*****************************************************************************
*       www.FindStat.org - The Combinatorial Statistic Finder               *
*                                                                           *
*       Copyright (C) 2019 The FindStatCrew <info@findstat.org>             *
*                                                                           *
*    This information is distributed in the hope that it will be useful,    *
*    but WITHOUT ANY WARRANTY; without even the implied warranty of         *
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                   *
*****************************************************************************

-----------------------------------------------------------------------------
Statistic identifier: St001121

-----------------------------------------------------------------------------
Collection: Integer partitions

-----------------------------------------------------------------------------
Description: The multiplicity of the irreducible representation indexed by the partition in the Kronecker square corresponding to the partition.

The Kronecker coefficient is the multiplicity $g_{\mu,\nu}^\lambda$ of the Specht module $S^\lambda$ in $S^\mu\otimes S^\nu$:

$$ S^\mu\otimes S^\nu = \bigoplus_\lambda g_{\mu,\nu}^\lambda S^\lambda $$

This statistic records the Kronecker coefficient $g_{\lambda,\lambda}^\lambda$.

-----------------------------------------------------------------------------
References: [1]   [[wikipedia:Kronecker coefficient]]

-----------------------------------------------------------------------------
Code:
def statistic(la):
    s = SymmetricFunctions(ZZ).schur()
    return s[la].internal_product(s[la]).coefficient(la)


-----------------------------------------------------------------------------
Statistic values:

[]                        => 1
[1]                       => 1
[2]                       => 1
[1,1]                     => 0
[3]                       => 1
[2,1]                     => 1
[1,1,1]                   => 0
[4]                       => 1
[3,1]                     => 1
[2,2]                     => 1
[2,1,1]                   => 1
[1,1,1,1]                 => 0
[5]                       => 1
[4,1]                     => 1
[3,2]                     => 1
[3,1,1]                   => 1
[2,2,1]                   => 1
[2,1,1,1]                 => 0
[1,1,1,1,1]               => 0
[6]                       => 1
[5,1]                     => 1
[4,2]                     => 2
[4,1,1]                   => 1
[3,3]                     => 0
[3,2,1]                   => 5
[3,1,1,1]                 => 1
[2,2,2]                   => 1
[2,2,1,1]                 => 0
[2,1,1,1,1]               => 0
[1,1,1,1,1,1]             => 0
[7]                       => 1
[6,1]                     => 1
[5,2]                     => 2
[5,1,1]                   => 1
[4,3]                     => 1
[4,2,1]                   => 9
[4,1,1,1]                 => 1
[3,3,1]                   => 1
[3,2,2]                   => 2
[3,2,1,1]                 => 8
[3,1,1,1,1]               => 1
[2,2,2,1]                 => 1
[2,2,1,1,1]               => 0
[2,1,1,1,1,1]             => 0
[1,1,1,1,1,1,1]           => 0
[8]                       => 1
[7,1]                     => 1
[6,2]                     => 2
[6,1,1]                   => 1
[5,3]                     => 1
[5,2,1]                   => 9
[5,1,1,1]                 => 1
[4,4]                     => 1
[4,3,1]                   => 8
[4,2,2]                   => 6
[4,2,1,1]                 => 17
[4,1,1,1,1]               => 1
[3,3,2]                   => 1
[3,3,1,1]                 => 5
[3,2,2,1]                 => 8
[3,2,1,1,1]               => 4
[3,1,1,1,1,1]             => 0
[2,2,2,2]                 => 1
[2,2,2,1,1]               => 0
[2,2,1,1,1,1]             => 0
[2,1,1,1,1,1,1]           => 0
[1,1,1,1,1,1,1,1]         => 0
[9]                       => 1
[8,1]                     => 1
[7,2]                     => 2
[7,1,1]                   => 1
[6,3]                     => 2
[6,2,1]                   => 9
[6,1,1,1]                 => 1
[5,4]                     => 1
[5,3,1]                   => 15
[5,2,2]                   => 7
[5,2,1,1]                 => 18
[5,1,1,1,1]               => 1
[4,4,1]                   => 2
[4,3,2]                   => 12
[4,3,1,1]                 => 27
[4,2,2,1]                 => 28
[4,2,1,1,1]               => 17
[4,1,1,1,1,1]             => 1
[3,3,3]                   => 1
[3,3,2,1]                 => 11
[3,3,1,1,1]               => 5
[3,2,2,2]                 => 2
[3,2,2,1,1]               => 7
[3,2,1,1,1,1]             => 0
[3,1,1,1,1,1,1]           => 0
[2,2,2,2,1]               => 0
[2,2,2,1,1,1]             => 0
[2,2,1,1,1,1,1]           => 0
[2,1,1,1,1,1,1,1]         => 0
[1,1,1,1,1,1,1,1,1]       => 0
[10]                      => 1
[9,1]                     => 1
[8,2]                     => 2
[8,1,1]                   => 1
[7,3]                     => 2
[7,2,1]                   => 9
[7,1,1,1]                 => 1
[6,4]                     => 2
[6,3,1]                   => 19
[6,2,2]                   => 7
[6,2,1,1]                 => 18
[6,1,1,1,1]               => 1
[5,5]                     => 0
[5,4,1]                   => 9
[5,3,2]                   => 29
[5,3,1,1]                 => 53
[5,2,2,1]                 => 39
[5,2,1,1,1]               => 21
[5,1,1,1,1,1]             => 1
[4,4,2]                   => 6
[4,4,1,1]                 => 5
[4,3,3]                   => 2
[4,3,2,1]                 => 117
[4,3,1,1,1]               => 40
[4,2,2,2]                 => 10
[4,2,2,1,1]               => 46
[4,2,1,1,1,1]             => 11
[4,1,1,1,1,1,1]           => 1
[3,3,3,1]                 => 2
[3,3,2,2]                 => 2
[3,3,2,1,1]               => 21
[3,3,1,1,1,1]             => 1
[3,2,2,2,1]               => 5
[3,2,2,1,1,1]             => 1
[3,2,1,1,1,1,1]           => 0
[3,1,1,1,1,1,1,1]         => 0
[2,2,2,2,2]               => 0
[2,2,2,2,1,1]             => 0
[2,2,2,1,1,1,1]           => 0
[2,2,1,1,1,1,1,1]         => 0
[2,1,1,1,1,1,1,1,1]       => 0
[1,1,1,1,1,1,1,1,1,1]     => 0
[11]                      => 1
[10,1]                    => 1
[9,2]                     => 2
[9,1,1]                   => 1
[8,3]                     => 2
[8,2,1]                   => 9
[8,1,1,1]                 => 1
[7,4]                     => 2
[7,3,1]                   => 19
[7,2,2]                   => 7
[7,2,1,1]                 => 18
[7,1,1,1,1]               => 1
[6,5]                     => 1
[6,4,1]                   => 19
[6,3,2]                   => 39
[6,3,1,1]                 => 62
[6,2,2,1]                 => 39
[6,2,1,1,1]               => 21
[6,1,1,1,1,1]             => 1
[5,5,1]                   => 1
[5,4,2]                   => 29
[5,4,1,1]                 => 40
[5,3,3]                   => 6
[5,3,2,1]                 => 312
[5,3,1,1,1]               => 89
[5,2,2,2]                 => 17
[5,2,2,1,1]               => 86
[5,2,1,1,1,1]             => 20
[5,1,1,1,1,1,1]           => 1
[4,4,3]                   => 2
[4,4,2,1]                 => 53
[4,4,1,1,1]               => 14
[4,3,3,1]                 => 37
[4,3,2,2]                 => 53
[4,3,2,1,1]               => 301
[4,3,1,1,1,1]             => 30
[4,2,2,2,1]               => 37
[4,2,2,1,1,1]             => 32
[4,2,1,1,1,1,1]           => 4
[4,1,1,1,1,1,1,1]         => 0
[3,3,3,2]                 => 2
[3,3,3,1,1]               => 8
[3,3,2,2,1]               => 21
[3,3,2,1,1,1]             => 11
[3,3,1,1,1,1,1]           => 0
[3,2,2,2,2]               => 1
[3,2,2,2,1,1]             => 1
[3,2,2,1,1,1,1]           => 0
[3,2,1,1,1,1,1,1]         => 0
[3,1,1,1,1,1,1,1,1]       => 0
[2,2,2,2,2,1]             => 0
[2,2,2,2,1,1,1]           => 0
[2,2,2,1,1,1,1,1]         => 0
[2,2,1,1,1,1,1,1,1]       => 0
[2,1,1,1,1,1,1,1,1,1]     => 0
[1,1,1,1,1,1,1,1,1,1,1]   => 0
[12]                      => 1
[11,1]                    => 1
[10,2]                    => 2
[10,1,1]                  => 1
[9,3]                     => 2
[9,2,1]                   => 9
[9,1,1,1]                 => 1
[8,4]                     => 3
[8,3,1]                   => 19
[8,2,2]                   => 7
[8,2,1,1]                 => 18
[8,1,1,1,1]               => 1
[7,5]                     => 1
[7,4,1]                   => 26
[7,3,2]                   => 40
[7,3,1,1]                 => 63
[7,2,2,1]                 => 39
[7,2,1,1,1]               => 21
[7,1,1,1,1,1]             => 1
[6,6]                     => 1
[6,5,1]                   => 9
[6,4,2]                   => 71
[6,4,1,1]                 => 80
[6,3,3]                   => 13
[6,3,2,1]                 => 429
[6,3,1,1,1]               => 108
[6,2,2,2]                 => 19
[6,2,2,1,1]               => 90
[6,2,1,1,1,1]             => 21
[6,1,1,1,1,1,1]           => 1
[5,5,2]                   => 5
[5,5,1,1]                 => 9
[5,4,3]                   => 20
[5,4,2,1]                 => 407
[5,4,1,1,1]               => 89
[5,3,3,1]                 => 146
[5,3,2,2]                 => 179
[5,3,2,1,1]               => 945
[5,3,1,1,1,1]             => 91
[5,2,2,2,1]               => 94
[5,2,2,1,1,1]             => 103
[5,2,1,1,1,1,1]           => 17
[5,1,1,1,1,1,1,1]         => 1
[4,4,4]                   => 2
[4,4,3,1]                 => 46
[4,4,2,2]                 => 45
[4,4,2,1,1]               => 180
[4,4,1,1,1,1]             => 18
[4,3,3,2]                 => 47
[4,3,3,1,1]               => 144
[4,3,2,2,1]               => 380
[4,3,2,1,1,1]             => 312
[4,3,1,1,1,1,1]           => 11
[4,2,2,2,2]               => 9
[4,2,2,2,1,1]             => 35
[4,2,2,1,1,1,1]           => 10
[4,2,1,1,1,1,1,1]         => 0
[4,1,1,1,1,1,1,1,1]       => 0
[3,3,3,3]                 => 1
[3,3,3,2,1]               => 15
[3,3,3,1,1,1]             => 7
[3,3,2,2,2]               => 4
[3,3,2,2,1,1]             => 21
[3,3,2,1,1,1,1]           => 0
[3,3,1,1,1,1,1,1]         => 0
[3,2,2,2,2,1]             => 0
[3,2,2,2,1,1,1]           => 0
[3,2,2,1,1,1,1,1]         => 0
[3,2,1,1,1,1,1,1,1]       => 0
[3,1,1,1,1,1,1,1,1,1]     => 0
[2,2,2,2,2,2]             => 0
[2,2,2,2,2,1,1]           => 0
[2,2,2,2,1,1,1,1]         => 0
[2,2,2,1,1,1,1,1,1]       => 0
[2,2,1,1,1,1,1,1,1,1]     => 0
[2,1,1,1,1,1,1,1,1,1,1]   => 0
[1,1,1,1,1,1,1,1,1,1,1,1] => 0
[5,4,3,1]                 => 523
[5,4,2,2]                 => 333
[5,4,2,1,1]               => 1573
[5,3,3,2]                 => 232
[5,3,3,1,1]               => 661
[5,3,2,2,1]               => 1580
[4,4,3,2]                 => 85
[4,4,3,1,1]               => 235
[4,4,2,2,1]               => 325
[4,3,3,2,1]               => 494
[5,4,3,2]                 => 1169
[5,4,3,1,1]               => 2929
[5,4,2,2,1]               => 3649
[5,3,3,2,1]               => 2933
[4,4,3,2,1]               => 1154
[5,4,3,2,1]               => 18269

-----------------------------------------------------------------------------
Created: Mar 17, 2018 at 10:22 by Martin Rubey

-----------------------------------------------------------------------------
Last Updated: Mar 17, 2018 at 10:29 by Martin Rubey