Identifier
-
Mp00099:
Dyck paths
—bounce path⟶
Dyck paths
Mp00123: Dyck paths —Barnabei-Castronuovo involution⟶ Dyck paths
Mp00201: Dyck paths —Ringel⟶ Permutations
St001085: Permutations ⟶ ℤ
Values
[1,0] => [1,0] => [1,0] => [2,1] => 0
[1,0,1,0] => [1,0,1,0] => [1,0,1,0] => [3,1,2] => 0
[1,1,0,0] => [1,1,0,0] => [1,1,0,0] => [2,3,1] => 0
[1,0,1,0,1,0] => [1,0,1,0,1,0] => [1,1,0,1,0,0] => [4,3,1,2] => 0
[1,0,1,1,0,0] => [1,0,1,1,0,0] => [1,1,0,0,1,0] => [2,4,1,3] => 1
[1,1,0,0,1,0] => [1,1,0,0,1,0] => [1,0,1,1,0,0] => [3,1,4,2] => 1
[1,1,0,1,0,0] => [1,0,1,1,0,0] => [1,1,0,0,1,0] => [2,4,1,3] => 1
[1,1,1,0,0,0] => [1,1,1,0,0,0] => [1,1,1,0,0,0] => [2,3,4,1] => 0
[1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0] => [5,1,2,3,4] => 0
[1,0,1,0,1,1,0,0] => [1,0,1,0,1,1,0,0] => [1,0,1,0,1,1,0,0] => [4,1,2,5,3] => 1
[1,0,1,1,0,0,1,0] => [1,0,1,1,0,0,1,0] => [1,1,1,0,1,0,0,0] => [5,3,4,1,2] => 0
[1,0,1,1,0,1,0,0] => [1,0,1,0,1,1,0,0] => [1,0,1,0,1,1,0,0] => [4,1,2,5,3] => 1
[1,0,1,1,1,0,0,0] => [1,0,1,1,1,0,0,0] => [1,1,1,0,0,0,1,0] => [2,3,5,1,4] => 1
[1,1,0,0,1,0,1,0] => [1,1,0,0,1,0,1,0] => [1,1,0,0,1,0,1,0] => [2,5,1,3,4] => 1
[1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0] => [2,4,1,5,3] => 1
[1,1,0,1,0,0,1,0] => [1,0,1,1,0,0,1,0] => [1,1,1,0,1,0,0,0] => [5,3,4,1,2] => 0
[1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0] => [2,4,1,5,3] => 1
[1,1,0,1,1,0,0,0] => [1,0,1,1,1,0,0,0] => [1,1,1,0,0,0,1,0] => [2,3,5,1,4] => 1
[1,1,1,0,0,0,1,0] => [1,1,1,0,0,0,1,0] => [1,0,1,1,1,0,0,0] => [3,1,4,5,2] => 1
[1,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0] => [2,4,1,5,3] => 1
[1,1,1,0,1,0,0,0] => [1,0,1,1,1,0,0,0] => [1,1,1,0,0,0,1,0] => [2,3,5,1,4] => 1
[1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,0] => [2,3,4,5,1] => 0
[1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [5,6,1,2,3,4] => 0
[1,0,1,0,1,0,1,1,0,0] => [1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,0] => [5,4,1,2,6,3] => 1
[1,0,1,0,1,1,0,0,1,0] => [1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,0,1,0] => [6,4,1,2,3,5] => 0
[1,0,1,0,1,1,0,1,0,0] => [1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,0] => [5,4,1,2,6,3] => 1
[1,0,1,0,1,1,1,0,0,0] => [1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,0,1,1,0,0] => [5,3,1,2,6,4] => 1
[1,0,1,1,0,0,1,0,1,0] => [1,0,1,1,0,0,1,0,1,0] => [1,0,1,1,0,1,0,1,0,0] => [6,1,5,2,3,4] => 0
[1,0,1,1,0,0,1,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => [1,0,1,1,0,1,1,0,0,0] => [5,1,4,2,6,3] => 1
[1,0,1,1,0,1,0,0,1,0] => [1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,0,1,0] => [6,4,1,2,3,5] => 0
[1,0,1,1,0,1,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => [1,0,1,1,0,1,1,0,0,0] => [5,1,4,2,6,3] => 1
[1,0,1,1,0,1,1,0,0,0] => [1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,0,1,1,0,0] => [5,3,1,2,6,4] => 1
[1,0,1,1,1,0,0,0,1,0] => [1,0,1,1,1,0,0,0,1,0] => [1,1,1,1,0,1,0,0,0,0] => [6,3,4,5,1,2] => 0
[1,0,1,1,1,0,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => [1,0,1,1,0,1,1,0,0,0] => [5,1,4,2,6,3] => 1
[1,0,1,1,1,0,1,0,0,0] => [1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,0,1,1,0,0] => [5,3,1,2,6,4] => 1
[1,0,1,1,1,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,0,1,0] => [2,3,4,6,1,5] => 1
[1,1,0,0,1,0,1,0,1,0] => [1,1,0,0,1,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => [2,6,5,1,3,4] => 1
[1,1,0,0,1,0,1,1,0,0] => [1,1,0,0,1,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,0] => [2,5,4,1,6,3] => 1
[1,1,0,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,0,1,0] => [2,6,4,1,3,5] => 1
[1,1,0,0,1,1,0,1,0,0] => [1,1,0,0,1,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,0] => [2,5,4,1,6,3] => 1
[1,1,0,0,1,1,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,0,1,1,0,0] => [2,3,5,1,6,4] => 1
[1,1,0,1,0,0,1,0,1,0] => [1,0,1,1,0,0,1,0,1,0] => [1,0,1,1,0,1,0,1,0,0] => [6,1,5,2,3,4] => 0
[1,1,0,1,0,0,1,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => [1,0,1,1,0,1,1,0,0,0] => [5,1,4,2,6,3] => 1
[1,1,0,1,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,0,1,0] => [2,6,4,1,3,5] => 1
[1,1,0,1,0,1,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => [1,0,1,1,0,1,1,0,0,0] => [5,1,4,2,6,3] => 1
[1,1,0,1,0,1,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,0,1,1,0,0] => [2,3,5,1,6,4] => 1
[1,1,0,1,1,0,0,0,1,0] => [1,0,1,1,1,0,0,0,1,0] => [1,1,1,1,0,1,0,0,0,0] => [6,3,4,5,1,2] => 0
[1,1,0,1,1,0,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => [1,0,1,1,0,1,1,0,0,0] => [5,1,4,2,6,3] => 1
[1,1,0,1,1,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,0,1,1,0,0] => [2,3,5,1,6,4] => 1
[1,1,0,1,1,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,0,1,0] => [2,3,4,6,1,5] => 1
[1,1,1,0,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0,1,0] => [1,1,0,0,1,1,0,1,0,0] => [2,6,1,5,3,4] => 1
[1,1,1,0,0,0,1,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => [1,1,0,0,1,1,1,0,0,0] => [2,4,1,5,6,3] => 1
[1,1,1,0,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,0,1,0] => [2,6,4,1,3,5] => 1
[1,1,1,0,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => [1,1,0,0,1,1,1,0,0,0] => [2,4,1,5,6,3] => 1
[1,1,1,0,0,1,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,0,1,1,0,0] => [2,3,5,1,6,4] => 1
[1,1,1,0,1,0,0,0,1,0] => [1,0,1,1,1,0,0,0,1,0] => [1,1,1,1,0,1,0,0,0,0] => [6,3,4,5,1,2] => 0
[1,1,1,0,1,0,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => [1,1,0,0,1,1,1,0,0,0] => [2,4,1,5,6,3] => 1
[1,1,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,0,1,1,0,0] => [2,3,5,1,6,4] => 1
[1,1,1,0,1,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,0,1,0] => [2,3,4,6,1,5] => 1
[1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,0,0,0,0,1,0] => [1,0,1,1,1,1,0,0,0,0] => [3,1,4,5,6,2] => 1
[1,1,1,1,0,0,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => [1,1,0,0,1,1,1,0,0,0] => [2,4,1,5,6,3] => 1
[1,1,1,1,0,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,0,1,1,0,0] => [2,3,5,1,6,4] => 1
[1,1,1,1,0,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,0,1,0] => [2,3,4,6,1,5] => 1
[1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [2,3,4,5,6,1] => 0
[1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [7,1,2,3,4,5,6] => 0
[1,0,1,0,1,0,1,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [5,1,2,3,7,4,6] => 2
[1,0,1,0,1,0,1,1,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,1,0,0] => [6,1,2,3,4,7,5] => 1
[1,0,1,0,1,0,1,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [5,1,2,3,7,4,6] => 2
[1,0,1,0,1,0,1,1,1,0,0,0] => [1,0,1,0,1,0,1,1,1,0,0,0] => [1,0,1,0,1,0,1,1,1,0,0,0] => [5,1,2,3,6,7,4] => 1
[1,0,1,0,1,1,0,1,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,1,0,0] => [6,1,2,3,4,7,5] => 1
[1,0,1,0,1,1,0,1,1,0,0,0] => [1,0,1,0,1,0,1,1,1,0,0,0] => [1,0,1,0,1,0,1,1,1,0,0,0] => [5,1,2,3,6,7,4] => 1
[1,0,1,0,1,1,1,0,1,0,0,0] => [1,0,1,0,1,0,1,1,1,0,0,0] => [1,0,1,0,1,0,1,1,1,0,0,0] => [5,1,2,3,6,7,4] => 1
[1,0,1,1,0,0,1,0,1,0,1,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,0,1,0,1,0,1,0,1,0] => [2,7,1,3,4,5,6] => 1
[1,0,1,1,1,1,1,0,0,0,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => [2,3,4,5,7,1,6] => 1
[1,1,0,0,1,1,1,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => [2,3,4,6,1,7,5] => 1
[1,1,0,1,0,0,1,0,1,0,1,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,0,1,0,1,0,1,0,1,0] => [2,7,1,3,4,5,6] => 1
[1,1,0,1,0,1,1,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => [2,3,4,6,1,7,5] => 1
[1,1,0,1,1,0,1,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => [2,3,4,6,1,7,5] => 1
[1,1,0,1,1,1,0,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => [2,3,4,6,1,7,5] => 1
[1,1,0,1,1,1,1,0,0,0,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => [2,3,4,5,7,1,6] => 1
[1,1,1,0,0,1,1,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => [2,3,4,6,1,7,5] => 1
[1,1,1,0,1,0,1,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => [2,3,4,6,1,7,5] => 1
[1,1,1,0,1,1,0,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => [2,3,4,6,1,7,5] => 1
[1,1,1,0,1,1,1,0,0,0,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => [2,3,4,5,7,1,6] => 1
[1,1,1,1,0,0,1,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => [2,3,4,6,1,7,5] => 1
[1,1,1,1,0,1,0,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => [2,3,4,6,1,7,5] => 1
[1,1,1,1,0,1,1,0,0,0,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => [2,3,4,5,7,1,6] => 1
[1,1,1,1,1,0,0,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => [2,3,4,6,1,7,5] => 1
[1,1,1,1,1,0,1,0,0,0,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => [2,3,4,5,7,1,6] => 1
[1,1,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [2,3,4,5,6,7,1] => 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,0] => [8,7,1,2,3,4,5,6] => 0
[1,0,1,1,0,0,1,0,1,1,0,0,1,0] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,1,0,1,1,0,0,0] => [2,6,7,1,3,4,8,5] => 1
[1,0,1,1,0,0,1,1,0,1,0,0,1,0] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,1,0,1,1,0,0,0] => [2,6,7,1,3,4,8,5] => 1
[1,0,1,1,1,1,1,1,0,0,0,0,0,0] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => [2,3,4,5,6,8,1,7] => 1
[1,1,0,1,0,0,1,0,1,1,0,0,1,0] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,1,0,1,1,0,0,0] => [2,6,7,1,3,4,8,5] => 1
[1,1,0,1,0,0,1,1,0,1,0,0,1,0] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,1,0,1,1,0,0,0] => [2,6,7,1,3,4,8,5] => 1
[1,1,0,1,1,1,1,1,0,0,0,0,0,0] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => [2,3,4,5,6,8,1,7] => 1
[1,1,1,0,1,1,1,1,0,0,0,0,0,0] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => [2,3,4,5,6,8,1,7] => 1
[1,1,1,1,0,1,1,1,0,0,0,0,0,0] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => [2,3,4,5,6,8,1,7] => 1
[1,1,1,1,1,0,1,1,0,0,0,0,0,0] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => [2,3,4,5,6,8,1,7] => 1
[1,1,1,1,1,1,0,1,0,0,0,0,0,0] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => [2,3,4,5,6,8,1,7] => 1
>>> Load all 125 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of occurrences of the vincular pattern |21-3 in a permutation.
This is the number of occurrences of the pattern $213$, where the first matched entry is the first entry of the permutation and the other two matched entries are consecutive.
In other words, this is the number of ascents whose bottom value is strictly smaller and the top value is strictly larger than the first entry of the permutation.
This is the number of occurrences of the pattern $213$, where the first matched entry is the first entry of the permutation and the other two matched entries are consecutive.
In other words, this is the number of ascents whose bottom value is strictly smaller and the top value is strictly larger than the first entry of the permutation.
Map
bounce path
Description
Sends a Dyck path $D$ of length $2n$ to its bounce path.
This path is formed by starting at the endpoint $(n,n)$ of $D$ and travelling west until encountering the first vertical step of $D$, then south until hitting the diagonal, then west again to hit $D$, etc. until the point $(0,0)$ is reached.
This map is the first part of the zeta map Mp00030zeta map.
This path is formed by starting at the endpoint $(n,n)$ of $D$ and travelling west until encountering the first vertical step of $D$, then south until hitting the diagonal, then west again to hit $D$, etc. until the point $(0,0)$ is reached.
This map is the first part of the zeta map Mp00030zeta map.
Map
Barnabei-Castronuovo involution
Description
The Barnabei-Castronuovo Schützenberger involution on Dyck paths.
The image of a Dyck path is obtained by reversing the canonical decompositions of the two halves of the Dyck path. More precisely, let $D_1, 1, D_2, 1, \dots$ be the canonical decomposition of the first half, then the canonical decomposition of the first half of the image is $\dots, 1, D_2, 1, D_1$.
The image of a Dyck path is obtained by reversing the canonical decompositions of the two halves of the Dyck path. More precisely, let $D_1, 1, D_2, 1, \dots$ be the canonical decomposition of the first half, then the canonical decomposition of the first half of the image is $\dots, 1, D_2, 1, D_1$.
Map
Ringel
Description
The Ringel permutation of the LNakayama algebra corresponding to a Dyck path.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!