Processing math: 100%

Identifier
Values
[1] => [1,0] => [1,1,0,0] => [1,2] => 0
[2] => [1,0,1,0] => [1,1,0,1,0,0] => [3,1,2] => 0
[1,1] => [1,1,0,0] => [1,1,1,0,0,0] => [1,2,3] => 0
[3] => [1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => [3,4,1,2] => 0
[2,1] => [1,0,1,1,0,0] => [1,1,0,1,1,0,0,0] => [3,1,2,4] => 0
[1,1,1] => [1,1,0,1,0,0] => [1,1,1,0,1,0,0,0] => [4,1,2,3] => 0
[4] => [1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [3,4,5,1,2] => 0
[3,1] => [1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,0] => [3,4,1,2,5] => 0
[2,2] => [1,1,1,0,0,0] => [1,1,1,1,0,0,0,0] => [1,2,3,4] => 0
[2,1,1] => [1,0,1,1,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => [3,5,1,2,4] => 0
[1,1,1,1] => [1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0] => [4,5,1,2,3] => 0
[5] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => [3,4,5,6,1,2] => 0
[4,1] => [1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,1,0,0,0] => [3,4,5,1,2,6] => 0
[3,2] => [1,0,1,1,1,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => [3,1,2,4,5] => 0
[3,1,1] => [1,0,1,0,1,1,0,1,0,0] => [1,1,0,1,0,1,1,0,1,0,0,0] => [3,4,6,1,2,5] => 0
[2,2,1] => [1,1,1,0,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0] => [1,5,2,3,4] => 1
[2,1,1,1] => [1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,1,0,1,0,1,0,0,0] => [3,5,6,1,2,4] => 0
[1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [4,5,6,1,2,3] => 0
[6] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,0] => [3,4,5,6,7,1,2] => 0
[4,2] => [1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,1,1,0,0,0,0] => [3,4,1,2,5,6] => 0
[3,3] => [1,1,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [5,1,2,3,4] => 0
[3,2,1] => [1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,1,0,0,1,0,0,0] => [3,1,6,2,4,5] => 1
[2,2,2] => [1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [1,2,3,4,5] => 0
[2,2,1,1] => [1,1,1,0,0,1,0,1,0,0] => [1,1,1,1,0,0,1,0,1,0,0,0] => [1,5,6,2,3,4] => 0
[7] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0] => [3,4,5,6,7,8,1,2] => 0
[4,3] => [1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,1,1,0,1,0,0,0,0] => [3,6,1,2,4,5] => 0
[3,3,1] => [1,1,1,0,1,0,0,1,0,0] => [1,1,1,1,0,1,0,0,1,0,0,0] => [5,1,6,2,3,4] => 1
[3,2,2] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => [3,1,2,4,5,6] => 0
[2,2,2,1] => [1,1,1,1,0,0,0,1,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => [1,2,6,3,4,5] => 1
[2,2,1,1,1] => [1,1,1,0,0,1,0,1,0,1,0,0] => [1,1,1,1,0,0,1,0,1,0,1,0,0,0] => [1,5,6,7,2,3,4] => 0
[4,4] => [1,1,1,0,1,0,1,0,0,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => [5,6,1,2,3,4] => 0
[4,2,2] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,0,1,1,1,1,0,0,0,0,0] => [3,4,1,2,5,6,7] => 0
[3,3,2] => [1,1,1,0,1,1,0,0,0,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => [5,1,2,3,4,6] => 0
[2,2,2,2] => [1,1,1,1,0,1,0,0,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0] => [6,1,2,3,4,5] => 0
[2,2,2,1,1] => [1,1,1,1,0,0,0,1,0,1,0,0] => [1,1,1,1,1,0,0,0,1,0,1,0,0,0] => [1,2,6,7,3,4,5] => 0
[4,3,2] => [1,0,1,1,1,0,1,1,0,0,0,0] => [1,1,0,1,1,1,0,1,1,0,0,0,0,0] => [3,6,1,2,4,5,7] => 0
[4,3,1,1] => [1,0,1,1,1,0,1,0,0,1,0,1,0,0] => [1,1,0,1,1,1,0,1,0,0,1,0,1,0,0,0] => [3,6,1,7,8,2,4,5] => 0
[3,3,3] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,2,3,4,5,6] => 0
[2,2,2,2,1] => [1,1,1,1,0,1,0,0,0,1,0,0] => [1,1,1,1,1,0,1,0,0,0,1,0,0,0] => [6,1,2,7,3,4,5] => 1
[6,4] => [1,0,1,0,1,1,1,0,1,0,1,0,0,0] => [1,1,0,1,0,1,1,1,0,1,0,1,0,0,0,0] => [3,4,7,8,1,2,5,6] => 0
[5,5] => [1,1,1,0,1,0,1,0,1,0,0,0] => [1,1,1,1,0,1,0,1,0,1,0,0,0,0] => [5,6,7,1,2,3,4] => 0
[4,4,2] => [1,1,1,0,1,0,1,1,0,0,0,0] => [1,1,1,1,0,1,0,1,1,0,0,0,0,0] => [5,6,1,2,3,4,7] => 0
[4,3,3] => [1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,0,1,1,1,1,1,0,0,0,0,0,0] => [3,1,2,4,5,6,7] => 0
[3,3,3,1] => [1,1,1,1,1,0,0,0,0,1,0,0] => [1,1,1,1,1,1,0,0,0,0,1,0,0,0] => [1,2,3,7,4,5,6] => 1
[2,2,2,2,2] => [1,1,1,1,0,1,0,1,0,0,0,0] => [1,1,1,1,1,0,1,0,1,0,0,0,0,0] => [6,7,1,2,3,4,5] => 0
[6,5] => [1,0,1,1,1,0,1,0,1,0,1,0,0,0] => [1,1,0,1,1,1,0,1,0,1,0,1,0,0,0,0] => [3,6,7,8,1,2,4,5] => 0
[5,3,3] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,0,1,0,1,1,1,1,1,0,0,0,0,0,0] => [3,4,1,2,5,6,7,8] => 0
[4,4,3] => [1,1,1,0,1,1,1,0,0,0,0,0] => [1,1,1,1,0,1,1,1,0,0,0,0,0,0] => [5,1,2,3,4,6,7] => 0
[3,3,3,2] => [1,1,1,1,1,0,0,1,0,0,0,0] => [1,1,1,1,1,1,0,0,1,0,0,0,0,0] => [1,7,2,3,4,5,6] => 1
[6,6] => [1,1,1,0,1,0,1,0,1,0,1,0,0,0] => [1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0] => [5,6,7,8,1,2,3,4] => 0
[5,5,2] => [1,1,1,0,1,0,1,0,1,1,0,0,0,0] => [1,1,1,1,0,1,0,1,0,1,1,0,0,0,0,0] => [5,6,7,1,2,3,4,8] => 0
[4,4,4] => [1,1,1,1,1,0,1,0,0,0,0,0] => [1,1,1,1,1,1,0,1,0,0,0,0,0,0] => [7,1,2,3,4,5,6] => 0
[3,3,3,3] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0] => [1,2,3,4,5,6,7] => 0
[3,3,3,2,1] => [1,1,1,1,1,0,0,1,0,0,0,1,0,0] => [1,1,1,1,1,1,0,0,1,0,0,0,1,0,0,0] => [1,7,2,3,8,4,5,6] => 2
[2,2,2,2,2,2] => [1,1,1,1,0,1,0,1,0,1,0,0,0,0] => [1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0] => [6,7,8,1,2,3,4,5] => 0
[3,3,3,2,2] => [1,1,1,1,1,0,0,1,0,1,0,0,0,0] => [1,1,1,1,1,1,0,0,1,0,1,0,0,0,0,0] => [1,7,8,2,3,4,5,6] => 0
[6,6,2] => [1,1,1,0,1,0,1,0,1,0,1,1,0,0,0,0] => [1,1,1,1,0,1,0,1,0,1,0,1,1,0,0,0,0,0] => [5,6,7,8,1,2,3,4,9] => 0
[5,3,3,3] => [1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0] => [1,1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0] => [3,4,1,2,5,6,7,8,9] => 0
[4,4,3,3] => [1,1,1,0,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0] => [5,1,2,3,4,6,7,8] => 0
[2,2,2,2,2,2,2] => [1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0] => [1,1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0,0] => [6,7,8,9,1,2,3,4,5] => 0
[5,5,5] => [1,1,1,1,1,0,1,0,1,0,0,0,0,0] => [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0] => [7,8,1,2,3,4,5,6] => 0
[4,4,4,3] => [1,1,1,1,1,0,1,1,0,0,0,0,0,0] => [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0] => [7,1,2,3,4,5,6,8] => 0
[3,3,3,3,3] => [1,1,1,1,1,1,0,1,0,0,0,0,0,0] => [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0] => [8,1,2,3,4,5,6,7] => 0
[3,2,2,2,2,2,2] => [1,0,1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0] => [1,1,0,1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0,0] => [3,7,8,9,10,1,2,4,5,6] => 0
[6,6,2,2] => [1,1,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0,0] => [1,1,1,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0,0,0] => [5,6,7,8,10,1,2,3,4,9] => 0
[4,4,4,4] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0] => [1,2,3,4,5,6,7,8] => 0
[3,3,2,2,2,2,2] => [1,1,1,0,1,1,0,1,0,1,0,1,0,1,0,0,0,0] => [1,1,1,1,0,1,1,0,1,0,1,0,1,0,1,0,0,0,0,0] => [5,7,8,9,10,1,2,3,4,6] => 0
[2,2,2,2,2,2,2,2] => [1,1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0] => [1,1,1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0,0] => [6,7,8,9,10,1,2,3,4,5] => 0
[7,7,3] => [1,1,1,0,1,0,1,0,1,0,1,1,1,0,0,0,0,0] => [1,1,1,1,0,1,0,1,0,1,0,1,1,1,0,0,0,0,0,0] => [5,6,7,8,1,2,3,4,9,10] => 0
[] => [] => [1,0] => [1] => 0
[3,3,3,3,3,3] => [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0] => [1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0] => [8,9,1,2,3,4,5,6,7] => 0
[3,3,3,3,3,3,3] => [1,1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0,0] => [1,1,1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0,0,0] => [8,9,10,1,2,3,4,5,6,7] => 0
[4,4,4,4,4] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0] => [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0] => [1,2,3,4,5,6,7,8,9] => 0
[4,4,4,4,4,4] => [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0] => [1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0] => [10,1,2,3,4,5,6,7,8,9] => 0
[5,5,5,5] => [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0] => [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0] => [9,1,2,3,4,5,6,7,8] => 0
[6,6,6,6] => [1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0] => [1,1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0,0] => [9,10,1,2,3,4,5,6,7,8] => 0
[6,6,6] => [1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0] => [1,1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0,0] => [7,8,9,1,2,3,4,5,6] => 0
[6,6,6,6,6] => [1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0] => [1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0] => [11,1,2,3,4,5,6,7,8,9,10] => 0
[7,7,7] => [1,1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0,0] => [1,1,1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0,0,0] => [7,8,9,10,1,2,3,4,5,6] => 0
[5,5,5,5,5] => [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0] => [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0] => [1,2,3,4,5,6,7,8,9,10] => 0
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The number of occurrences of the consecutive pattern 132 in a permutation.
This is the number of occurrences of the pattern 132, where the matched entries are all adjacent.
Map
to 321-avoiding permutation (Billey-Jockusch-Stanley)
Description
The Billey-Jockusch-Stanley bijection to 321-avoiding permutations.
Map
prime Dyck path
Description
Return the Dyck path obtained by adding an initial up and a final down step.
Map
parallelogram polyomino
Description
Return the Dyck path corresponding to the partition interpreted as a parallogram polyomino.
The Ferrers diagram of an integer partition can be interpreted as a parallogram polyomino, such that each part corresponds to a column.
This map returns the corresponding Dyck path.