***************************************************************************** * www.FindStat.org - The Combinatorial Statistic Finder * * * * Copyright (C) 2019 The FindStatCrew * * * * This information is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * ***************************************************************************** ----------------------------------------------------------------------------- Statistic identifier: St001074 ----------------------------------------------------------------------------- Collection: Permutations ----------------------------------------------------------------------------- Description: The number of inversions of the cyclic embedding of a permutation. The cyclic embedding of a permutation $\pi$ of length $n$ is given by the permutation of length $n+1$ represented in cycle notation by $(\pi_1,\ldots,\pi_n,n+1)$. This reflects in particular the fact that the number of long cycles of length $n+1$ equals $n!$. This statistic counts the number of inversions of this embedding, see [1]. As shown in [2], the sum of this statistic on all permutations of length $n$ equals $n!\cdot(3n-1)/12$. ----------------------------------------------------------------------------- References: [1] The number of inversions over all n-permutations consisting only of a single cycle. [[OEIS:A227404]] [2] Palcoux, S. Examples of integer sequences coincidences [[MathOverflow:289976]] ----------------------------------------------------------------------------- Code: def statistic(pi): n = len(pi)+Integer(1) pi = tuple(list(pi)+[n]) return Permutation(pi).number_of_inversions() ----------------------------------------------------------------------------- Statistic values: [1,2] => 2 [2,1] => 2 [1,2,3] => 3 [1,3,2] => 5 [2,1,3] => 3 [2,3,1] => 5 [3,1,2] => 3 [3,2,1] => 3 [1,2,3,4] => 4 [1,2,4,3] => 6 [1,3,2,4] => 6 [1,3,4,2] => 8 [1,4,2,3] => 8 [1,4,3,2] => 8 [2,1,3,4] => 4 [2,1,4,3] => 6 [2,3,1,4] => 6 [2,3,4,1] => 8 [2,4,1,3] => 6 [2,4,3,1] => 8 [3,1,2,4] => 4 [3,1,4,2] => 6 [3,2,1,4] => 4 [3,2,4,1] => 8 [3,4,1,2] => 6 [3,4,2,1] => 6 [4,1,2,3] => 4 [4,1,3,2] => 6 [4,2,1,3] => 4 [4,2,3,1] => 6 [4,3,1,2] => 4 [4,3,2,1] => 4 [1,2,3,4,5] => 5 [1,2,3,5,4] => 7 [1,2,4,3,5] => 7 [1,2,4,5,3] => 9 [1,2,5,3,4] => 9 [1,2,5,4,3] => 9 [1,3,2,4,5] => 7 [1,3,2,5,4] => 9 [1,3,4,2,5] => 9 [1,3,4,5,2] => 11 [1,3,5,2,4] => 9 [1,3,5,4,2] => 11 [1,4,2,3,5] => 9 [1,4,2,5,3] => 11 [1,4,3,2,5] => 9 [1,4,3,5,2] => 13 [1,4,5,2,3] => 11 [1,4,5,3,2] => 11 [1,5,2,3,4] => 11 [1,5,2,4,3] => 13 [1,5,3,2,4] => 11 [1,5,3,4,2] => 13 [1,5,4,2,3] => 11 [1,5,4,3,2] => 11 [2,1,3,4,5] => 5 [2,1,3,5,4] => 7 [2,1,4,3,5] => 7 [2,1,4,5,3] => 9 [2,1,5,3,4] => 9 [2,1,5,4,3] => 9 [2,3,1,4,5] => 7 [2,3,1,5,4] => 9 [2,3,4,1,5] => 9 [2,3,4,5,1] => 11 [2,3,5,1,4] => 9 [2,3,5,4,1] => 11 [2,4,1,3,5] => 7 [2,4,1,5,3] => 11 [2,4,3,1,5] => 9 [2,4,3,5,1] => 13 [2,4,5,1,3] => 9 [2,4,5,3,1] => 11 [2,5,1,3,4] => 9 [2,5,1,4,3] => 11 [2,5,3,1,4] => 9 [2,5,3,4,1] => 13 [2,5,4,1,3] => 9 [2,5,4,3,1] => 11 [3,1,2,4,5] => 5 [3,1,2,5,4] => 7 [3,1,4,2,5] => 7 [3,1,4,5,2] => 9 [3,1,5,2,4] => 9 [3,1,5,4,2] => 9 [3,2,1,4,5] => 5 [3,2,1,5,4] => 7 [3,2,4,1,5] => 9 [3,2,4,5,1] => 11 [3,2,5,1,4] => 9 [3,2,5,4,1] => 11 [3,4,1,2,5] => 7 [3,4,1,5,2] => 11 [3,4,2,1,5] => 7 [3,4,2,5,1] => 13 [3,4,5,1,2] => 9 [3,4,5,2,1] => 9 [3,5,1,2,4] => 7 [3,5,1,4,2] => 11 [3,5,2,1,4] => 7 [3,5,2,4,1] => 11 [3,5,4,1,2] => 9 [3,5,4,2,1] => 9 [4,1,2,3,5] => 5 [4,1,2,5,3] => 7 [4,1,3,2,5] => 7 [4,1,3,5,2] => 9 [4,1,5,2,3] => 9 [4,1,5,3,2] => 9 [4,2,1,3,5] => 5 [4,2,1,5,3] => 7 [4,2,3,1,5] => 7 [4,2,3,5,1] => 11 [4,2,5,1,3] => 9 [4,2,5,3,1] => 9 [4,3,1,2,5] => 5 [4,3,1,5,2] => 9 [4,3,2,1,5] => 5 [4,3,2,5,1] => 11 [4,3,5,1,2] => 9 [4,3,5,2,1] => 9 [4,5,1,2,3] => 7 [4,5,1,3,2] => 9 [4,5,2,1,3] => 7 [4,5,2,3,1] => 9 [4,5,3,1,2] => 7 [4,5,3,2,1] => 7 [5,1,2,3,4] => 5 [5,1,2,4,3] => 7 [5,1,3,2,4] => 7 [5,1,3,4,2] => 9 [5,1,4,2,3] => 9 [5,1,4,3,2] => 9 [5,2,1,3,4] => 5 [5,2,1,4,3] => 7 [5,2,3,1,4] => 7 [5,2,3,4,1] => 9 [5,2,4,1,3] => 7 [5,2,4,3,1] => 9 [5,3,1,2,4] => 5 [5,3,1,4,2] => 7 [5,3,2,1,4] => 5 [5,3,2,4,1] => 9 [5,3,4,1,2] => 7 [5,3,4,2,1] => 7 [5,4,1,2,3] => 5 [5,4,1,3,2] => 7 [5,4,2,1,3] => 5 [5,4,2,3,1] => 7 [5,4,3,1,2] => 5 [5,4,3,2,1] => 5 [1,2,3,4,5,6] => 6 [1,2,3,4,6,5] => 8 [1,2,3,5,4,6] => 8 [1,2,3,5,6,4] => 10 [1,2,3,6,4,5] => 10 [1,2,3,6,5,4] => 10 [1,2,4,3,5,6] => 8 [1,2,4,3,6,5] => 10 [1,2,4,5,3,6] => 10 [1,2,4,5,6,3] => 12 [1,2,4,6,3,5] => 10 [1,2,4,6,5,3] => 12 [1,2,5,3,4,6] => 10 [1,2,5,3,6,4] => 12 [1,2,5,4,3,6] => 10 [1,2,5,4,6,3] => 14 [1,2,5,6,3,4] => 12 [1,2,5,6,4,3] => 12 [1,2,6,3,4,5] => 12 [1,2,6,3,5,4] => 14 [1,2,6,4,3,5] => 12 [1,2,6,4,5,3] => 14 [1,2,6,5,3,4] => 12 [1,2,6,5,4,3] => 12 [1,3,2,4,5,6] => 8 [1,3,2,4,6,5] => 10 [1,3,2,5,4,6] => 10 [1,3,2,5,6,4] => 12 [1,3,2,6,4,5] => 12 [1,3,2,6,5,4] => 12 [1,3,4,2,5,6] => 10 [1,3,4,2,6,5] => 12 [1,3,4,5,2,6] => 12 [1,3,4,5,6,2] => 14 [1,3,4,6,2,5] => 12 [1,3,4,6,5,2] => 14 [1,3,5,2,4,6] => 10 [1,3,5,2,6,4] => 14 [1,3,5,4,2,6] => 12 [1,3,5,4,6,2] => 16 [1,3,5,6,2,4] => 12 [1,3,5,6,4,2] => 14 [1,3,6,2,4,5] => 12 [1,3,6,2,5,4] => 14 [1,3,6,4,2,5] => 12 [1,3,6,4,5,2] => 16 [1,3,6,5,2,4] => 12 [1,3,6,5,4,2] => 14 [1,4,2,3,5,6] => 10 [1,4,2,3,6,5] => 12 [1,4,2,5,3,6] => 12 [1,4,2,5,6,3] => 14 [1,4,2,6,3,5] => 14 [1,4,2,6,5,3] => 14 [1,4,3,2,5,6] => 10 [1,4,3,2,6,5] => 12 [1,4,3,5,2,6] => 14 [1,4,3,5,6,2] => 16 [1,4,3,6,2,5] => 14 [1,4,3,6,5,2] => 16 [1,4,5,2,3,6] => 12 [1,4,5,2,6,3] => 16 [1,4,5,3,2,6] => 12 [1,4,5,3,6,2] => 18 [1,4,5,6,2,3] => 14 [1,4,5,6,3,2] => 14 [1,4,6,2,3,5] => 12 [1,4,6,2,5,3] => 16 [1,4,6,3,2,5] => 12 [1,4,6,3,5,2] => 16 [1,4,6,5,2,3] => 14 [1,4,6,5,3,2] => 14 [1,5,2,3,4,6] => 12 [1,5,2,3,6,4] => 14 [1,5,2,4,3,6] => 14 [1,5,2,4,6,3] => 16 [1,5,2,6,3,4] => 16 [1,5,2,6,4,3] => 16 [1,5,3,2,4,6] => 12 [1,5,3,2,6,4] => 14 [1,5,3,4,2,6] => 14 [1,5,3,4,6,2] => 18 [1,5,3,6,2,4] => 16 [1,5,3,6,4,2] => 16 [1,5,4,2,3,6] => 12 [1,5,4,2,6,3] => 16 [1,5,4,3,2,6] => 12 [1,5,4,3,6,2] => 18 [1,5,4,6,2,3] => 16 [1,5,4,6,3,2] => 16 [1,5,6,2,3,4] => 14 [1,5,6,2,4,3] => 16 [1,5,6,3,2,4] => 14 [1,5,6,3,4,2] => 16 [1,5,6,4,2,3] => 14 [1,5,6,4,3,2] => 14 [1,6,2,3,4,5] => 14 [1,6,2,3,5,4] => 16 [1,6,2,4,3,5] => 16 [1,6,2,4,5,3] => 18 [1,6,2,5,3,4] => 18 [1,6,2,5,4,3] => 18 [1,6,3,2,4,5] => 14 [1,6,3,2,5,4] => 16 [1,6,3,4,2,5] => 16 [1,6,3,4,5,2] => 18 [1,6,3,5,2,4] => 16 [1,6,3,5,4,2] => 18 [1,6,4,2,3,5] => 14 [1,6,4,2,5,3] => 16 [1,6,4,3,2,5] => 14 [1,6,4,3,5,2] => 18 [1,6,4,5,2,3] => 16 [1,6,4,5,3,2] => 16 [1,6,5,2,3,4] => 14 [1,6,5,2,4,3] => 16 [1,6,5,3,2,4] => 14 [1,6,5,3,4,2] => 16 [1,6,5,4,2,3] => 14 [1,6,5,4,3,2] => 14 [2,1,3,4,5,6] => 6 [2,1,3,4,6,5] => 8 [2,1,3,5,4,6] => 8 [2,1,3,5,6,4] => 10 [2,1,3,6,4,5] => 10 [2,1,3,6,5,4] => 10 [2,1,4,3,5,6] => 8 [2,1,4,3,6,5] => 10 [2,1,4,5,3,6] => 10 [2,1,4,5,6,3] => 12 [2,1,4,6,3,5] => 10 [2,1,4,6,5,3] => 12 [2,1,5,3,4,6] => 10 [2,1,5,3,6,4] => 12 [2,1,5,4,3,6] => 10 [2,1,5,4,6,3] => 14 [2,1,5,6,3,4] => 12 [2,1,5,6,4,3] => 12 [2,1,6,3,4,5] => 12 [2,1,6,3,5,4] => 14 [2,1,6,4,3,5] => 12 [2,1,6,4,5,3] => 14 [2,1,6,5,3,4] => 12 [2,1,6,5,4,3] => 12 [2,3,1,4,5,6] => 8 [2,3,1,4,6,5] => 10 [2,3,1,5,4,6] => 10 [2,3,1,5,6,4] => 12 [2,3,1,6,4,5] => 12 [2,3,1,6,5,4] => 12 [2,3,4,1,5,6] => 10 [2,3,4,1,6,5] => 12 [2,3,4,5,1,6] => 12 [2,3,4,5,6,1] => 14 [2,3,4,6,1,5] => 12 [2,3,4,6,5,1] => 14 [2,3,5,1,4,6] => 10 [2,3,5,1,6,4] => 14 [2,3,5,4,1,6] => 12 [2,3,5,4,6,1] => 16 [2,3,5,6,1,4] => 12 [2,3,5,6,4,1] => 14 [2,3,6,1,4,5] => 12 [2,3,6,1,5,4] => 14 [2,3,6,4,1,5] => 12 [2,3,6,4,5,1] => 16 [2,3,6,5,1,4] => 12 [2,3,6,5,4,1] => 14 [2,4,1,3,5,6] => 8 [2,4,1,3,6,5] => 10 [2,4,1,5,3,6] => 12 [2,4,1,5,6,3] => 14 [2,4,1,6,3,5] => 14 [2,4,1,6,5,3] => 14 [2,4,3,1,5,6] => 10 [2,4,3,1,6,5] => 12 [2,4,3,5,1,6] => 14 [2,4,3,5,6,1] => 16 [2,4,3,6,1,5] => 14 [2,4,3,6,5,1] => 16 [2,4,5,1,3,6] => 10 [2,4,5,1,6,3] => 16 [2,4,5,3,1,6] => 12 [2,4,5,3,6,1] => 18 [2,4,5,6,1,3] => 12 [2,4,5,6,3,1] => 14 [2,4,6,1,3,5] => 10 [2,4,6,1,5,3] => 16 [2,4,6,3,1,5] => 12 [2,4,6,3,5,1] => 16 [2,4,6,5,1,3] => 12 [2,4,6,5,3,1] => 14 [2,5,1,3,4,6] => 10 [2,5,1,3,6,4] => 12 [2,5,1,4,3,6] => 12 [2,5,1,4,6,3] => 14 [2,5,1,6,3,4] => 16 [2,5,1,6,4,3] => 16 [2,5,3,1,4,6] => 10 [2,5,3,1,6,4] => 14 [2,5,3,4,1,6] => 14 [2,5,3,4,6,1] => 18 [2,5,3,6,1,4] => 14 [2,5,3,6,4,1] => 16 [2,5,4,1,3,6] => 10 [2,5,4,1,6,3] => 16 [2,5,4,3,1,6] => 12 [2,5,4,3,6,1] => 18 [2,5,4,6,1,3] => 14 [2,5,4,6,3,1] => 16 [2,5,6,1,3,4] => 12 [2,5,6,1,4,3] => 14 [2,5,6,3,1,4] => 12 [2,5,6,3,4,1] => 16 [2,5,6,4,1,3] => 12 [2,5,6,4,3,1] => 14 [2,6,1,3,4,5] => 12 [2,6,1,3,5,4] => 14 [2,6,1,4,3,5] => 14 [2,6,1,4,5,3] => 16 [2,6,1,5,3,4] => 16 [2,6,1,5,4,3] => 16 [2,6,3,1,4,5] => 12 [2,6,3,1,5,4] => 14 [2,6,3,4,1,5] => 14 [2,6,3,4,5,1] => 18 [2,6,3,5,1,4] => 14 [2,6,3,5,4,1] => 18 [2,6,4,1,3,5] => 12 [2,6,4,1,5,3] => 14 [2,6,4,3,1,5] => 12 [2,6,4,3,5,1] => 18 [2,6,4,5,1,3] => 14 [2,6,4,5,3,1] => 16 [2,6,5,1,3,4] => 12 [2,6,5,1,4,3] => 14 [2,6,5,3,1,4] => 12 [2,6,5,3,4,1] => 16 [2,6,5,4,1,3] => 12 [2,6,5,4,3,1] => 14 [3,1,2,4,5,6] => 6 [3,1,2,4,6,5] => 8 [3,1,2,5,4,6] => 8 [3,1,2,5,6,4] => 10 [3,1,2,6,4,5] => 10 [3,1,2,6,5,4] => 10 [3,1,4,2,5,6] => 8 [3,1,4,2,6,5] => 10 [3,1,4,5,2,6] => 10 [3,1,4,5,6,2] => 12 [3,1,4,6,2,5] => 10 [3,1,4,6,5,2] => 12 [3,1,5,2,4,6] => 10 [3,1,5,2,6,4] => 12 [3,1,5,4,2,6] => 10 [3,1,5,4,6,2] => 14 [3,1,5,6,2,4] => 12 [3,1,5,6,4,2] => 12 [3,1,6,2,4,5] => 12 [3,1,6,2,5,4] => 14 [3,1,6,4,2,5] => 12 [3,1,6,4,5,2] => 14 [3,1,6,5,2,4] => 12 [3,1,6,5,4,2] => 12 [3,2,1,4,5,6] => 6 [3,2,1,4,6,5] => 8 [3,2,1,5,4,6] => 8 [3,2,1,5,6,4] => 10 [3,2,1,6,4,5] => 10 [3,2,1,6,5,4] => 10 [3,2,4,1,5,6] => 10 [3,2,4,1,6,5] => 12 [3,2,4,5,1,6] => 12 [3,2,4,5,6,1] => 14 [3,2,4,6,1,5] => 12 [3,2,4,6,5,1] => 14 [3,2,5,1,4,6] => 10 [3,2,5,1,6,4] => 14 [3,2,5,4,1,6] => 12 [3,2,5,4,6,1] => 16 [3,2,5,6,1,4] => 12 [3,2,5,6,4,1] => 14 [3,2,6,1,4,5] => 12 [3,2,6,1,5,4] => 14 [3,2,6,4,1,5] => 12 [3,2,6,4,5,1] => 16 [3,2,6,5,1,4] => 12 [3,2,6,5,4,1] => 14 [3,4,1,2,5,6] => 8 [3,4,1,2,6,5] => 10 [3,4,1,5,2,6] => 12 [3,4,1,5,6,2] => 14 [3,4,1,6,2,5] => 14 [3,4,1,6,5,2] => 14 [3,4,2,1,5,6] => 8 [3,4,2,1,6,5] => 10 [3,4,2,5,1,6] => 14 [3,4,2,5,6,1] => 16 [3,4,2,6,1,5] => 14 [3,4,2,6,5,1] => 16 [3,4,5,1,2,6] => 10 [3,4,5,1,6,2] => 16 [3,4,5,2,1,6] => 10 [3,4,5,2,6,1] => 18 [3,4,5,6,1,2] => 12 [3,4,5,6,2,1] => 12 [3,4,6,1,2,5] => 10 [3,4,6,1,5,2] => 16 [3,4,6,2,1,5] => 10 [3,4,6,2,5,1] => 16 [3,4,6,5,1,2] => 12 [3,4,6,5,2,1] => 12 [3,5,1,2,4,6] => 8 [3,5,1,2,6,4] => 12 [3,5,1,4,2,6] => 12 [3,5,1,4,6,2] => 14 [3,5,1,6,2,4] => 14 [3,5,1,6,4,2] => 16 [3,5,2,1,4,6] => 8 [3,5,2,1,6,4] => 12 [3,5,2,4,1,6] => 12 [3,5,2,4,6,1] => 16 [3,5,2,6,1,4] => 14 [3,5,2,6,4,1] => 16 [3,5,4,1,2,6] => 10 [3,5,4,1,6,2] => 16 [3,5,4,2,1,6] => 10 [3,5,4,2,6,1] => 18 [3,5,4,6,1,2] => 14 [3,5,4,6,2,1] => 14 [3,5,6,1,2,4] => 10 [3,5,6,1,4,2] => 14 [3,5,6,2,1,4] => 10 [3,5,6,2,4,1] => 14 [3,5,6,4,1,2] => 12 [3,5,6,4,2,1] => 12 [3,6,1,2,4,5] => 10 [3,6,1,2,5,4] => 12 [3,6,1,4,2,5] => 12 [3,6,1,4,5,2] => 16 [3,6,1,5,2,4] => 14 [3,6,1,5,4,2] => 16 [3,6,2,1,4,5] => 10 [3,6,2,1,5,4] => 12 [3,6,2,4,1,5] => 12 [3,6,2,4,5,1] => 16 [3,6,2,5,1,4] => 12 [3,6,2,5,4,1] => 16 [3,6,4,1,2,5] => 10 [3,6,4,1,5,2] => 14 [3,6,4,2,1,5] => 10 [3,6,4,2,5,1] => 16 [3,6,4,5,1,2] => 14 [3,6,4,5,2,1] => 14 [3,6,5,1,2,4] => 10 [3,6,5,1,4,2] => 14 [3,6,5,2,1,4] => 10 [3,6,5,2,4,1] => 14 [3,6,5,4,1,2] => 12 [3,6,5,4,2,1] => 12 [4,1,2,3,5,6] => 6 [4,1,2,3,6,5] => 8 [4,1,2,5,3,6] => 8 [4,1,2,5,6,3] => 10 [4,1,2,6,3,5] => 10 [4,1,2,6,5,3] => 10 [4,1,3,2,5,6] => 8 [4,1,3,2,6,5] => 10 [4,1,3,5,2,6] => 10 [4,1,3,5,6,2] => 12 [4,1,3,6,2,5] => 10 [4,1,3,6,5,2] => 12 [4,1,5,2,3,6] => 10 [4,1,5,2,6,3] => 12 [4,1,5,3,2,6] => 10 [4,1,5,3,6,2] => 14 [4,1,5,6,2,3] => 12 [4,1,5,6,3,2] => 12 [4,1,6,2,3,5] => 12 [4,1,6,2,5,3] => 14 [4,1,6,3,2,5] => 12 [4,1,6,3,5,2] => 14 [4,1,6,5,2,3] => 12 [4,1,6,5,3,2] => 12 [4,2,1,3,5,6] => 6 [4,2,1,3,6,5] => 8 [4,2,1,5,3,6] => 8 [4,2,1,5,6,3] => 10 [4,2,1,6,3,5] => 10 [4,2,1,6,5,3] => 10 [4,2,3,1,5,6] => 8 [4,2,3,1,6,5] => 10 [4,2,3,5,1,6] => 12 [4,2,3,5,6,1] => 14 [4,2,3,6,1,5] => 12 [4,2,3,6,5,1] => 14 [4,2,5,1,3,6] => 10 [4,2,5,1,6,3] => 14 [4,2,5,3,1,6] => 10 [4,2,5,3,6,1] => 16 [4,2,5,6,1,3] => 12 [4,2,5,6,3,1] => 12 [4,2,6,1,3,5] => 12 [4,2,6,1,5,3] => 14 [4,2,6,3,1,5] => 10 [4,2,6,3,5,1] => 16 [4,2,6,5,1,3] => 12 [4,2,6,5,3,1] => 12 [4,3,1,2,5,6] => 6 [4,3,1,2,6,5] => 8 [4,3,1,5,2,6] => 10 [4,3,1,5,6,2] => 12 [4,3,1,6,2,5] => 12 [4,3,1,6,5,2] => 12 [4,3,2,1,5,6] => 6 [4,3,2,1,6,5] => 8 [4,3,2,5,1,6] => 12 [4,3,2,5,6,1] => 14 [4,3,2,6,1,5] => 12 [4,3,2,6,5,1] => 14 [4,3,5,1,2,6] => 10 [4,3,5,1,6,2] => 16 [4,3,5,2,1,6] => 10 [4,3,5,2,6,1] => 18 [4,3,5,6,1,2] => 12 [4,3,5,6,2,1] => 12 [4,3,6,1,2,5] => 10 [4,3,6,1,5,2] => 16 [4,3,6,2,1,5] => 10 [4,3,6,2,5,1] => 16 [4,3,6,5,1,2] => 12 [4,3,6,5,2,1] => 12 [4,5,1,2,3,6] => 8 [4,5,1,2,6,3] => 12 [4,5,1,3,2,6] => 10 [4,5,1,3,6,2] => 14 [4,5,1,6,2,3] => 14 [4,5,1,6,3,2] => 14 [4,5,2,1,3,6] => 8 [4,5,2,1,6,3] => 12 [4,5,2,3,1,6] => 10 [4,5,2,3,6,1] => 16 [4,5,2,6,1,3] => 14 [4,5,2,6,3,1] => 14 [4,5,3,1,2,6] => 8 [4,5,3,1,6,2] => 14 [4,5,3,2,1,6] => 8 [4,5,3,2,6,1] => 16 [4,5,3,6,1,2] => 14 [4,5,3,6,2,1] => 14 [4,5,6,1,2,3] => 10 [4,5,6,1,3,2] => 12 [4,5,6,2,1,3] => 10 [4,5,6,2,3,1] => 12 [4,5,6,3,1,2] => 10 [4,5,6,3,2,1] => 10 [4,6,1,2,3,5] => 8 [4,6,1,2,5,3] => 12 [4,6,1,3,2,5] => 10 [4,6,1,3,5,2] => 14 [4,6,1,5,2,3] => 14 [4,6,1,5,3,2] => 14 [4,6,2,1,3,5] => 8 [4,6,2,1,5,3] => 12 [4,6,2,3,1,5] => 10 [4,6,2,3,5,1] => 14 [4,6,2,5,1,3] => 12 [4,6,2,5,3,1] => 14 [4,6,3,1,2,5] => 8 [4,6,3,1,5,2] => 12 [4,6,3,2,1,5] => 8 [4,6,3,2,5,1] => 14 [4,6,3,5,1,2] => 12 [4,6,3,5,2,1] => 12 [4,6,5,1,2,3] => 10 [4,6,5,1,3,2] => 12 [4,6,5,2,1,3] => 10 [4,6,5,2,3,1] => 12 [4,6,5,3,1,2] => 10 [4,6,5,3,2,1] => 10 [5,1,2,3,4,6] => 6 [5,1,2,3,6,4] => 8 [5,1,2,4,3,6] => 8 [5,1,2,4,6,3] => 10 [5,1,2,6,3,4] => 10 [5,1,2,6,4,3] => 10 [5,1,3,2,4,6] => 8 [5,1,3,2,6,4] => 10 [5,1,3,4,2,6] => 10 [5,1,3,4,6,2] => 12 [5,1,3,6,2,4] => 10 [5,1,3,6,4,2] => 12 [5,1,4,2,3,6] => 10 [5,1,4,2,6,3] => 12 [5,1,4,3,2,6] => 10 [5,1,4,3,6,2] => 14 [5,1,4,6,2,3] => 12 [5,1,4,6,3,2] => 12 [5,1,6,2,3,4] => 12 [5,1,6,2,4,3] => 14 [5,1,6,3,2,4] => 12 [5,1,6,3,4,2] => 14 [5,1,6,4,2,3] => 12 [5,1,6,4,3,2] => 12 [5,2,1,3,4,6] => 6 [5,2,1,3,6,4] => 8 [5,2,1,4,3,6] => 8 [5,2,1,4,6,3] => 10 [5,2,1,6,3,4] => 10 [5,2,1,6,4,3] => 10 [5,2,3,1,4,6] => 8 [5,2,3,1,6,4] => 10 [5,2,3,4,1,6] => 10 [5,2,3,4,6,1] => 14 [5,2,3,6,1,4] => 12 [5,2,3,6,4,1] => 12 [5,2,4,1,3,6] => 8 [5,2,4,1,6,3] => 12 [5,2,4,3,1,6] => 10 [5,2,4,3,6,1] => 16 [5,2,4,6,1,3] => 12 [5,2,4,6,3,1] => 12 [5,2,6,1,3,4] => 12 [5,2,6,1,4,3] => 14 [5,2,6,3,1,4] => 10 [5,2,6,3,4,1] => 14 [5,2,6,4,1,3] => 10 [5,2,6,4,3,1] => 12 [5,3,1,2,4,6] => 6 [5,3,1,2,6,4] => 8 [5,3,1,4,2,6] => 8 [5,3,1,4,6,2] => 12 [5,3,1,6,2,4] => 12 [5,3,1,6,4,2] => 10 [5,3,2,1,4,6] => 6 [5,3,2,1,6,4] => 8 [5,3,2,4,1,6] => 10 [5,3,2,4,6,1] => 14 [5,3,2,6,1,4] => 12 [5,3,2,6,4,1] => 12 [5,3,4,1,2,6] => 8 [5,3,4,1,6,2] => 14 [5,3,4,2,1,6] => 8 [5,3,4,2,6,1] => 16 [5,3,4,6,1,2] => 12 [5,3,4,6,2,1] => 12 [5,3,6,1,2,4] => 10 [5,3,6,1,4,2] => 14 [5,3,6,2,1,4] => 10 [5,3,6,2,4,1] => 14 [5,3,6,4,1,2] => 10 [5,3,6,4,2,1] => 10 [5,4,1,2,3,6] => 6 [5,4,1,2,6,3] => 10 [5,4,1,3,2,6] => 8 [5,4,1,3,6,2] => 12 [5,4,1,6,2,3] => 12 [5,4,1,6,3,2] => 12 [5,4,2,1,3,6] => 6 [5,4,2,1,6,3] => 10 [5,4,2,3,1,6] => 8 [5,4,2,3,6,1] => 14 [5,4,2,6,1,3] => 12 [5,4,2,6,3,1] => 12 [5,4,3,1,2,6] => 6 [5,4,3,1,6,2] => 12 [5,4,3,2,1,6] => 6 [5,4,3,2,6,1] => 14 [5,4,3,6,1,2] => 12 [5,4,3,6,2,1] => 12 [5,4,6,1,2,3] => 10 [5,4,6,1,3,2] => 12 [5,4,6,2,1,3] => 10 [5,4,6,2,3,1] => 12 [5,4,6,3,1,2] => 10 [5,4,6,3,2,1] => 10 [5,6,1,2,3,4] => 8 [5,6,1,2,4,3] => 10 [5,6,1,3,2,4] => 10 [5,6,1,3,4,2] => 12 [5,6,1,4,2,3] => 12 [5,6,1,4,3,2] => 12 [5,6,2,1,3,4] => 8 [5,6,2,1,4,3] => 10 [5,6,2,3,1,4] => 10 [5,6,2,3,4,1] => 12 [5,6,2,4,1,3] => 10 [5,6,2,4,3,1] => 12 [5,6,3,1,2,4] => 8 [5,6,3,1,4,2] => 10 [5,6,3,2,1,4] => 8 [5,6,3,2,4,1] => 12 [5,6,3,4,1,2] => 10 [5,6,3,4,2,1] => 10 [5,6,4,1,2,3] => 8 [5,6,4,1,3,2] => 10 [5,6,4,2,1,3] => 8 [5,6,4,2,3,1] => 10 [5,6,4,3,1,2] => 8 [5,6,4,3,2,1] => 8 [6,1,2,3,4,5] => 6 [6,1,2,3,5,4] => 8 [6,1,2,4,3,5] => 8 [6,1,2,4,5,3] => 10 [6,1,2,5,3,4] => 10 [6,1,2,5,4,3] => 10 [6,1,3,2,4,5] => 8 [6,1,3,2,5,4] => 10 [6,1,3,4,2,5] => 10 [6,1,3,4,5,2] => 12 [6,1,3,5,2,4] => 10 [6,1,3,5,4,2] => 12 [6,1,4,2,3,5] => 10 [6,1,4,2,5,3] => 12 [6,1,4,3,2,5] => 10 [6,1,4,3,5,2] => 14 [6,1,4,5,2,3] => 12 [6,1,4,5,3,2] => 12 [6,1,5,2,3,4] => 12 [6,1,5,2,4,3] => 14 [6,1,5,3,2,4] => 12 [6,1,5,3,4,2] => 14 [6,1,5,4,2,3] => 12 [6,1,5,4,3,2] => 12 [6,2,1,3,4,5] => 6 [6,2,1,3,5,4] => 8 [6,2,1,4,3,5] => 8 [6,2,1,4,5,3] => 10 [6,2,1,5,3,4] => 10 [6,2,1,5,4,3] => 10 [6,2,3,1,4,5] => 8 [6,2,3,1,5,4] => 10 [6,2,3,4,1,5] => 10 [6,2,3,4,5,1] => 12 [6,2,3,5,1,4] => 10 [6,2,3,5,4,1] => 12 [6,2,4,1,3,5] => 8 [6,2,4,1,5,3] => 12 [6,2,4,3,1,5] => 10 [6,2,4,3,5,1] => 14 [6,2,4,5,1,3] => 10 [6,2,4,5,3,1] => 12 [6,2,5,1,3,4] => 10 [6,2,5,1,4,3] => 12 [6,2,5,3,1,4] => 10 [6,2,5,3,4,1] => 14 [6,2,5,4,1,3] => 10 [6,2,5,4,3,1] => 12 [6,3,1,2,4,5] => 6 [6,3,1,2,5,4] => 8 [6,3,1,4,2,5] => 8 [6,3,1,4,5,2] => 10 [6,3,1,5,2,4] => 10 [6,3,1,5,4,2] => 10 [6,3,2,1,4,5] => 6 [6,3,2,1,5,4] => 8 [6,3,2,4,1,5] => 10 [6,3,2,4,5,1] => 12 [6,3,2,5,1,4] => 10 [6,3,2,5,4,1] => 12 [6,3,4,1,2,5] => 8 [6,3,4,1,5,2] => 12 [6,3,4,2,1,5] => 8 [6,3,4,2,5,1] => 14 [6,3,4,5,1,2] => 10 [6,3,4,5,2,1] => 10 [6,3,5,1,2,4] => 8 [6,3,5,1,4,2] => 12 [6,3,5,2,1,4] => 8 [6,3,5,2,4,1] => 12 [6,3,5,4,1,2] => 10 [6,3,5,4,2,1] => 10 [6,4,1,2,3,5] => 6 [6,4,1,2,5,3] => 8 [6,4,1,3,2,5] => 8 [6,4,1,3,5,2] => 10 [6,4,1,5,2,3] => 10 [6,4,1,5,3,2] => 10 [6,4,2,1,3,5] => 6 [6,4,2,1,5,3] => 8 [6,4,2,3,1,5] => 8 [6,4,2,3,5,1] => 12 [6,4,2,5,1,3] => 10 [6,4,2,5,3,1] => 10 [6,4,3,1,2,5] => 6 [6,4,3,1,5,2] => 10 [6,4,3,2,1,5] => 6 [6,4,3,2,5,1] => 12 [6,4,3,5,1,2] => 10 [6,4,3,5,2,1] => 10 [6,4,5,1,2,3] => 8 [6,4,5,1,3,2] => 10 [6,4,5,2,1,3] => 8 [6,4,5,2,3,1] => 10 [6,4,5,3,1,2] => 8 [6,4,5,3,2,1] => 8 [6,5,1,2,3,4] => 6 [6,5,1,2,4,3] => 8 [6,5,1,3,2,4] => 8 [6,5,1,3,4,2] => 10 [6,5,1,4,2,3] => 10 [6,5,1,4,3,2] => 10 [6,5,2,1,3,4] => 6 [6,5,2,1,4,3] => 8 [6,5,2,3,1,4] => 8 [6,5,2,3,4,1] => 10 [6,5,2,4,1,3] => 8 [6,5,2,4,3,1] => 10 [6,5,3,1,2,4] => 6 [6,5,3,1,4,2] => 8 [6,5,3,2,1,4] => 6 [6,5,3,2,4,1] => 10 [6,5,3,4,1,2] => 8 [6,5,3,4,2,1] => 8 [6,5,4,1,2,3] => 6 [6,5,4,1,3,2] => 8 [6,5,4,2,1,3] => 6 [6,5,4,2,3,1] => 8 [6,5,4,3,1,2] => 6 [6,5,4,3,2,1] => 6 [1,2,3,4,5,6,7] => 7 [1,2,3,4,5,7,6] => 9 [1,2,3,4,6,5,7] => 9 [1,2,3,4,6,7,5] => 11 [1,2,3,4,7,5,6] => 11 [1,2,3,4,7,6,5] => 11 [1,2,3,5,4,6,7] => 9 [1,2,3,5,4,7,6] => 11 [1,2,3,5,6,4,7] => 11 [1,2,3,5,6,7,4] => 13 [1,2,3,5,7,4,6] => 11 [1,2,3,5,7,6,4] => 13 [1,2,3,6,4,5,7] => 11 [1,2,3,6,4,7,5] => 13 [1,2,3,6,5,4,7] => 11 [1,2,3,6,5,7,4] => 15 [1,2,3,6,7,4,5] => 13 [1,2,3,6,7,5,4] => 13 [1,2,3,7,4,5,6] => 13 [1,2,3,7,4,6,5] => 15 [1,2,3,7,5,4,6] => 13 [1,2,3,7,5,6,4] => 15 [1,2,3,7,6,4,5] => 13 [1,2,3,7,6,5,4] => 13 [1,2,4,3,5,6,7] => 9 [1,2,4,3,5,7,6] => 11 [1,2,4,3,6,5,7] => 11 [1,2,4,3,6,7,5] => 13 [1,2,4,3,7,5,6] => 13 [1,2,4,3,7,6,5] => 13 [1,2,4,5,3,6,7] => 11 [1,2,4,5,3,7,6] => 13 [1,2,4,5,6,3,7] => 13 [1,2,4,5,6,7,3] => 15 [1,2,4,5,7,3,6] => 13 [1,2,4,5,7,6,3] => 15 [1,2,4,6,3,5,7] => 11 [1,2,4,6,3,7,5] => 15 [1,2,4,6,5,3,7] => 13 [1,2,4,6,5,7,3] => 17 [1,2,4,6,7,3,5] => 13 [1,2,4,6,7,5,3] => 15 [1,2,4,7,3,5,6] => 13 [1,2,4,7,3,6,5] => 15 [1,2,4,7,5,3,6] => 13 [1,2,4,7,5,6,3] => 17 [1,2,4,7,6,3,5] => 13 [1,2,4,7,6,5,3] => 15 [1,2,5,3,4,6,7] => 11 [1,2,5,3,4,7,6] => 13 [1,2,5,3,6,4,7] => 13 [1,2,5,3,6,7,4] => 15 [1,2,5,3,7,4,6] => 15 [1,2,5,3,7,6,4] => 15 [1,2,5,4,3,6,7] => 11 [1,2,5,4,3,7,6] => 13 [1,2,5,4,6,3,7] => 15 [1,2,5,4,6,7,3] => 17 [1,2,5,4,7,3,6] => 15 [1,2,5,4,7,6,3] => 17 [1,2,5,6,3,4,7] => 13 [1,2,5,6,3,7,4] => 17 [1,2,5,6,4,3,7] => 13 [1,2,5,6,4,7,3] => 19 [1,2,5,6,7,3,4] => 15 [1,2,5,6,7,4,3] => 15 [1,2,5,7,3,4,6] => 13 [1,2,5,7,3,6,4] => 17 [1,2,5,7,4,3,6] => 13 [1,2,5,7,4,6,3] => 17 [1,2,5,7,6,3,4] => 15 [1,2,5,7,6,4,3] => 15 [1,2,6,3,4,5,7] => 13 [1,2,6,3,4,7,5] => 15 [1,2,6,3,5,4,7] => 15 [1,2,6,3,5,7,4] => 17 [1,2,6,3,7,4,5] => 17 [1,2,6,3,7,5,4] => 17 [1,2,6,4,3,5,7] => 13 [1,2,6,4,3,7,5] => 15 [1,2,6,4,5,3,7] => 15 [1,2,6,4,5,7,3] => 19 [1,2,6,4,7,3,5] => 17 [1,2,6,4,7,5,3] => 17 [1,2,6,5,3,4,7] => 13 [1,2,6,5,3,7,4] => 17 [1,2,6,5,4,3,7] => 13 [1,2,6,5,4,7,3] => 19 [1,2,6,5,7,3,4] => 17 [1,2,6,5,7,4,3] => 17 [1,2,6,7,3,4,5] => 15 [1,2,6,7,3,5,4] => 17 [1,2,6,7,4,3,5] => 15 [1,2,6,7,4,5,3] => 17 [1,2,6,7,5,3,4] => 15 [1,2,6,7,5,4,3] => 15 [1,2,7,3,4,5,6] => 15 [1,2,7,3,4,6,5] => 17 [1,2,7,3,5,4,6] => 17 [1,2,7,3,5,6,4] => 19 [1,2,7,3,6,4,5] => 19 [1,2,7,3,6,5,4] => 19 [1,2,7,4,3,5,6] => 15 [1,2,7,4,3,6,5] => 17 [1,2,7,4,5,3,6] => 17 [1,2,7,4,5,6,3] => 19 [1,2,7,4,6,3,5] => 17 [1,2,7,4,6,5,3] => 19 [1,2,7,5,3,4,6] => 15 [1,2,7,5,3,6,4] => 17 [1,2,7,5,4,3,6] => 15 [1,2,7,5,4,6,3] => 19 [1,2,7,5,6,3,4] => 17 [1,2,7,5,6,4,3] => 17 [1,2,7,6,3,4,5] => 15 [1,2,7,6,3,5,4] => 17 [1,2,7,6,4,3,5] => 15 [1,2,7,6,4,5,3] => 17 [1,2,7,6,5,3,4] => 15 [1,2,7,6,5,4,3] => 15 [1,3,2,4,5,6,7] => 9 [1,3,2,4,5,7,6] => 11 [1,3,2,4,6,5,7] => 11 [1,3,2,4,6,7,5] => 13 [1,3,2,4,7,5,6] => 13 [1,3,2,4,7,6,5] => 13 [1,3,2,5,4,6,7] => 11 [1,3,2,5,4,7,6] => 13 [1,3,2,5,6,4,7] => 13 [1,3,2,5,6,7,4] => 15 [1,3,2,5,7,4,6] => 13 [1,3,2,5,7,6,4] => 15 [1,3,2,6,4,5,7] => 13 [1,3,2,6,4,7,5] => 15 [1,3,2,6,5,4,7] => 13 [1,3,2,6,5,7,4] => 17 [1,3,2,6,7,4,5] => 15 [1,3,2,6,7,5,4] => 15 [1,3,2,7,4,5,6] => 15 [1,3,2,7,4,6,5] => 17 [1,3,2,7,5,4,6] => 15 [1,3,2,7,5,6,4] => 17 [1,3,2,7,6,4,5] => 15 [1,3,2,7,6,5,4] => 15 [1,3,4,2,5,6,7] => 11 [1,3,4,2,5,7,6] => 13 [1,3,4,2,6,5,7] => 13 [1,3,4,2,6,7,5] => 15 [1,3,4,2,7,5,6] => 15 [1,3,4,2,7,6,5] => 15 [1,3,4,5,2,6,7] => 13 [1,3,4,5,2,7,6] => 15 [1,3,4,5,6,2,7] => 15 [1,3,4,5,6,7,2] => 17 [1,3,4,5,7,2,6] => 15 [1,3,4,5,7,6,2] => 17 [1,3,4,6,2,5,7] => 13 [1,3,4,6,2,7,5] => 17 [1,3,4,6,5,2,7] => 15 [1,3,4,6,5,7,2] => 19 [1,3,4,6,7,2,5] => 15 [1,3,4,6,7,5,2] => 17 [1,3,4,7,2,5,6] => 15 [1,3,4,7,2,6,5] => 17 [1,3,4,7,5,2,6] => 15 [1,3,4,7,5,6,2] => 19 [1,3,4,7,6,2,5] => 15 [1,3,4,7,6,5,2] => 17 [1,3,5,2,4,6,7] => 11 [1,3,5,2,4,7,6] => 13 [1,3,5,2,6,4,7] => 15 [1,3,5,2,6,7,4] => 17 [1,3,5,2,7,4,6] => 17 [1,3,5,2,7,6,4] => 17 [1,3,5,4,2,6,7] => 13 [1,3,5,4,2,7,6] => 15 [1,3,5,4,6,2,7] => 17 [1,3,5,4,6,7,2] => 19 [1,3,5,4,7,2,6] => 17 [1,3,5,4,7,6,2] => 19 [1,3,5,6,2,4,7] => 13 [1,3,5,6,2,7,4] => 19 [1,3,5,6,4,2,7] => 15 [1,3,5,6,4,7,2] => 21 [1,3,5,6,7,2,4] => 15 [1,3,5,6,7,4,2] => 17 [1,3,5,7,2,4,6] => 13 [1,3,5,7,2,6,4] => 19 [1,3,5,7,4,2,6] => 15 [1,3,5,7,4,6,2] => 19 [1,3,5,7,6,2,4] => 15 [1,3,5,7,6,4,2] => 17 [1,3,6,2,4,5,7] => 13 [1,3,6,2,4,7,5] => 15 [1,3,6,2,5,4,7] => 15 [1,3,6,2,5,7,4] => 17 [1,3,6,2,7,4,5] => 19 [1,3,6,2,7,5,4] => 19 [1,3,6,4,2,5,7] => 13 [1,3,6,4,2,7,5] => 17 [1,3,6,4,5,2,7] => 17 [1,3,6,4,5,7,2] => 21 [1,3,6,4,7,2,5] => 17 [1,3,6,4,7,5,2] => 19 [1,3,6,5,2,4,7] => 13 [1,3,6,5,2,7,4] => 19 [1,3,6,5,4,2,7] => 15 [1,3,6,5,4,7,2] => 21 [1,3,6,5,7,2,4] => 17 [1,3,6,5,7,4,2] => 19 [1,3,6,7,2,4,5] => 15 [1,3,6,7,2,5,4] => 17 [1,3,6,7,4,2,5] => 15 [1,3,6,7,4,5,2] => 19 [1,3,6,7,5,2,4] => 15 [1,3,6,7,5,4,2] => 17 [1,3,7,2,4,5,6] => 15 [1,3,7,2,4,6,5] => 17 [1,3,7,2,5,4,6] => 17 [1,3,7,2,5,6,4] => 19 [1,3,7,2,6,4,5] => 19 [1,3,7,2,6,5,4] => 19 [1,3,7,4,2,5,6] => 15 [1,3,7,4,2,6,5] => 17 [1,3,7,4,5,2,6] => 17 [1,3,7,4,5,6,2] => 21 [1,3,7,4,6,2,5] => 17 [1,3,7,4,6,5,2] => 21 [1,3,7,5,2,4,6] => 15 [1,3,7,5,2,6,4] => 17 [1,3,7,5,4,2,6] => 15 [1,3,7,5,4,6,2] => 21 [1,3,7,5,6,2,4] => 17 [1,3,7,5,6,4,2] => 19 [1,3,7,6,2,4,5] => 15 [1,3,7,6,2,5,4] => 17 [1,3,7,6,4,2,5] => 15 [1,3,7,6,4,5,2] => 19 [1,3,7,6,5,2,4] => 15 [1,3,7,6,5,4,2] => 17 [1,4,2,3,5,6,7] => 11 [1,4,2,3,5,7,6] => 13 [1,4,2,3,6,5,7] => 13 [1,4,2,3,6,7,5] => 15 [1,4,2,3,7,5,6] => 15 [1,4,2,3,7,6,5] => 15 [1,4,2,5,3,6,7] => 13 [1,4,2,5,3,7,6] => 15 [1,4,2,5,6,3,7] => 15 [1,4,2,5,6,7,3] => 17 [1,4,2,5,7,3,6] => 15 [1,4,2,5,7,6,3] => 17 [1,4,2,6,3,5,7] => 15 [1,4,2,6,3,7,5] => 17 [1,4,2,6,5,3,7] => 15 [1,4,2,6,5,7,3] => 19 [1,4,2,6,7,3,5] => 17 [1,4,2,6,7,5,3] => 17 [1,4,2,7,3,5,6] => 17 [1,4,2,7,3,6,5] => 19 [1,4,2,7,5,3,6] => 17 [1,4,2,7,5,6,3] => 19 [1,4,2,7,6,3,5] => 17 [1,4,2,7,6,5,3] => 17 [1,4,3,2,5,6,7] => 11 [1,4,3,2,5,7,6] => 13 [1,4,3,2,6,5,7] => 13 [1,4,3,2,6,7,5] => 15 [1,4,3,2,7,5,6] => 15 [1,4,3,2,7,6,5] => 15 [1,4,3,5,2,6,7] => 15 [1,4,3,5,2,7,6] => 17 [1,4,3,5,6,2,7] => 17 [1,4,3,5,6,7,2] => 19 [1,4,3,5,7,2,6] => 17 [1,4,3,5,7,6,2] => 19 [1,4,3,6,2,5,7] => 15 [1,4,3,6,2,7,5] => 19 [1,4,3,6,5,2,7] => 17 [1,4,3,6,5,7,2] => 21 [1,4,3,6,7,2,5] => 17 [1,4,3,6,7,5,2] => 19 [1,4,3,7,2,5,6] => 17 [1,4,3,7,2,6,5] => 19 [1,4,3,7,5,2,6] => 17 [1,4,3,7,5,6,2] => 21 [1,4,3,7,6,2,5] => 17 [1,4,3,7,6,5,2] => 19 [1,4,5,2,3,6,7] => 13 [1,4,5,2,3,7,6] => 15 [1,4,5,2,6,3,7] => 17 [1,4,5,2,6,7,3] => 19 [1,4,5,2,7,3,6] => 19 [1,4,5,2,7,6,3] => 19 [1,4,5,3,2,6,7] => 13 [1,4,5,3,2,7,6] => 15 [1,4,5,3,6,2,7] => 19 [1,4,5,3,6,7,2] => 21 [1,4,5,3,7,2,6] => 19 [1,4,5,3,7,6,2] => 21 [1,4,5,6,2,3,7] => 15 [1,4,5,6,2,7,3] => 21 [1,4,5,6,3,2,7] => 15 [1,4,5,6,3,7,2] => 23 [1,4,5,6,7,2,3] => 17 [1,4,5,6,7,3,2] => 17 [1,4,5,7,2,3,6] => 15 [1,4,5,7,2,6,3] => 21 [1,4,5,7,3,2,6] => 15 [1,4,5,7,3,6,2] => 21 [1,4,5,7,6,2,3] => 17 [1,4,5,7,6,3,2] => 17 [1,4,6,2,3,5,7] => 13 [1,4,6,2,3,7,5] => 17 [1,4,6,2,5,3,7] => 17 [1,4,6,2,5,7,3] => 19 [1,4,6,2,7,3,5] => 19 [1,4,6,2,7,5,3] => 21 [1,4,6,3,2,5,7] => 13 [1,4,6,3,2,7,5] => 17 [1,4,6,3,5,2,7] => 17 [1,4,6,3,5,7,2] => 21 [1,4,6,3,7,2,5] => 19 [1,4,6,3,7,5,2] => 21 [1,4,6,5,2,3,7] => 15 [1,4,6,5,2,7,3] => 21 [1,4,6,5,3,2,7] => 15 [1,4,6,5,3,7,2] => 23 ----------------------------------------------------------------------------- Created: Jan 05, 2018 at 15:58 by Christian Stump ----------------------------------------------------------------------------- Last Updated: Jan 05, 2018 at 18:38 by Christian Stump