Identifier
Values
[1] => [[1]] => [(1,2)] => [2,1] => 0
[1,2] => [[1,0],[0,1]] => [(1,4),(2,3)] => [3,4,2,1] => 0
[2,1] => [[0,1],[1,0]] => [(1,2),(3,4)] => [2,1,4,3] => 1
[1,2,3] => [[1,0,0],[0,1,0],[0,0,1]] => [(1,6),(2,5),(3,4)] => [4,5,6,3,2,1] => 0
[1,3,2] => [[1,0,0],[0,0,1],[0,1,0]] => [(1,6),(2,3),(4,5)] => [3,5,2,6,4,1] => 1
[2,1,3] => [[0,1,0],[1,0,0],[0,0,1]] => [(1,2),(3,4),(5,6)] => [2,1,4,3,6,5] => 2
[2,3,1] => [[0,0,1],[1,0,0],[0,1,0]] => [(1,6),(2,3),(4,5)] => [3,5,2,6,4,1] => 1
[3,1,2] => [[0,1,0],[0,0,1],[1,0,0]] => [(1,2),(3,4),(5,6)] => [2,1,4,3,6,5] => 2
[3,2,1] => [[0,0,1],[0,1,0],[1,0,0]] => [(1,4),(2,3),(5,6)] => [3,4,2,1,6,5] => 1
[2,1,4,3] => [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]] => [(1,2),(3,4),(5,6),(7,8)] => [2,1,4,3,6,5,8,7] => 3
[3,1,4,2] => [[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]] => [(1,2),(3,4),(5,6),(7,8)] => [2,1,4,3,6,5,8,7] => 3
[3,4,1,2] => [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]] => [(1,2),(3,4),(5,6),(7,8)] => [2,1,4,3,6,5,8,7] => 3
[4,3,2,1] => [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]] => [(1,4),(2,3),(5,8),(6,7)] => [3,4,2,1,7,8,6,5] => 0
[2,1,4,3,5] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]] => [(1,2),(3,4),(5,6),(7,8),(9,10)] => [2,1,4,3,6,5,8,7,10,9] => 4
[2,1,5,3,4] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10)] => [2,1,4,3,6,5,8,7,10,9] => 4
[3,1,4,2,5] => [[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1]] => [(1,2),(3,4),(5,6),(7,8),(9,10)] => [2,1,4,3,6,5,8,7,10,9] => 4
[3,1,5,2,4] => [[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10)] => [2,1,4,3,6,5,8,7,10,9] => 4
[3,1,5,4,2] => [[0,1,0,0,0],[0,0,0,0,1],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10)] => [2,1,4,3,6,5,8,7,10,9] => 4
[3,2,5,4,1] => [[0,0,0,0,1],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10)] => [2,1,4,3,6,5,8,7,10,9] => 4
[3,4,1,2,5] => [[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1]] => [(1,2),(3,4),(5,6),(7,8),(9,10)] => [2,1,4,3,6,5,8,7,10,9] => 4
[3,5,1,2,4] => [[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10)] => [2,1,4,3,6,5,8,7,10,9] => 4
[3,5,1,4,2] => [[0,0,1,0,0],[0,0,0,0,1],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10)] => [2,1,4,3,6,5,8,7,10,9] => 4
[3,5,2,4,1] => [[0,0,0,0,1],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10)] => [2,1,4,3,6,5,8,7,10,9] => 4
[4,5,1,3,2] => [[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10)] => [2,1,4,3,6,5,8,7,10,9] => 4
[4,5,2,3,1] => [[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10)] => [2,1,4,3,6,5,8,7,10,9] => 4
[2,1,4,3,6,5] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)] => [2,1,4,3,6,5,8,7,10,9,12,11] => 5
[2,1,5,3,6,4] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[0,0,0,0,1,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)] => [2,1,4,3,6,5,8,7,10,9,12,11] => 5
[2,1,5,6,3,4] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[0,0,0,1,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)] => [2,1,4,3,6,5,8,7,10,9,12,11] => 5
[3,1,4,2,6,5] => [[0,1,0,0,0,0],[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)] => [2,1,4,3,6,5,8,7,10,9,12,11] => 5
[3,1,5,2,6,4] => [[0,1,0,0,0,0],[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[0,0,0,0,1,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)] => [2,1,4,3,6,5,8,7,10,9,12,11] => 5
[3,1,5,6,2,4] => [[0,1,0,0,0,0],[0,0,0,0,1,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[0,0,0,1,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)] => [2,1,4,3,6,5,8,7,10,9,12,11] => 5
[3,2,5,4,6,1] => [[0,0,0,0,0,1],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)] => [2,1,4,3,6,5,8,7,10,9,12,11] => 5
[3,2,5,6,1,4] => [[0,0,0,0,1,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[0,0,0,1,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)] => [2,1,4,3,6,5,8,7,10,9,12,11] => 5
[3,2,5,6,4,1] => [[0,0,0,0,0,1],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,1,0],[0,0,1,0,0,0],[0,0,0,1,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)] => [2,1,4,3,6,5,8,7,10,9,12,11] => 5
[3,4,1,2,6,5] => [[0,0,1,0,0,0],[0,0,0,1,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)] => [2,1,4,3,6,5,8,7,10,9,12,11] => 5
[3,5,1,2,6,4] => [[0,0,1,0,0,0],[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,1,0,0,0,0],[0,0,0,0,1,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)] => [2,1,4,3,6,5,8,7,10,9,12,11] => 5
[3,5,1,6,2,4] => [[0,0,1,0,0,0],[0,0,0,0,1,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,1,0,0,0,0],[0,0,0,1,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)] => [2,1,4,3,6,5,8,7,10,9,12,11] => 5
[3,5,2,4,6,1] => [[0,0,0,0,0,1],[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)] => [2,1,4,3,6,5,8,7,10,9,12,11] => 5
[3,5,2,6,1,4] => [[0,0,0,0,1,0],[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,1,0,0,0,0],[0,0,0,1,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)] => [2,1,4,3,6,5,8,7,10,9,12,11] => 5
[3,5,2,6,4,1] => [[0,0,0,0,0,1],[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,0,1,0],[0,1,0,0,0,0],[0,0,0,1,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)] => [2,1,4,3,6,5,8,7,10,9,12,11] => 5
[3,6,1,2,5,4] => [[0,0,1,0,0,0],[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,1,0,0,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)] => [2,1,4,3,6,5,8,7,10,9,12,11] => 5
[3,6,1,5,2,4] => [[0,0,1,0,0,0],[0,0,0,0,1,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,1,0,0,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)] => [2,1,4,3,6,5,8,7,10,9,12,11] => 5
[3,6,2,5,1,4] => [[0,0,0,0,1,0],[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,1,0,0,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)] => [2,1,4,3,6,5,8,7,10,9,12,11] => 5
[3,6,2,5,4,1] => [[0,0,0,0,0,1],[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,1,0,0,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)] => [2,1,4,3,6,5,8,7,10,9,12,11] => 5
[4,5,1,6,2,3] => [[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)] => [2,1,4,3,6,5,8,7,10,9,12,11] => 5
[4,5,2,3,6,1] => [[0,0,0,0,0,1],[0,0,1,0,0,0],[0,0,0,1,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)] => [2,1,4,3,6,5,8,7,10,9,12,11] => 5
[4,5,2,6,1,3] => [[0,0,0,0,1,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)] => [2,1,4,3,6,5,8,7,10,9,12,11] => 5
[4,5,2,6,3,1] => [[0,0,0,0,0,1],[0,0,1,0,0,0],[0,0,0,0,1,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)] => [2,1,4,3,6,5,8,7,10,9,12,11] => 5
[4,6,1,5,2,3] => [[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,0,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)] => [2,1,4,3,6,5,8,7,10,9,12,11] => 5
[4,6,2,5,1,3] => [[0,0,0,0,1,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,0,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)] => [2,1,4,3,6,5,8,7,10,9,12,11] => 5
[4,6,2,5,3,1] => [[0,0,0,0,0,1],[0,0,1,0,0,0],[0,0,0,0,1,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,0,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)] => [2,1,4,3,6,5,8,7,10,9,12,11] => 5
[4,6,5,2,1,3] => [[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)] => [2,1,4,3,6,5,8,7,10,9,12,11] => 5
[4,6,5,2,3,1] => [[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)] => [2,1,4,3,6,5,8,7,10,9,12,11] => 5
[6,1,3,2,5,4] => [[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[1,0,0,0,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)] => [2,1,4,3,6,5,8,7,10,9,12,11] => 5
[6,1,3,5,2,4] => [[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[1,0,0,0,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)] => [2,1,4,3,6,5,8,7,10,9,12,11] => 5
[6,1,4,5,2,3] => [[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[0,0,0,1,0,0],[1,0,0,0,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)] => [2,1,4,3,6,5,8,7,10,9,12,11] => 5
[6,3,1,2,5,4] => [[0,0,1,0,0,0],[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[1,0,0,0,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)] => [2,1,4,3,6,5,8,7,10,9,12,11] => 5
[6,3,1,5,2,4] => [[0,0,1,0,0,0],[0,0,0,0,1,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[1,0,0,0,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)] => [2,1,4,3,6,5,8,7,10,9,12,11] => 5
[6,3,2,5,1,4] => [[0,0,0,0,1,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[1,0,0,0,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)] => [2,1,4,3,6,5,8,7,10,9,12,11] => 5
[6,3,2,5,4,1] => [[0,0,0,0,0,1],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[1,0,0,0,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)] => [2,1,4,3,6,5,8,7,10,9,12,11] => 5
[6,4,1,5,2,3] => [[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1],[0,1,0,0,0,0],[0,0,0,1,0,0],[1,0,0,0,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)] => [2,1,4,3,6,5,8,7,10,9,12,11] => 5
[6,4,2,5,1,3] => [[0,0,0,0,1,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,1,0,0,0,0],[0,0,0,1,0,0],[1,0,0,0,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)] => [2,1,4,3,6,5,8,7,10,9,12,11] => 5
[6,4,2,5,3,1] => [[0,0,0,0,0,1],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[1,0,0,0,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)] => [2,1,4,3,6,5,8,7,10,9,12,11] => 5
[6,4,5,2,1,3] => [[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,1,0,0,0,0],[0,0,1,0,0,0],[1,0,0,0,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)] => [2,1,4,3,6,5,8,7,10,9,12,11] => 5
[6,4,5,2,3,1] => [[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[1,0,0,0,0,0]] => [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)] => [2,1,4,3,6,5,8,7,10,9,12,11] => 5
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of occurrences of the consecutive pattern 132 in a permutation.
This is the number of occurrences of the pattern $132$, where the matched entries are all adjacent.
Map
non-nesting-exceedence permutation
Description
The fixed-point-free permutation with deficiencies given by the perfect matching, no alignments and no inversions between exceedences.
Put differently, the exceedences form the unique non-nesting perfect matching whose openers coincide with those of the given perfect matching.
Map
to alternating sign matrix
Description
Maps a permutation to its permutation matrix as an alternating sign matrix.
Map
link pattern
Description
Sends an alternating sign matrix to the link pattern of the corresponding fully packed loop configuration.