Identifier
-
Mp00230:
Integer partitions
—parallelogram polyomino⟶
Dyck paths
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
Mp00201: Dyck paths —Ringel⟶ Permutations
St001085: Permutations ⟶ ℤ
Values
[1] => [1,0] => [1,0] => [2,1] => 0
[2] => [1,0,1,0] => [1,1,0,0] => [2,3,1] => 0
[1,1] => [1,1,0,0] => [1,0,1,0] => [3,1,2] => 0
[3] => [1,0,1,0,1,0] => [1,1,1,0,0,0] => [2,3,4,1] => 0
[2,1] => [1,0,1,1,0,0] => [1,1,0,0,1,0] => [2,4,1,3] => 1
[1,1,1] => [1,1,0,1,0,0] => [1,1,0,1,0,0] => [4,3,1,2] => 0
[4] => [1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0] => [2,3,4,5,1] => 0
[3,1] => [1,0,1,0,1,1,0,0] => [1,1,1,0,0,0,1,0] => [2,3,5,1,4] => 1
[2,2] => [1,1,1,0,0,0] => [1,0,1,0,1,0] => [4,1,2,3] => 0
[2,1,1] => [1,0,1,1,0,1,0,0] => [1,1,1,0,0,1,0,0] => [2,5,4,1,3] => 1
[1,1,1,1] => [1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,0,0] => [5,3,4,1,2] => 0
[5] => [1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0] => [2,3,4,5,6,1] => 0
[4,1] => [1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,0,0,0,0,1,0] => [2,3,4,6,1,5] => 1
[3,2] => [1,0,1,1,1,0,0,0] => [1,1,0,0,1,0,1,0] => [2,5,1,3,4] => 1
[3,1,1] => [1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,0,0,0,1,0,0] => [2,3,6,5,1,4] => 1
[2,2,1] => [1,1,1,0,0,1,0,0] => [1,0,1,1,0,1,0,0] => [5,1,4,2,3] => 0
[2,1,1,1] => [1,0,1,1,0,1,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0] => [2,6,4,5,1,3] => 1
[1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,1,0,1,0,0,0,0] => [6,3,4,5,1,2] => 0
[6] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [2,3,4,5,6,7,1] => 0
[5,1] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => [2,3,4,5,7,1,6] => 1
[4,2] => [1,0,1,0,1,1,1,0,0,0] => [1,1,1,0,0,0,1,0,1,0] => [2,3,6,1,4,5] => 1
[3,3] => [1,1,1,0,1,0,0,0] => [1,1,0,1,0,1,0,0] => [5,4,1,2,3] => 0
[3,2,1] => [1,0,1,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,1,0,0] => [2,6,1,5,3,4] => 1
[2,2,2] => [1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0] => [5,1,2,3,4] => 0
[2,2,1,1] => [1,1,1,0,0,1,0,1,0,0] => [1,0,1,1,1,0,1,0,0,0] => [6,1,4,5,2,3] => 0
[7] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0] => [2,3,4,5,6,7,8,1] => 0
[6,1] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => [2,3,4,5,6,8,1,7] => 1
[5,2] => [1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,0,0,0,0,1,0,1,0] => [2,3,4,7,1,5,6] => 1
[4,3] => [1,0,1,1,1,0,1,0,0,0] => [1,1,1,0,0,1,0,1,0,0] => [2,6,5,1,3,4] => 1
[3,3,1] => [1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => [6,4,1,5,2,3] => 0
[3,2,2] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => [2,6,1,3,4,5] => 1
[2,2,2,1] => [1,1,1,1,0,0,0,1,0,0] => [1,0,1,0,1,1,0,1,0,0] => [6,1,2,5,3,4] => 0
[8] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0] => [2,3,4,5,6,7,8,9,1] => 0
[7,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0] => [2,3,4,5,6,7,9,1,8] => 1
[4,4] => [1,1,1,0,1,0,1,0,0,0] => [1,1,1,0,1,0,1,0,0,0] => [6,5,4,1,2,3] => 0
[3,3,2] => [1,1,1,0,1,1,0,0,0,0] => [1,1,0,1,0,1,0,0,1,0] => [6,4,1,2,3,5] => 0
[2,2,2,2] => [1,1,1,1,0,1,0,0,0,0] => [1,1,0,1,0,1,0,1,0,0] => [5,6,1,2,3,4] => 0
[9] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0] => [2,3,4,5,6,7,8,9,10,1] => 0
[3,3,3] => [1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => [6,1,2,3,4,5] => 0
[3,2,2,2] => [1,0,1,1,1,1,0,1,0,0,0,0] => [1,1,1,0,0,1,0,1,0,1,0,0] => [2,6,7,1,3,4,5] => 1
[10] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0] => [2,3,4,5,6,7,8,9,10,11,1] => 0
[5,5] => [1,1,1,0,1,0,1,0,1,0,0,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => [7,6,4,5,1,2,3] => 0
[4,3,3] => [1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0,1,0] => [2,7,1,3,4,5,6] => 1
[4,4,3] => [1,1,1,0,1,1,1,0,0,0,0,0] => [1,1,0,1,0,1,0,0,1,0,1,0] => [7,4,1,2,3,5,6] => 0
[6,6] => [1,1,1,0,1,0,1,0,1,0,1,0,0,0] => [1,1,1,1,1,0,1,0,1,0,0,0,0,0] => [8,7,4,5,6,1,2,3] => 0
[4,4,4] => [1,1,1,1,1,0,1,0,0,0,0,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => [7,6,1,2,3,4,5] => 0
[3,3,3,3] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [7,1,2,3,4,5,6] => 0
[4,3,3,3] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0] => [2,8,1,3,4,5,6,7] => 1
[4,4,3,3] => [1,1,1,0,1,1,1,1,0,0,0,0,0,0] => [1,1,0,1,0,1,0,0,1,0,1,0,1,0] => [8,4,1,2,3,5,6,7] => 0
[5,5,5] => [1,1,1,1,1,0,1,0,1,0,0,0,0,0] => [1,1,1,0,1,0,1,0,1,0,1,0,0,0] => [6,7,8,1,2,3,4,5] => 0
[3,3,3,3,3] => [1,1,1,1,1,1,0,1,0,0,0,0,0,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,0] => [8,7,1,2,3,4,5,6] => 0
[4,4,4,4] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [8,1,2,3,4,5,6,7] => 0
[5,4,4,4] => [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0] => [2,9,1,3,4,5,6,7,8] => 1
[] => [] => [] => [1] => 0
[3,3,3,3,3,3] => [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0] => [1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0] => [9,7,8,1,2,3,4,5,6] => 0
[3,3,3,3,3,3,3] => [1,1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0,0] => [1,1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0] => [7,8,9,10,1,2,3,4,5,6] => 0
[4,4,4,4,4] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [9,1,2,3,4,5,6,7,8] => 0
[4,4,4,4,4,4] => [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0] => [10,9,1,2,3,4,5,6,7,8] => 0
[5,5,5,5] => [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0] => [8,9,1,2,3,4,5,6,7] => 0
[6,6,6,6] => [1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0] => [1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0] => [10,9,8,1,2,3,4,5,6,7] => 0
[5,5,5,5,5,5] => [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [11,1,2,3,4,5,6,7,8,9,10] => 0
[5,5,5,5,5] => [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [10,1,2,3,4,5,6,7,8,9] => 0
[5,4,4,4,4] => [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [2,10,1,3,4,5,6,7,8,9] => 1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of occurrences of the vincular pattern |21-3 in a permutation.
This is the number of occurrences of the pattern $213$, where the first matched entry is the first entry of the permutation and the other two matched entries are consecutive.
In other words, this is the number of ascents whose bottom value is strictly smaller and the top value is strictly larger than the first entry of the permutation.
This is the number of occurrences of the pattern $213$, where the first matched entry is the first entry of the permutation and the other two matched entries are consecutive.
In other words, this is the number of ascents whose bottom value is strictly smaller and the top value is strictly larger than the first entry of the permutation.
Map
parallelogram polyomino
Description
Return the Dyck path corresponding to the partition interpreted as a parallogram polyomino.
The Ferrers diagram of an integer partition can be interpreted as a parallogram polyomino, such that each part corresponds to a column.
This map returns the corresponding Dyck path.
The Ferrers diagram of an integer partition can be interpreted as a parallogram polyomino, such that each part corresponds to a column.
This map returns the corresponding Dyck path.
Map
Ringel
Description
The Ringel permutation of the LNakayama algebra corresponding to a Dyck path.
Map
Lalanne-Kreweras involution
Description
The Lalanne-Kreweras involution on Dyck paths.
Label the upsteps from left to right and record the labels on the first up step of each double rise. Do the same for the downsteps. Then form the Dyck path whose ascent lengths and descent lengths are the consecutives differences of the labels.
Label the upsteps from left to right and record the labels on the first up step of each double rise. Do the same for the downsteps. Then form the Dyck path whose ascent lengths and descent lengths are the consecutives differences of the labels.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!