(4,8),(6,10)] generating graphics... => 2
[(1,8),(2,5),(3,7),(4,9),(6,10)] generating graphics... => 2
[(1,7),(2,5),(3,8),(4,9),(6,10)] generating graphics... => 2
[(1,6),(2,5),(3,8),(4,9),(7,10)] generating graphics... => 6
[(1,5),(2,6),(3,8),(4,9),(7,10)] generating graphics... => 5
[(1,4),(2,6),(3,8),(5,9),(7,10)] generating graphics... => 4
[(1,3),(2,6),(4,8),(5,9),(7,10)] generating graphics... => 3
[(1,2),(3,6),(4,8),(5,9),(7,10)] generating graphics... => 2
[(1,2),(3,5),(4,8),(6,9),(7,10)] generating graphics... => 2
[(1,3),(2,5),(4,8),(6,9),(7,10)] generating graphics... => 3
[(1,4),(2,5),(3,8),(6,9),(7,10)] generating graphics... => 4
[(1,5),(2,4),(3,8),(6,9),(7,10)] generating graphics... => 5
[(1,6),(2,4),(3,8),(5,9),(7,10)] generating graphics... => 6
[(1,7),(2,4),(3,8),(5,9),(6,10)] generating graphics... => 2
[(1,8),(2,4),(3,7),(5,9),(6,10)] generating graphics... => 2
[(1,9),(2,4),(3,7),(5,8),(6,10)] generating graphics... => 2
[(1,10),(2,4),(3,7),(5,8),(6,9)] generating graphics... => 2
[(1,10),(2,3),(4,7),(5,8),(6,9)] generating graphics... => 2
[(1,9),(2,3),(4,7),(5,8),(6,10)] generating graphics... => 2
[(1,8),(2,3),(4,7),(5,9),(6,10)] generating graphics... => 2
[(1,7),(2,3),(4,8),(5,9),(6,10)] generating graphics... => 2
[(1,6),(2,3),(4,8),(5,9),(7,10)] generating graphics... => 6
[(1,5),(2,3),(4,8),(6,9),(7,10)] generating graphics... => 5
[(1,4),(2,3),(5,8),(6,9),(7,10)] generating graphics... => 4
[(1,3),(2,4),(5,8),(6,9),(7,10)] generating graphics... => 3
[(1,2),(3,4),(5,8),(6,9),(7,10)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,9),(8,10)] generating graphics... => 2
[(1,3),(2,4),(5,7),(6,9),(8,10)] generating graphics... => 3
[(1,4),(2,3),(5,7),(6,9),(8,10)] generating graphics... => 4
[(1,5),(2,3),(4,7),(6,9),(8,10)] generating graphics... => 5
[(1,6),(2,3),(4,7),(5,9),(8,10)] generating graphics... => 6
[(1,7),(2,3),(4,6),(5,9),(8,10)] generating graphics... => 2
[(1,8),(2,3),(4,6),(5,9),(7,10)] generating graphics... => 4
[(1,9),(2,3),(4,6),(5,8),(7,10)] generating graphics... => 4
[(1,10),(2,3),(4,6),(5,8),(7,9)] generating graphics... => 2
[(1,10),(2,4),(3,6),(5,8),(7,9)] generating graphics... => 2
[(1,9),(2,4),(3,6),(5,8),(7,10)] generating graphics... => 3
[(1,8),(2,4),(3,6),(5,9),(7,10)] generating graphics... => 3
[(1,7),(2,4),(3,6),(5,9),(8,10)] generating graphics... => 2
[(1,6),(2,4),(3,7),(5,9),(8,10)] generating graphics... => 6
[(1,5),(2,4),(3,7),(6,9),(8,10)] generating graphics... => 5
[(1,4),(2,5),(3,7),(6,9),(8,10)] generating graphics... => 4
[(1,3),(2,5),(4,7),(6,9),(8,10)] generating graphics... => 3
[(1,2),(3,5),(4,7),(6,9),(8,10)] generating graphics... => 2
[(1,2),(3,6),(4,7),(5,9),(8,10)] generating graphics... => 2
[(1,3),(2,6),(4,7),(5,9),(8,10)] generating graphics... => 3
[(1,4),(2,6),(3,7),(5,9),(8,10)] generating graphics... => 4
[(1,5),(2,6),(3,7),(4,9),(8,10)] generating graphics... => 5
[(1,6),(2,5),(3,7),(4,9),(8,10)] generating graphics... => 6
[(1,7),(2,5),(3,6),(4,9),(8,10)] generating graphics... => 2
[(1,8),(2,5),(3,6),(4,9),(7,10)] generating graphics... => 3
[(1,9),(2,5),(3,6),(4,8),(7,10)] generating graphics... => 3
[(1,10),(2,5),(3,6),(4,8),(7,9)] generating graphics... => 2
[(1,10),(2,6),(3,5),(4,8),(7,9)] generating graphics... => 2
[(1,9),(2,6),(3,5),(4,8),(7,10)] generating graphics... => 3
[(1,8),(2,6),(3,5),(4,9),(7,10)] generating graphics... => 3
[(1,7),(2,6),(3,5),(4,9),(8,10)] generating graphics... => 2
[(1,6),(2,7),(3,5),(4,9),(8,10)] generating graphics... => 6
[(1,5),(2,7),(3,6),(4,9),(8,10)] generating graphics... => 5
[(1,4),(2,7),(3,6),(5,9),(8,10)] generating graphics... => 4
[(1,3),(2,7),(4,6),(5,9),(8,10)] generating graphics... => 3
[(1,2),(3,7),(4,6),(5,9),(8,10)] generating graphics... => 2
[(1,2),(3,8),(4,6),(5,9),(7,10)] generating graphics... => 2
[(1,3),(2,8),(4,6),(5,9),(7,10)] generating graphics... => 3
[(1,4),(2,8),(3,6),(5,9),(7,10)] generating graphics... => 4
[(1,5),(2,8),(3,6),(4,9),(7,10)] generating graphics... => 5
[(1,6),(2,8),(3,5),(4,9),(7,10)] generating graphics... => 6
[(1,7),(2,8),(3,5),(4,9),(6,10)] generating graphics... => 3
[(1,8),(2,7),(3,5),(4,9),(6,10)] generating graphics... => 2
[(1,9),(2,7),(3,5),(4,8),(6,10)] generating graphics... => 2
[(1,10),(2,7),(3,5),(4,8),(6,9)] generating graphics... => 2
[(1,10),(2,8),(3,5),(4,7),(6,9)] generating graphics... => 2
[(1,9),(2,8),(3,5),(4,7),(6,10)] generating graphics... => 2
[(1,8),(2,9),(3,5),(4,7),(6,10)] generating graphics... => 3
[(1,7),(2,9),(3,5),(4,8),(6,10)] generating graphics... => 3
[(1,6),(2,9),(3,5),(4,8),(7,10)] generating graphics... => 6
[(1,5),(2,9),(3,6),(4,8),(7,10)] generating graphics... => 5
[(1,4),(2,9),(3,6),(5,8),(7,10)] generating graphics... => 4
[(1,3),(2,9),(4,6),(5,8),(7,10)] generating graphics... => 3
[(1,2),(3,9),(4,6),(5,8),(7,10)] generating graphics... => 2
[(1,2),(3,10),(4,6),(5,8),(7,9)] generating graphics... => 2
[(1,3),(2,10),(4,6),(5,8),(7,9)] generating graphics... => 3
[(1,4),(2,10),(3,6),(5,8),(7,9)] generating graphics... => 4
[(1,5),(2,10),(3,6),(4,8),(7,9)] generating graphics... => 5
[(1,6),(2,10),(3,5),(4,8),(7,9)] generating graphics... => 6
[(1,7),(2,10),(3,5),(4,8),(6,9)] generating graphics... => 3
[(1,8),(2,10),(3,5),(4,7),(6,9)] generating graphics... => 3
[(1,9),(2,10),(3,5),(4,7),(6,8)] generating graphics... => 3
[(1,10),(2,9),(3,5),(4,7),(6,8)] generating graphics... => 2
[(1,10),(2,9),(3,4),(5,7),(6,8)] generating graphics... => 2
[(1,9),(2,10),(3,4),(5,7),(6,8)] generating graphics... => 3
[(1,8),(2,10),(3,4),(5,7),(6,9)] generating graphics... => 3
[(1,7),(2,10),(3,4),(5,8),(6,9)] generating graphics... => 3
[(1,6),(2,10),(3,4),(5,8),(7,9)] generating graphics... => 6
[(1,5),(2,10),(3,4),(6,8),(7,9)] generating graphics... => 5
[(1,4),(2,10),(3,5),(6,8),(7,9)] generating graphics... => 4
[(1,3),(2,10),(4,5),(6,8),(7,9)] generating graphics... => 3
[(1,2),(3,10),(4,5),(6,8),(7,9)] generating graphics... => 2
[(1,2),(3,9),(4,5),(6,8),(7,10)] generating graphics... => 2
[(1,3),(2,9),(4,5),(6,8),(7,10)] generating graphics... => 3
[(1,4),(2,9),(3,5),(6,8),(7,10)] generating graphics... => 4
[(1,5),(2,9),(3,4),(6,8),(7,10)] generating graphics... => 5
[(1,6),(2,9),(3,4),(5,8),(7,10)] generating graphics... => 6
[(1,7),(2,9),(3,4),(5,8),(6,10)] generating graphics... => 3
[(1,8),(2,9),(3,4),(5,7),(6,10)] generating graphics... => 3
[(1,9),(2,8),(3,4),(5,7),(6,10)] generating graphics... => 2
[(1,10),(2,8),(3,4),(5,7),(6,9)] generating graphics... => 2
[(1,10),(2,7),(3,4),(5,8),(6,9)] generating graphics... => 2
[(1,9),(2,7),(3,4),(5,8),(6,10)] generating graphics... => 2
[(1,8),(2,7),(3,4),(5,9),(6,10)] generating graphics... => 2
[(1,7),(2,8),(3,4),(5,9),(6,10)] generating graphics... => 3
[(1,6),(2,8),(3,4),(5,9),(7,10)] generating graphics... => 6
[(1,5),(2,8),(3,4),(6,9),(7,10)] generating graphics... => 5
[(1,4),(2,8),(3,5),(6,9),(7,10)] generating graphics... => 4
[(1,3),(2,8),(4,5),(6,9),(7,10)] generating graphics... => 3
[(1,2),(3,8),(4,5),(6,9),(7,10)] generating graphics... => 2
[(1,2),(3,7),(4,5),(6,9),(8,10)] generating graphics... => 2
[(1,3),(2,7),(4,5),(6,9),(8,10)] generating graphics... => 3
[(1,4),(2,7),(3,5),(6,9),(8,10)] generating graphics... => 4
[(1,5),(2,7),(3,4),(6,9),(8,10)] generating graphics... => 5
[(1,6),(2,7),(3,4),(5,9),(8,10)] generating graphics... => 6
[(1,7),(2,6),(3,4),(5,9),(8,10)] generating graphics... => 2
[(1,8),(2,6),(3,4),(5,9),(7,10)] generating graphics... => 3
[(1,9),(2,6),(3,4),(5,8),(7,10)] generating graphics... => 3
[(1,10),(2,6),(3,4),(5,8),(7,9)] generating graphics... => 2
[(1,10),(2,5),(3,4),(6,8),(7,9)] generating graphics... => 2
[(1,9),(2,5),(3,4),(6,8),(7,10)] generating graphics... => 3
[(1,8),(2,5),(3,4),(6,9),(7,10)] generating graphics... => 3
[(1,7),(2,5),(3,4),(6,9),(8,10)] generating graphics... => 2
[(1,6),(2,5),(3,4),(7,9),(8,10)] generating graphics... => 6
[(1,5),(2,6),(3,4),(7,9),(8,10)] generating graphics... => 5
[(1,4),(2,6),(3,5),(7,9),(8,10)] generating graphics... => 4
[(1,3),(2,6),(4,5),(7,9),(8,10)] generating graphics... => 3
[(1,2),(3,6),(4,5),(7,9),(8,10)] generating graphics... => 2
[(1,2),(3,5),(4,6),(7,9),(8,10)] generating graphics... => 2
[(1,3),(2,5),(4,6),(7,9),(8,10)] generating graphics... => 3
[(1,4),(2,5),(3,6),(7,9),(8,10)] generating graphics... => 4
[(1,5),(2,4),(3,6),(7,9),(8,10)] generating graphics... => 5
[(1,6),(2,4),(3,5),(7,9),(8,10)] generating graphics... => 6
[(1,7),(2,4),(3,5),(6,9),(8,10)] generating graphics... => 2
[(1,8),(2,4),(3,5),(6,9),(7,10)] generating graphics... => 3
[(1,9),(2,4),(3,5),(6,8),(7,10)] generating graphics... => 3
[(1,10),(2,4),(3,5),(6,8),(7,9)] generating graphics... => 2
[(1,10),(2,3),(4,5),(6,8),(7,9)] generating graphics... => 2
[(1,9),(2,3),(4,5),(6,8),(7,10)] generating graphics... => 4
[(1,8),(2,3),(4,5),(6,9),(7,10)] generating graphics... => 4
[(1,7),(2,3),(4,5),(6,9),(8,10)] generating graphics... => 2
[(1,6),(2,3),(4,5),(7,9),(8,10)] generating graphics... => 6
[(1,5),(2,3),(4,6),(7,9),(8,10)] generating graphics... => 5
[(1,4),(2,3),(5,6),(7,9),(8,10)] generating graphics... => 4
[(1,3),(2,4),(5,6),(7,9),(8,10)] generating graphics... => 3
[(1,2),(3,4),(5,6),(7,9),(8,10)] generating graphics... => 2
[(1,2),(3,4),(5,6),(7,10),(8,9)] generating graphics... => 2
[(1,3),(2,4),(5,6),(7,10),(8,9)] generating graphics... => 3
[(1,4),(2,3),(5,6),(7,10),(8,9)] generating graphics... => 4
[(1,5),(2,3),(4,6),(7,10),(8,9)] generating graphics... => 5
[(1,6),(2,3),(4,5),(7,10),(8,9)] generating graphics... => 6
[(1,7),(2,3),(4,5),(6,10),(8,9)] generating graphics... => 2
[(1,8),(2,3),(4,5),(6,10),(7,9)] generating graphics... => 4
[(1,9),(2,3),(4,5),(6,10),(7,8)] generating graphics... => 2
[(1,10),(2,3),(4,5),(6,9),(7,8)] generating graphics... => 2
[(1,10),(2,4),(3,5),(6,9),(7,8)] generating graphics... => 2
[(1,9),(2,4),(3,5),(6,10),(7,8)] generating graphics... => 2
[(1,8),(2,4),(3,5),(6,10),(7,9)] generating graphics... => 3
[(1,7),(2,4),(3,5),(6,10),(8,9)] generating graphics... => 2
[(1,6),(2,4),(3,5),(7,10),(8,9)] generating graphics... => 6
[(1,5),(2,4),(3,6),(7,10),(8,9)] generating graphics... => 5
[(1,4),(2,5),(3,6),(7,10),(8,9)] generating graphics... => 4
[(1,3),(2,5),(4,6),(7,10),(8,9)] generating graphics... => 3
[(1,2),(3,5),(4,6),(7,10),(8,9)] generating graphics... => 2
[(1,2),(3,6),(4,5),(7,10),(8,9)] generating graphics... => 2
[(1,3),(2,6),(4,5),(7,10),(8,9)] generating graphics... => 3
[(1,4),(2,6),(3,5),(7,10),(8,9)] generating graphics... => 4
[(1,5),(2,6),(3,4),(7,10),(8,9)] generating graphics... => 5
[(1,6),(2,5),(3,4),(7,10),(8,9)] generating graphics... => 6
[(1,7),(2,5),(3,4),(6,10),(8,9)] generating graphics... => 2
[(1,8),(2,5),(3,4),(6,10),(7,9)] generating graphics... => 3
[(1,9),(2,5),(3,4),(6,10),(7,8)] generating graphics... => 2
[(1,10),(2,5),(3,4),(6,9),(7,8)] generating graphics... => 2
[(1,10),(2,6),(3,4),(5,9),(7,8)] generating graphics... => 2
[(1,9),(2,6),(3,4),(5,10),(7,8)] generating graphics... => 2
[(1,8),(2,6),(3,4),(5,10),(7,9)] generating graphics... => 3
[(1,7),(2,6),(3,4),(5,10),(8,9)] generating graphics... => 2
[(1,6),(2,7),(3,4),(5,10),(8,9)] generating graphics... => 6
[(1,5),(2,7),(3,4),(6,10),(8,9)] generating graphics... => 5
[(1,4),(2,7),(3,5),(6,10),(8,9)] generating graphics... => 4
[(1,3),(2,7),(4,5),(6,10),(8,9)] generating graphics... => 3
[(1,2),(3,7),(4,5),(6,10),(8,9)] generating graphics... => 2
[(1,2),(3,8),(4,5),(6,10),(7,9)] generating graphics... => 2
[(1,3),(2,8),(4,5),(6,10),(7,9)] generating graphics... => 3
[(1,4),(2,8),(3,5),(6,10),(7,9)] generating graphics... => 4
[(1,5),(2,8),(3,4),(6,10),(7,9)] generating graphics... => 5
[(1,6),(2,8),(3,4),(5,10),(7,9)] generating graphics... => 6
[(1,7),(2,8),(3,4),(5,10),(6,9)] generating graphics... => 3
[(1,8),(2,7),(3,4),(5,10),(6,9)] generating graphics... => 2
[(1,9),(2,7),(3,4),(5,10),(6,8)] generating graphics... => 2
[(1,10),(2,7),(3,4),(5,9),(6,8)] generating graphics... => 2
[(1,10),(2,8),(3,4),(5,9),(6,7)] generating graphics... => 2
[(1,9),(2,8),(3,4),(5,10),(6,7)] generating graphics... => 2
[(1,8),(2,9),(3,4),(5,10),(6,7)] generating graphics... => 3
[(1,7),(2,9),(3,4),(5,10),(6,8)] generating graphics... => 3
[(1,6),(2,9),(3,4),(5,10),(7,8)] generating graphics... => 6
[(1,5),(2,9),(3,4),(6,10),(7,8)] generating graphics... => 5
[(1,4),(2,9),(3,5),(6,10),(7,8)] generating graphics... => 4
[(1,3),(2,9),(4,5),(6,10),(7,8)] generating graphics... => 3
[(1,2),(3,9),(4,5),(6,10),(7,8)] generating graphics... => 2
[(1,2),(3,10),(4,5),(6,9),(7,8)] generating graphics... => 2
[(1,3),(2,10),(4,5),(6,9),(7,8)] generating graphics... => 3
[(1,4),(2,10),(3,5),(6,9),(7,8)] generating graphics... => 4
[(1,5),(2,10),(3,4),(6,9),(7,8)] generating graphics... => 5
[(1,6),(2,10),(3,4),(5,9),(7,8)] generating graphics... => 6
[(1,7),(2,10),(3,4),(5,9),(6,8)] generating graphics... => 3
[(1,8),(2,10),(3,4),(5,9),(6,7)] generating graphics... => 3
[(1,9),(2,10),(3,4),(5,8),(6,7)] generating graphics... => 3
[(1,10),(2,9),(3,4),(5,8),(6,7)] generating graphics... => 2
[(1,10),(2,9),(3,5),(4,8),(6,7)] generating graphics... => 2
[(1,9),(2,10),(3,5),(4,8),(6,7)] generating graphics... => 3
[(1,8),(2,10),(3,5),(4,9),(6,7)] generating graphics... => 3
[(1,7),(2,10),(3,5),(4,9),(6,8)] generating graphics... => 3
[(1,6),(2,10),(3,5),(4,9),(7,8)] generating graphics... => 6
[(1,5),(2,10),(3,6),(4,9),(7,8)] generating graphics... => 5
[(1,4),(2,10),(3,6),(5,9),(7,8)] generating graphics... => 4
[(1,3),(2,10),(4,6),(5,9),(7,8)] generating graphics... => 3
[(1,2),(3,10),(4,6),(5,9),(7,8)] generating graphics... => 2
[(1,2),(3,9),(4,6),(5,10),(7,8)] generating graphics... => 2
[(1,3),(2,9),(4,6),(5,10),(7,8)] generating graphics... => 3
[(1,4),(2,9),(3,6),(5,10),(7,8)] generating graphics... => 4
[(1,5),(2,9),(3,6),(4,10),(7,8)] generating graphics... => 5
[(1,6),(2,9),(3,5),(4,10),(7,8)] generating graphics... => 6
[(1,7),(2,9),(3,5),(4,10),(6,8)] generating graphics... => 3
[(1,8),(2,9),(3,5),(4,10),(6,7)] generating graphics... => 3
[(1,9),(2,8),(3,5),(4,10),(6,7)] generating graphics... => 2
[(1,10),(2,8),(3,5),(4,9),(6,7)] generating graphics... => 2
[(1,10),(2,7),(3,5),(4,9),(6,8)] generating graphics... => 2
[(1,9),(2,7),(3,5),(4,10),(6,8)] generating graphics... => 2
[(1,8),(2,7),(3,5),(4,10),(6,9)] generating graphics... => 2
[(1,7),(2,8),(3,5),(4,10),(6,9)] generating graphics... => 3
[(1,6),(2,8),(3,5),(4,10),(7,9)] generating graphics... => 6
[(1,5),(2,8),(3,6),(4,10),(7,9)] generating graphics... => 5
[(1,4),(2,8),(3,6),(5,10),(7,9)] generating graphics... => 4
[(1,3),(2,8),(4,6),(5,10),(7,9)] generating graphics... => 3
[(1,2),(3,8),(4,6),(5,10),(7,9)] generating graphics... => 2
[(1,2),(3,7),(4,6),(5,10),(8,9)] generating graphics... => 2
[(1,3),(2,7),(4,6),(5,10),(8,9)] generating graphics... => 3
[(1,4),(2,7),(3,6),(5,10),(8,9)] generating graphics... => 4
[(1,5),(2,7),(3,6),(4,10),(8,9)] generating graphics... => 5
[(1,6),(2,7),(3,5),(4,10),(8,9)] generating graphics... => 6
[(1,7),(2,6),(3,5),(4,10),(8,9)] generating graphics... => 2
[(1,8),(2,6),(3,5),(4,10),(7,9)] generating graphics... => 3
[(1,9),(2,6),(3,5),(4,10),(7,8)] generating graphics... => 2
[(1,10),(2,6),(3,5),(4,9),(7,8)] generating graphics... => 2
[(1,10),(2,5),(3,6),(4,9),(7,8)] generating graphics... => 2
[(1,9),(2,5),(3,6),(4,10),(7,8)] generating graphics... => 2
[(1,8),(2,5),(3,6),(4,10),(7,9)] generating graphics... => 3
[(1,7),(2,5),(3,6),(4,10),(8,9)] generating graphics... => 2
[(1,6),(2,5),(3,7),(4,10),(8,9)] generating graphics... => 6
[(1,5),(2,6),(3,7),(4,10),(8,9)] generating graphics... => 5
[(1,4),(2,6),(3,7),(5,10),(8,9)] generating graphics... => 4
[(1,3),(2,6),(4,7),(5,10),(8,9)] generating graphics... => 3
[(1,2),(3,6),(4,7),(5,10),(8,9)] generating graphics... => 2
[(1,2),(3,5),(4,7),(6,10),(8,9)] generating graphics... => 2
[(1,3),(2,5),(4,7),(6,10),(8,9)] generating graphics... => 3
[(1,4),(2,5),(3,7),(6,10),(8,9)] generating graphics... => 4
[(1,5),(2,4),(3,7),(6,10),(8,9)] generating graphics... => 5
[(1,6),(2,4),(3,7),(5,10),(8,9)] generating graphics... => 6
[(1,7),(2,4),(3,6),(5,10),(8,9)] generating graphics... => 2
[(1,8),(2,4),(3,6),(5,10),(7,9)] generating graphics... => 3
[(1,9),(2,4),(3,6),(5,10),(7,8)] generating graphics... => 2
[(1,10),(2,4),(3,6),(5,9),(7,8)] generating graphics... => 2
[(1,10),(2,3),(4,6),(5,9),(7,8)] generating graphics... => 2
[(1,9),(2,3),(4,6),(5,10),(7,8)] generating graphics... => 2
[(1,8),(2,3),(4,6),(5,10),(7,9)] generating graphics... => 4
[(1,7),(2,3),(4,6),(5,10),(8,9)] generating graphics... => 2
[(1,6),(2,3),(4,7),(5,10),(8,9)] generating graphics... => 6
[(1,5),(2,3),(4,7),(6,10),(8,9)] generating graphics... => 5
[(1,4),(2,3),(5,7),(6,10),(8,9)] generating graphics... => 4
[(1,3),(2,4),(5,7),(6,10),(8,9)] generating graphics... => 3
[(1,2),(3,4),(5,7),(6,10),(8,9)] generating graphics... => 2
[(1,2),(3,4),(5,8),(6,10),(7,9)] generating graphics... => 2
[(1,3),(2,4),(5,8),(6,10),(7,9)] generating graphics... => 3
[(1,4),(2,3),(5,8),(6,10),(7,9)] generating graphics... => 4
[(1,5),(2,3),(4,8),(6,10),(7,9)] generating graphics... => 5
[(1,6),(2,3),(4,8),(5,10),(7,9)] generating graphics... => 6
[(1,7),(2,3),(4,8),(5,10),(6,9)] generating graphics... => 2
[(1,8),(2,3),(4,7),(5,10),(6,9)] generating graphics... => 2
[(1,9),(2,3),(4,7),(5,10),(6,8)] generating graphics... => 2
[(1,10),(2,3),(4,7),(5,9),(6,8)] generating graphics... => 2
[(1,10),(2,4),(3,7),(5,9),(6,8)] generating graphics... => 2
[(1,9),(2,4),(3,7),(5,10),(6,8)] generating graphics... => 2
[(1,8),(2,4),(3,7),(5,10),(6,9)] generating graphics... => 2
[(1,7),(2,4),(3,8),(5,10),(6,9)] generating graphics... => 2
[(1,6),(2,4),(3,8),(5,10),(7,9)] generating graphics... => 6
[(1,5),(2,4),(3,8),(6,10),(7,9)] generating graphics... => 5
[(1,4),(2,5),(3,8),(6,10),(7,9)] generating graphics... => 4
[(1,3),(2,5),(4,8),(6,10),(7,9)] generating graphics... => 3
[(1,2),(3,5),(4,8),(6,10),(7,9)] generating graphics... => 2
[(1,2),(3,6),(4,8),(5,10),(7,9)] generating graphics... => 2
[(1,3),(2,6),(4,8),(5,10),(7,9)] generating graphics... => 3
[(1,4),(2,6),(3,8),(5,10),(7,9)] generating graphics... => 4
[(1,5),(2,6),(3,8),(4,10),(7,9)] generating graphics... => 5
[(1,6),(2,5),(3,8),(4,10),(7,9)] generating graphics... => 6
[(1,7),(2,5),(3,8),(4,10),(6,9)] generating graphics... => 2
[(1,8),(2,5),(3,7),(4,10),(6,9)] generating graphics... => 2
[(1,9),(2,5),(3,7),(4,10),(6,8)] generating graphics... => 2
[(1,10),(2,5),(3,7),(4,9),(6,8)] generating graphics... => 2
[(1,10),(2,6),(3,7),(4,9),(5,8)] generating graphics... => 2
[(1,9),(2,6),(3,7),(4,10),(5,8)] generating graphics... => 2
[(1,8),(2,6),(3,7),(4,10),(5,9)] generating graphics... => 2
[(1,7),(2,6),(3,8),(4,10),(5,9)] generating graphics... => 2
[(1,6),(2,7),(3,8),(4,10),(5,9)] generating graphics... => 6
[(1,5),(2,7),(3,8),(4,10),(6,9)] generating graphics... => 5
[(1,4),(2,7),(3,8),(5,10),(6,9)] generating graphics... => 4
[(1,3),(2,7),(4,8),(5,10),(6,9)] generating graphics... => 3
[(1,2),(3,7),(4,8),(5,10),(6,9)] generating graphics... => 2
[(1,2),(3,8),(4,7),(5,10),(6,9)] generating graphics... => 2
[(1,3),(2,8),(4,7),(5,10),(6,9)] generating graphics... => 3
[(1,4),(2,8),(3,7),(5,10),(6,9)] generating graphics... => 4
[(1,5),(2,8),(3,7),(4,10),(6,9)] generating graphics... => 5
[(1,6),(2,8),(3,7),(4,10),(5,9)] generating graphics... => 6
[(1,7),(2,8),(3,6),(4,10),(5,9)] generating graphics... => 3
[(1,8),(2,7),(3,6),(4,10),(5,9)] generating graphics... => 2
[(1,9),(2,7),(3,6),(4,10),(5,8)] generating graphics... => 2
[(1,10),(2,7),(3,6),(4,9),(5,8)] generating graphics... => 2
[(1,10),(2,8),(3,6),(4,9),(5,7)] generating graphics... => 2
[(1,9),(2,8),(3,6),(4,10),(5,7)] generating graphics... => 2
[(1,8),(2,9),(3,6),(4,10),(5,7)] generating graphics... => 3
[(1,7),(2,9),(3,6),(4,10),(5,8)] generating graphics... => 3
[(1,6),(2,9),(3,7),(4,10),(5,8)] generating graphics... => 6
[(1,5),(2,9),(3,7),(4,10),(6,8)] generating graphics... => 5
[(1,4),(2,9),(3,7),(5,10),(6,8)] generating graphics... => 4
[(1,3),(2,9),(4,7),(5,10),(6,8)] generating graphics... => 3
[(1,2),(3,9),(4,7),(5,10),(6,8)] generating graphics... => 2
[(1,2),(3,10),(4,7),(5,9),(6,8)] generating graphics... => 2
[(1,3),(2,10),(4,7),(5,9),(6,8)] generating graphics... => 3
[(1,4),(2,10),(3,7),(5,9),(6,8)] generating graphics... => 4
[(1,5),(2,10),(3,7),(4,9),(6,8)] generating graphics... => 5
[(1,6),(2,10),(3,7),(4,9),(5,8)] generating graphics... => 6
[(1,7),(2,10),(3,6),(4,9),(5,8)] generating graphics... => 3
[(1,8),(2,10),(3,6),(4,9),(5,7)] generating graphics... => 3
[(1,9),(2,10),(3,6),(4,8),(5,7)] generating graphics... => 3
[(1,10),(2,9),(3,6),(4,8),(5,7)] generating graphics... => 2
[(1,10),(2,9),(3,7),(4,8),(5,6)] generating graphics... => 2
[(1,9),(2,10),(3,7),(4,8),(5,6)] generating graphics... => 3
[(1,8),(2,10),(3,7),(4,9),(5,6)] generating graphics... => 3
[(1,7),(2,10),(3,8),(4,9),(5,6)] generating graphics... => 5
[(1,6),(2,10),(3,8),(4,9),(5,7)] generating graphics... => 6
[(1,5),(2,10),(3,8),(4,9),(6,7)] generating graphics... => 5
[(1,4),(2,10),(3,8),(5,9),(6,7)] generating graphics... => 4
[(1,3),(2,10),(4,8),(5,9),(6,7)] generating graphics... => 3
[(1,2),(3,10),(4,8),(5,9),(6,7)] generating graphics... => 2
[(1,2),(3,9),(4,8),(5,10),(6,7)] generating graphics... => 2
[(1,3),(2,9),(4,8),(5,10),(6,7)] generating graphics... => 3
[(1,4),(2,9),(3,8),(5,10),(6,7)] generating graphics... => 4
[(1,5),(2,9),(3,8),(4,10),(6,7)] generating graphics... => 5
[(1,6),(2,9),(3,8),(4,10),(5,7)] generating graphics... => 6
[(1,7),(2,9),(3,8),(4,10),(5,6)] generating graphics... => 5
[(1,8),(2,9),(3,7),(4,10),(5,6)] generating graphics... => 3
[(1,9),(2,8),(3,7),(4,10),(5,6)] generating graphics... => 2
[(1,10),(2,8),(3,7),(4,9),(5,6)] generating graphics... => 2
[(1,10),(2,7),(3,8),(4,9),(5,6)] generating graphics... => 2
[(1,9),(2,7),(3,8),(4,10),(5,6)] generating graphics... => 2
[(1,8),(2,7),(3,9),(4,10),(5,6)] generating graphics... => 2
[(1,7),(2,8),(3,9),(4,10),(5,6)] generating graphics... => 5
[(1,6),(2,8),(3,9),(4,10),(5,7)] generating graphics... => 6
[(1,5),(2,8),(3,9),(4,10),(6,7)] generating graphics... => 5
[(1,4),(2,8),(3,9),(5,10),(6,7)] generating graphics... => 4
[(1,3),(2,8),(4,9),(5,10),(6,7)] generating graphics... => 3
[(1,2),(3,8),(4,9),(5,10),(6,7)] generating graphics... => 2
[(1,2),(3,7),(4,9),(5,10),(6,8)] generating graphics... => 2
[(1,3),(2,7),(4,9),(5,10),(6,8)] generating graphics... => 3
[(1,4),(2,7),(3,9),(5,10),(6,8)] generating graphics... => 4
[(1,5),(2,7),(3,9),(4,10),(6,8)] generating graphics... => 5
[(1,6),(2,7),(3,9),(4,10),(5,8)] generating graphics... => 6
[(1,7),(2,6),(3,9),(4,10),(5,8)] generating graphics... => 2
[(1,8),(2,6),(3,9),(4,10),(5,7)] generating graphics... => 2
[(1,9),(2,6),(3,8),(4,10),(5,7)] generating graphics... => 2
[(1,10),(2,6),(3,8),(4,9),(5,7)] generating graphics... => 2
[(1,10),(2,5),(3,8),(4,9),(6,7)] generating graphics... => 2
[(1,9),(2,5),(3,8),(4,10),(6,7)] generating graphics... => 2
[(1,8),(2,5),(3,9),(4,10),(6,7)] generating graphics... => 2
[(1,7),(2,5),(3,9),(4,10),(6,8)] generating graphics... => 2
[(1,6),(2,5),(3,9),(4,10),(7,8)] generating graphics... => 6
[(1,5),(2,6),(3,9),(4,10),(7,8)] generating graphics... => 5
[(1,4),(2,6),(3,9),(5,10),(7,8)] generating graphics... => 4
[(1,3),(2,6),(4,9),(5,10),(7,8)] generating graphics... => 3
[(1,2),(3,6),(4,9),(5,10),(7,8)] generating graphics... => 2
[(1,2),(3,5),(4,9),(6,10),(7,8)] generating graphics... => 2
[(1,3),(2,5),(4,9),(6,10),(7,8)] generating graphics... => 3
[(1,4),(2,5),(3,9),(6,10),(7,8)] generating graphics... => 4
[(1,5),(2,4),(3,9),(6,10),(7,8)] generating graphics... => 5
[(1,6),(2,4),(3,9),(5,10),(7,8)] generating graphics... => 6
[(1,7),(2,4),(3,9),(5,10),(6,8)] generating graphics... => 2
[(1,8),(2,4),(3,9),(5,10),(6,7)] generating graphics... => 2
[(1,9),(2,4),(3,8),(5,10),(6,7)] generating graphics... => 2
[(1,10),(2,4),(3,8),(5,9),(6,7)] generating graphics... => 2
[(1,10),(2,3),(4,8),(5,9),(6,7)] generating graphics... => 2
[(1,9),(2,3),(4,8),(5,10),(6,7)] generating graphics... => 2
[(1,8),(2,3),(4,9),(5,10),(6,7)] generating graphics... => 2
[(1,7),(2,3),(4,9),(5,10),(6,8)] generating graphics... => 2
[(1,6),(2,3),(4,9),(5,10),(7,8)] generating graphics... => 6
[(1,5),(2,3),(4,9),(6,10),(7,8)] generating graphics... => 5
[(1,4),(2,3),(5,9),(6,10),(7,8)] generating graphics... => 4
[(1,3),(2,4),(5,9),(6,10),(7,8)] generating graphics... => 3
[(1,2),(3,4),(5,9),(6,10),(7,8)] generating graphics... => 2
[(1,2),(3,4),(5,10),(6,9),(7,8)] generating graphics... => 2
[(1,3),(2,4),(5,10),(6,9),(7,8)] generating graphics... => 3
[(1,4),(2,3),(5,10),(6,9),(7,8)] generating graphics... => 4
[(1,5),(2,3),(4,10),(6,9),(7,8)] generating graphics... => 5
[(1,6),(2,3),(4,10),(5,9),(7,8)] generating graphics... => 6
[(1,7),(2,3),(4,10),(5,9),(6,8)] generating graphics... => 2
[(1,8),(2,3),(4,10),(5,9),(6,7)] generating graphics... => 2
[(1,9),(2,3),(4,10),(5,8),(6,7)] generating graphics... => 2
[(1,10),(2,3),(4,9),(5,8),(6,7)] generating graphics... => 2
[(1,10),(2,4),(3,9),(5,8),(6,7)] generating graphics... => 2
[(1,9),(2,4),(3,10),(5,8),(6,7)] generating graphics... => 2
[(1,8),(2,4),(3,10),(5,9),(6,7)] generating graphics... => 2
[(1,7),(2,4),(3,10),(5,9),(6,8)] generating graphics... => 2
[(1,6),(2,4),(3,10),(5,9),(7,8)] generating graphics... => 6
[(1,5),(2,4),(3,10),(6,9),(7,8)] generating graphics... => 5
[(1,4),(2,5),(3,10),(6,9),(7,8)] generating graphics... => 4
[(1,3),(2,5),(4,10),(6,9),(7,8)] generating graphics... => 3
[(1,2),(3,5),(4,10),(6,9),(7,8)] generating graphics... => 2
[(1,2),(3,6),(4,10),(5,9),(7,8)] generating graphics... => 2
[(1,3),(2,6),(4,10),(5,9),(7,8)] generating graphics... => 3
[(1,4),(2,6),(3,10),(5,9),(7,8)] generating graphics... => 4
[(1,5),(2,6),(3,10),(4,9),(7,8)] generating graphics... => 5
[(1,6),(2,5),(3,10),(4,9),(7,8)] generating graphics... => 6
[(1,7),(2,5),(3,10),(4,9),(6,8)] generating graphics... => 2
[(1,8),(2,5),(3,10),(4,9),(6,7)] generating graphics... => 2
[(1,9),(2,5),(3,10),(4,8),(6,7)] generating graphics... => 2
[(1,10),(2,5),(3,9),(4,8),(6,7)] generating graphics... => 2
[(1,10),(2,6),(3,9),(4,8),(5,7)] generating graphics... => 2
[(1,9),(2,6),(3,10),(4,8),(5,7)] generating graphics... => 2
[(1,8),(2,6),(3,10),(4,9),(5,7)] generating graphics... => 2
[(1,7),(2,6),(3,10),(4,9),(5,8)] generating graphics... => 2
[(1,6),(2,7),(3,10),(4,9),(5,8)] generating graphics... => 6
[(1,5),(2,7),(3,10),(4,9),(6,8)] generating graphics... => 5
[(1,4),(2,7),(3,10),(5,9),(6,8)] generating graphics... => 4
[(1,3),(2,7),(4,10),(5,9),(6,8)] generating graphics... => 3
[(1,2),(3,7),(4,10),(5,9),(6,8)] generating graphics... => 2
[(1,2),(3,8),(4,10),(5,9),(6,7)] generating graphics... => 2
[(1,3),(2,8),(4,10),(5,9),(6,7)] generating graphics... => 3
[(1,4),(2,8),(3,10),(5,9),(6,7)] generating graphics... => 4
[(1,5),(2,8),(3,10),(4,9),(6,7)] generating graphics... => 5
[(1,6),(2,8),(3,10),(4,9),(5,7)] generating graphics... => 6
[(1,7),(2,8),(3,10),(4,9),(5,6)] generating graphics... => 5
[(1,8),(2,7),(3,10),(4,9),(5,6)] generating graphics... => 2
[(1,9),(2,7),(3,10),(4,8),(5,6)] generating graphics... => 2
[(1,10),(2,7),(3,9),(4,8),(5,6)] generating graphics... => 2
[(1,10),(2,8),(3,9),(4,7),(5,6)] generating graphics... => 2
[(1,9),(2,8),(3,10),(4,7),(5,6)] generating graphics... => 2
[(1,8),(2,9),(3,10),(4,7),(5,6)] generating graphics... => 4
[(1,7),(2,9),(3,10),(4,8),(5,6)] generating graphics... => 5
[(1,6),(2,9),(3,10),(4,8),(5,7)] generating graphics... => 6
[(1,5),(2,9),(3,10),(4,8),(6,7)] generating graphics... => 5
[(1,4),(2,9),(3,10),(5,8),(6,7)] generating graphics... => 4
[(1,3),(2,9),(4,10),(5,8),(6,7)] generating graphics... => 3
[(1,2),(3,9),(4,10),(5,8),(6,7)] generating graphics... => 2
[(1,2),(3,10),(4,9),(5,8),(6,7)] generating graphics... => 2
[(1,3),(2,10),(4,9),(5,8),(6,7)] generating graphics... => 3
[(1,4),(2,10),(3,9),(5,8),(6,7)] generating graphics... => 4
[(1,5),(2,10),(3,9),(4,8),(6,7)] generating graphics... => 5
[(1,6),(2,10),(3,9),(4,8),(5,7)] generating graphics... => 6
[(1,7),(2,10),(3,9),(4,8),(5,6)] generating graphics... => 5
[(1,8),(2,10),(3,9),(4,7),(5,6)] generating graphics... => 4
[(1,9),(2,10),(3,8),(4,7),(5,6)] generating graphics... => 3
[(1,10),(2,9),(3,8),(4,7),(5,6)] generating graphics... => 2
[(1,2),(3,4),(5,8),(6,7),(9,10),(11,12)] generating graphics... => 2
[(1,2),(3,4),(5,8),(6,7),(9,12),(10,11)] generating graphics... => 2
[(1,2),(3,4),(5,10),(6,7),(8,9),(11,12)] generating graphics... => 2
[(1,2),(3,4),(5,12),(6,7),(8,9),(10,11)] generating graphics... => 2
[(1,2),(3,4),(5,12),(6,7),(8,11),(9,10)] generating graphics... => 2
[(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)] generating graphics... => 2
[(1,2),(3,4),(5,6),(7,8),(9,12),(10,11)] generating graphics... => 2
[(1,2),(3,4),(5,10),(6,9),(7,8),(11,12)] generating graphics... => 2
[(1,2),(3,4),(5,12),(6,9),(7,8),(10,11)] generating graphics... => 2
[(1,2),(3,4),(5,12),(6,11),(7,8),(9,10)] generating graphics... => 2
[(1,2),(3,4),(5,6),(7,10),(8,9),(11,12)] generating graphics... => 2
[(1,2),(3,4),(5,6),(7,12),(8,9),(10,11)] generating graphics... => 2
[(1,2),(3,4),(5,6),(7,12),(8,11),(9,10)] generating graphics... => 2
[(1,2),(3,4),(5,12),(6,11),(7,10),(8,9)] generating graphics... => 2
[(1,2),(3,4),(5,9),(6,10),(7,11),(8,12)] generating graphics... => 2
[(1,2),(3,4),(5,8),(6,10),(7,11),(9,12)] generating graphics... => 2
[(1,2),(3,5),(4,7),(6,10),(8,11),(9,12)] generating graphics... => 2
[(1,2),(3,4),(5,6),(7,9),(8,11),(10,12)] generating graphics... => 2
[(1,2),(3,4),(5,6),(7,8),(9,11),(10,12)] generating graphics... => 2
[(1,2),(3,5),(4,6),(7,9),(8,11),(10,12)] generating graphics... => 2
[(1,2),(3,5),(4,6),(7,8),(9,11),(10,12)] generating graphics... => 2
[(1,2),(3,4),(5,8),(6,9),(7,11),(10,12)] generating graphics... => 2
[(1,2),(3,5),(4,7),(6,9),(8,11),(10,12)] generating graphics... => 2
[(1,2),(3,5),(4,7),(6,8),(9,11),(10,12)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,9),(8,11),(10,12)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,8),(9,11),(10,12)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,10),(8,11),(9,12)] generating graphics... => 2
[(1,2),(3,4),(5,6),(7,10),(8,11),(9,12)] generating graphics... => 2
[(1,2),(3,4),(5,8),(6,9),(7,10),(11,12)] generating graphics... => 2
[(1,2),(3,5),(4,6),(7,10),(8,11),(9,12)] generating graphics... => 2
[(1,2),(3,5),(4,6),(7,9),(8,10),(11,12)] generating graphics... => 2
[(1,2),(3,5),(4,7),(6,8),(9,10),(11,12)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,9),(8,10),(11,12)] generating graphics... => 2
[(1,2),(3,5),(4,6),(7,8),(9,10),(11,12)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,8),(9,10),(11,12)] generating graphics... => 2
[(1,2),(3,4),(5,6),(7,9),(8,10),(11,12)] generating graphics... => 2
[(1,2),(3,5),(4,7),(6,9),(8,10),(11,12)] generating graphics... => 2
[(1,2),(3,4),(5,6),(7,9),(8,12),(10,11)] generating graphics... => 2
[(1,2),(3,4),(5,6),(7,10),(8,12),(9,11)] generating graphics... => 2
[(1,2),(3,4),(5,6),(7,11),(8,9),(10,12)] generating graphics... => 2
[(1,2),(3,4),(5,6),(7,11),(8,10),(9,12)] generating graphics... => 2
[(1,2),(3,4),(5,6),(7,11),(8,12),(9,10)] generating graphics... => 2
[(1,2),(3,4),(5,6),(7,12),(8,10),(9,11)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,8),(9,12),(10,11)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,9),(8,12),(10,11)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,10),(8,9),(11,12)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,10),(8,12),(9,11)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,11),(8,9),(10,12)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,11),(8,10),(9,12)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,11),(8,12),(9,10)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,12),(8,9),(10,11)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,12),(8,10),(9,11)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,12),(8,11),(9,10)] generating graphics... => 2
[(1,2),(3,4),(5,8),(6,7),(9,11),(10,12)] generating graphics... => 2
[(1,2),(3,4),(5,8),(6,9),(7,12),(10,11)] generating graphics... => 2
[(1,2),(3,4),(5,8),(6,10),(7,9),(11,12)] generating graphics... => 2
[(1,2),(3,4),(5,8),(6,10),(7,12),(9,11)] generating graphics... => 2
[(1,2),(3,4),(5,8),(6,11),(7,9),(10,12)] generating graphics... => 2
[(1,2),(3,4),(5,8),(6,11),(7,10),(9,12)] generating graphics... => 2
[(1,2),(3,4),(5,8),(6,11),(7,12),(9,10)] generating graphics... => 2
[(1,2),(3,4),(5,8),(6,12),(7,9),(10,11)] generating graphics... => 2
[(1,2),(3,4),(5,8),(6,12),(7,10),(9,11)] generating graphics... => 2
[(1,2),(3,4),(5,8),(6,12),(7,11),(9,10)] generating graphics... => 2
[(1,2),(3,4),(5,9),(6,7),(8,10),(11,12)] generating graphics... => 2
[(1,2),(3,4),(5,9),(6,7),(8,11),(10,12)] generating graphics... => 2
[(1,2),(3,4),(5,9),(6,7),(8,12),(10,11)] generating graphics... => 2
[(1,2),(3,4),(5,9),(6,8),(7,10),(11,12)] generating graphics... => 2
[(1,2),(3,4),(5,9),(6,8),(7,11),(10,12)] generating graphics... => 2
[(1,2),(3,4),(5,9),(6,8),(7,12),(10,11)] generating graphics... => 2
[(1,2),(3,4),(5,9),(6,10),(7,8),(11,12)] generating graphics... => 2
[(1,2),(3,4),(5,9),(6,10),(7,12),(8,11)] generating graphics... => 2
[(1,2),(3,4),(5,9),(6,11),(7,8),(10,12)] generating graphics... => 2
[(1,2),(3,4),(5,9),(6,11),(7,10),(8,12)] generating graphics... => 2
[(1,2),(3,4),(5,9),(6,11),(7,12),(8,10)] generating graphics... => 2
[(1,2),(3,4),(5,9),(6,12),(7,8),(10,11)] generating graphics... => 2
[(1,2),(3,4),(5,9),(6,12),(7,10),(8,11)] generating graphics... => 2
[(1,2),(3,4),(5,9),(6,12),(7,11),(8,10)] generating graphics... => 2
[(1,2),(3,4),(5,10),(6,7),(8,11),(9,12)] generating graphics... => 2
[(1,2),(3,4),(5,10),(6,7),(8,12),(9,11)] generating graphics... => 2
[(1,2),(3,4),(5,10),(6,8),(7,9),(11,12)] generating graphics... => 2
[(1,2),(3,4),(5,10),(6,8),(7,11),(9,12)] generating graphics... => 2
[(1,2),(3,4),(5,10),(6,8),(7,12),(9,11)] generating graphics... => 2
[(1,2),(3,4),(5,10),(6,9),(7,11),(8,12)] generating graphics... => 2
[(1,2),(3,4),(5,10),(6,9),(7,12),(8,11)] generating graphics... => 2
[(1,2),(3,4),(5,10),(6,11),(7,8),(9,12)] generating graphics... => 2
[(1,2),(3,4),(5,10),(6,11),(7,9),(8,12)] generating graphics... => 2
[(1,2),(3,4),(5,10),(6,11),(7,12),(8,9)] generating graphics... => 2
[(1,2),(3,4),(5,10),(6,12),(7,8),(9,11)] generating graphics... => 2
[(1,2),(3,4),(5,10),(6,12),(7,9),(8,11)] generating graphics... => 2
[(1,2),(3,4),(5,10),(6,12),(7,11),(8,9)] generating graphics... => 2
[(1,2),(3,4),(5,11),(6,7),(8,9),(10,12)] generating graphics... => 2
[(1,2),(3,4),(5,11),(6,7),(8,10),(9,12)] generating graphics... => 2
[(1,2),(3,4),(5,11),(6,7),(8,12),(9,10)] generating graphics... => 2
[(1,2),(3,4),(5,11),(6,8),(7,9),(10,12)] generating graphics... => 2
[(1,2),(3,4),(5,11),(6,8),(7,10),(9,12)] generating graphics... => 2
[(1,2),(3,4),(5,11),(6,8),(7,12),(9,10)] generating graphics... => 2
[(1,2),(3,4),(5,11),(6,9),(7,8),(10,12)] generating graphics... => 2
[(1,2),(3,4),(5,11),(6,9),(7,10),(8,12)] generating graphics... => 2
[(1,2),(3,4),(5,11),(6,9),(7,12),(8,10)] generating graphics... => 2
[(1,2),(3,4),(5,11),(6,10),(7,8),(9,12)] generating graphics... => 2
[(1,2),(3,4),(5,11),(6,10),(7,9),(8,12)] generating graphics... => 2
[(1,2),(3,4),(5,11),(6,10),(7,12),(8,9)] generating graphics... => 2
[(1,2),(3,4),(5,11),(6,12),(7,8),(9,10)] generating graphics... => 2
[(1,2),(3,4),(5,11),(6,12),(7,9),(8,10)] generating graphics... => 2
[(1,2),(3,4),(5,11),(6,12),(7,10),(8,9)] generating graphics... => 2
[(1,2),(3,4),(5,12),(6,7),(8,10),(9,11)] generating graphics... => 2
[(1,2),(3,4),(5,12),(6,8),(7,9),(10,11)] generating graphics... => 2
[(1,2),(3,4),(5,12),(6,8),(7,10),(9,11)] generating graphics... => 2
[(1,2),(3,4),(5,12),(6,8),(7,11),(9,10)] generating graphics... => 2
[(1,2),(3,4),(5,12),(6,9),(7,10),(8,11)] generating graphics... => 2
[(1,2),(3,4),(5,12),(6,9),(7,11),(8,10)] generating graphics... => 2
[(1,2),(3,4),(5,12),(6,10),(7,8),(9,11)] generating graphics... => 2
[(1,2),(3,4),(5,12),(6,10),(7,9),(8,11)] generating graphics... => 2
[(1,2),(3,4),(5,12),(6,10),(7,11),(8,9)] generating graphics... => 2
[(1,2),(3,4),(5,12),(6,11),(7,9),(8,10)] generating graphics... => 2
[(1,2),(3,5),(4,6),(7,8),(9,12),(10,11)] generating graphics... => 2
[(1,2),(3,5),(4,6),(7,9),(8,12),(10,11)] generating graphics... => 2
[(1,2),(3,5),(4,6),(7,10),(8,9),(11,12)] generating graphics... => 2
[(1,2),(3,5),(4,6),(7,10),(8,12),(9,11)] generating graphics... => 2
[(1,2),(3,5),(4,6),(7,11),(8,9),(10,12)] generating graphics... => 2
[(1,2),(3,5),(4,6),(7,11),(8,10),(9,12)] generating graphics... => 2
[(1,2),(3,5),(4,6),(7,11),(8,12),(9,10)] generating graphics... => 2
[(1,2),(3,5),(4,6),(7,12),(8,9),(10,11)] generating graphics... => 2
[(1,2),(3,5),(4,6),(7,12),(8,10),(9,11)] generating graphics... => 2
[(1,2),(3,5),(4,6),(7,12),(8,11),(9,10)] generating graphics... => 2
[(1,2),(3,5),(4,7),(6,8),(9,12),(10,11)] generating graphics... => 2
[(1,2),(3,5),(4,7),(6,9),(8,12),(10,11)] generating graphics... => 2
[(1,2),(3,5),(4,7),(6,10),(8,9),(11,12)] generating graphics... => 2
[(1,2),(3,5),(4,7),(6,10),(8,12),(9,11)] generating graphics... => 2
[(1,2),(3,5),(4,7),(6,11),(8,9),(10,12)] generating graphics... => 2
[(1,2),(3,5),(4,7),(6,11),(8,10),(9,12)] generating graphics... => 2
click to show generating function       
Description
The smallest label in the subtree rooted at the sister of 1 in the decreasing labelled binary unordered tree associated with the perfect matching.
The bijection between perfect matchings of $\{1,\dots,2n\}$ and trees with $n+1$ leaves is described in Example 5.2.6 of [1].
References
[1] Stanley, R. P. Enumerative combinatorics. Vol. 2 MathSciNet:1676282
Code
def statistic(m):
    return min(sister_of_1(matching_to_tree(m)).leaf_labels())

def sister_of_1(T):
    if T[0].label() == 1:
        return T[1]
    if T[1].label() == 1:
        return T[0]
    if 1 in T[0].leaf_labels():
        return sister_of_1(T[0])
    if 1 in T[1].leaf_labels():
        return sister_of_1(T[1])

def matching_to_tree(m):
    """
    INPUT:

    - m, a PerfectMatching on {1,...,2n}.

    OUTPUT:

    a decreasingly labelled, unordered full binary tree with n+1 leaves.

    EXAMPLES::

        sage: m = PerfectMatching([(1,4),(2,9),(3,10),(5,7),(6,8),(11,12)])
        sage: ascii_art(matching_to_tree(m))
             ____None___
            /          /
          _11__      _12_
         /    /     /   /
        3   _10_   6   8_
           /   /      / /
          2   9_     1 4
             / /
            5 7

    """
    # the children of the smallest label are the largest remaining
    # element and its partner
    trees = [LabelledRootedTree([LabelledRootedTree([], label=i),
                                 LabelledRootedTree([], label=j)]) for i, j in m]
    max_label = m.size()//2+1 # last labelled node

    while len(trees) > 1:
        max_label += 1
        # find tree with smallest child and both children smaller than max_label
        A = sorted([T for T in trees if max(T[0].label(), T[1].label()) < max_label],
                   key = lambda T: min(T[0].label(), T[1].label()))[0]
        trees.remove(A)
        # give it's root node the new label
        A = LabelledRootedTree(A, label=max_label)
        # find tree with child having label max_label
        B = (T for T in trees
             if T[0].label() == max_label or T[1].label() == max_label).next()
        trees.remove(B)
        # replace B with [B[0], A] or [B[1], A]
        if B[0].label() == max_label:
            C = LabelledRootedTree([A, B[1]])
        else:
            C = LabelledRootedTree([A, B[0]])

        trees.append(C)

    return trees[0]

Created
Apr 02, 2018 at 06:37 by Martin Rubey
Updated
Apr 02, 2018 at 06:37 by Martin Rubey