Identifier
-
Mp00230:
Integer partitions
—parallelogram polyomino⟶
Dyck paths
Mp00227: Dyck paths —Delest-Viennot-inverse⟶ Dyck paths
Mp00132: Dyck paths —switch returns and last double rise⟶ Dyck paths
St000969: Dyck paths ⟶ ℤ
Values
[1] => [1,0] => [1,0] => [1,0] => 2
[2] => [1,0,1,0] => [1,1,0,0] => [1,1,0,0] => 2
[1,1] => [1,1,0,0] => [1,0,1,0] => [1,0,1,0] => 3
[3] => [1,0,1,0,1,0] => [1,1,1,0,0,0] => [1,1,1,0,0,0] => 2
[2,1] => [1,0,1,1,0,0] => [1,1,0,0,1,0] => [1,1,0,0,1,0] => 2
[1,1,1] => [1,1,0,1,0,0] => [1,0,1,0,1,0] => [1,0,1,0,1,0] => 4
[4] => [1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,0] => 2
[3,1] => [1,0,1,0,1,1,0,0] => [1,1,1,0,0,0,1,0] => [1,1,1,0,0,0,1,0] => 2
[2,2] => [1,1,1,0,0,0] => [1,1,0,1,0,0] => [1,0,1,1,0,0] => 3
[2,1,1] => [1,0,1,1,0,1,0,0] => [1,1,0,0,1,0,1,0] => [1,1,0,0,1,0,1,0] => 3
[1,1,1,1] => [1,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0] => 5
[5] => [1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => 2
[4,1] => [1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,0,0,0,0,1,0] => 2
[3,2] => [1,0,1,1,1,0,0,0] => [1,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,0] => 2
[3,1,1] => [1,0,1,0,1,1,0,1,0,0] => [1,1,1,0,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0,1,0] => 3
[2,2,1] => [1,1,1,0,0,1,0,0] => [1,1,0,1,0,0,1,0] => [1,0,1,1,0,0,1,0] => 3
[2,1,1,1] => [1,0,1,1,0,1,0,1,0,0] => [1,1,0,0,1,0,1,0,1,0] => [1,1,0,0,1,0,1,0,1,0] => 4
[1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => 6
[6] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => 2
[5,1] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => 2
[4,2] => [1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,0,0,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => 2
[4,1,1] => [1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,0,0,0,0,1,0,1,0] => [1,1,1,1,0,0,0,0,1,0,1,0] => 3
[3,3] => [1,1,1,0,1,0,0,0] => [1,1,1,0,1,0,0,0] => [1,0,1,1,1,0,0,0] => 3
[3,2,1] => [1,0,1,1,1,0,0,1,0,0] => [1,1,1,0,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,0] => 2
[3,1,1,1] => [1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,0,1,0,1,0] => [1,1,1,0,0,0,1,0,1,0,1,0] => 4
[2,2,2] => [1,1,1,1,0,0,0,0] => [1,1,0,1,0,1,0,0] => [1,0,1,0,1,1,0,0] => 4
[2,2,1,1] => [1,1,1,0,0,1,0,1,0,0] => [1,1,0,1,0,0,1,0,1,0] => [1,0,1,1,0,0,1,0,1,0] => 3
[2,1,1,1,1] => [1,0,1,1,0,1,0,1,0,1,0,0] => [1,1,0,0,1,0,1,0,1,0,1,0] => [1,1,0,0,1,0,1,0,1,0,1,0] => 5
[1,1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 7
[7] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0] => 2
[6,1] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => 2
[5,2] => [1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => 2
[5,1,1] => [1,0,1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0] => 3
[4,3] => [1,0,1,1,1,0,1,0,0,0] => [1,1,1,1,0,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => 2
[4,2,1] => [1,0,1,0,1,1,1,0,0,1,0,0] => [1,1,1,1,0,0,0,1,0,0,1,0] => [1,1,1,0,0,0,1,1,0,0,1,0] => 2
[4,1,1,1] => [1,0,1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0] => 4
[3,3,1] => [1,1,1,0,1,0,0,1,0,0] => [1,1,1,0,1,0,0,0,1,0] => [1,0,1,1,1,0,0,0,1,0] => 3
[3,2,2] => [1,0,1,1,1,1,0,0,0,0] => [1,1,1,0,0,1,0,1,0,0] => [1,1,0,0,1,0,1,1,0,0] => 3
[3,2,1,1] => [1,0,1,1,1,0,0,1,0,1,0,0] => [1,1,1,0,0,1,0,0,1,0,1,0] => [1,1,0,0,1,1,0,0,1,0,1,0] => 3
[3,1,1,1,1] => [1,0,1,0,1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0] => 5
[2,2,2,1] => [1,1,1,1,0,0,0,1,0,0] => [1,1,0,1,0,1,0,0,1,0] => [1,0,1,0,1,1,0,0,1,0] => 4
[2,2,1,1,1] => [1,1,1,0,0,1,0,1,0,1,0,0] => [1,1,0,1,0,0,1,0,1,0,1,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => 4
[2,1,1,1,1,1] => [1,0,1,1,0,1,0,1,0,1,0,1,0,0] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,1,1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0] => 8
[6,2] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,1,0,0] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0] => 2
[5,3] => [1,0,1,0,1,1,1,0,1,0,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => 2
[5,2,1] => [1,0,1,0,1,0,1,1,1,0,0,1,0,0] => [1,1,1,1,1,0,0,0,0,1,0,0,1,0] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0] => 2
[4,4] => [1,1,1,0,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => 3
[4,3,1] => [1,0,1,1,1,0,1,0,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0,1,0] => [1,1,0,0,1,1,1,0,0,0,1,0] => 2
[4,2,2] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,1,0,1,0,0] => [1,1,1,0,0,0,1,0,1,1,0,0] => 3
[4,2,1,1] => [1,0,1,0,1,1,1,0,0,1,0,1,0,0] => [1,1,1,1,0,0,0,1,0,0,1,0,1,0] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0] => 3
[3,3,2] => [1,1,1,0,1,1,0,0,0,0] => [1,1,1,0,1,0,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => 3
[3,3,1,1] => [1,1,1,0,1,0,0,1,0,1,0,0] => [1,1,1,0,1,0,0,0,1,0,1,0] => [1,0,1,1,1,0,0,0,1,0,1,0] => 3
[3,2,2,1] => [1,0,1,1,1,1,0,0,0,1,0,0] => [1,1,1,0,0,1,0,1,0,0,1,0] => [1,1,0,0,1,0,1,1,0,0,1,0] => 3
[3,2,1,1,1] => [1,0,1,1,1,0,0,1,0,1,0,1,0,0] => [1,1,1,0,0,1,0,0,1,0,1,0,1,0] => [1,1,0,0,1,1,0,0,1,0,1,0,1,0] => 4
[2,2,2,2] => [1,1,1,1,0,1,0,0,0,0] => [1,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,1,0,0] => 5
[2,2,2,1,1] => [1,1,1,1,0,0,0,1,0,1,0,0] => [1,1,0,1,0,1,0,0,1,0,1,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => 4
[2,2,1,1,1,1] => [1,1,1,0,0,1,0,1,0,1,0,1,0,0] => [1,1,0,1,0,0,1,0,1,0,1,0,1,0] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0] => 5
[6,3] => [1,0,1,0,1,0,1,1,1,0,1,0,0,0] => [1,1,1,1,1,1,0,0,0,0,1,0,0,0] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0] => 2
[5,4] => [1,0,1,1,1,0,1,0,1,0,0,0] => [1,1,1,1,1,0,0,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => 2
[5,3,1] => [1,0,1,0,1,1,1,0,1,0,0,1,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0,1,0] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0] => 2
[5,2,2] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,1,0,1,0,0] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0] => 3
[4,4,1] => [1,1,1,0,1,0,1,0,0,1,0,0] => [1,1,1,1,0,1,0,0,0,0,1,0] => [1,0,1,1,1,1,0,0,0,0,1,0] => 3
[4,3,2] => [1,0,1,1,1,0,1,1,0,0,0,0] => [1,1,1,1,0,0,1,0,0,1,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => 2
[4,3,1,1] => [1,0,1,1,1,0,1,0,0,1,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0,1,0,1,0] => [1,1,0,0,1,1,1,0,0,0,1,0,1,0] => 3
[4,2,2,1] => [1,0,1,0,1,1,1,1,0,0,0,1,0,0] => [1,1,1,1,0,0,0,1,0,1,0,0,1,0] => [1,1,1,0,0,0,1,0,1,1,0,0,1,0] => 3
[3,3,3] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,0,1,0,1,0,0,0] => [1,0,1,0,1,1,1,0,0,0] => 4
[3,3,2,1] => [1,1,1,0,1,1,0,0,0,1,0,0] => [1,1,1,0,1,0,0,1,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => 3
[3,3,1,1,1] => [1,1,1,0,1,0,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,0,0,1,0,1,0,1,0] => [1,0,1,1,1,0,0,0,1,0,1,0,1,0] => 4
[3,2,2,2] => [1,0,1,1,1,1,0,1,0,0,0,0] => [1,1,1,0,0,1,0,1,0,1,0,0] => [1,1,0,0,1,0,1,0,1,1,0,0] => 4
[3,2,2,1,1] => [1,0,1,1,1,1,0,0,0,1,0,1,0,0] => [1,1,1,0,0,1,0,1,0,0,1,0,1,0] => [1,1,0,0,1,0,1,1,0,0,1,0,1,0] => 3
[2,2,2,2,1] => [1,1,1,1,0,1,0,0,0,1,0,0] => [1,1,0,1,0,1,0,1,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => 5
[2,2,2,1,1,1] => [1,1,1,1,0,0,0,1,0,1,0,1,0,0] => [1,1,0,1,0,1,0,0,1,0,1,0,1,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => 4
[6,4] => [1,0,1,0,1,1,1,0,1,0,1,0,0,0] => [1,1,1,1,1,1,0,0,0,1,0,0,0,0] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => 2
[5,5] => [1,1,1,0,1,0,1,0,1,0,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0] => 3
[5,4,1] => [1,0,1,1,1,0,1,0,1,0,0,1,0,0] => [1,1,1,1,1,0,0,1,0,0,0,0,1,0] => [1,1,0,0,1,1,1,1,0,0,0,0,1,0] => 2
[5,3,2] => [1,0,1,0,1,1,1,0,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,1,0,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0] => 2
[4,4,2] => [1,1,1,0,1,0,1,1,0,0,0,0] => [1,1,1,1,0,1,0,0,0,1,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0] => 3
[4,4,1,1] => [1,1,1,0,1,0,1,0,0,1,0,1,0,0] => [1,1,1,1,0,1,0,0,0,0,1,0,1,0] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0] => 3
[4,3,3] => [1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,0,0,1,0,1,0,0,0] => [1,1,0,0,1,0,1,1,1,0,0,0] => 3
[4,3,2,1] => [1,0,1,1,1,0,1,1,0,0,0,1,0,0] => [1,1,1,1,0,0,1,0,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 2
[4,2,2,2] => [1,0,1,0,1,1,1,1,0,1,0,0,0,0] => [1,1,1,1,0,0,0,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0] => 4
[3,3,3,1] => [1,1,1,1,1,0,0,0,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0,1,0] => [1,0,1,0,1,1,1,0,0,0,1,0] => 4
[3,3,2,2] => [1,1,1,0,1,1,0,1,0,0,0,0] => [1,1,1,0,1,0,0,1,0,1,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0] => 3
[3,3,2,1,1] => [1,1,1,0,1,1,0,0,0,1,0,1,0,0] => [1,1,1,0,1,0,0,1,0,0,1,0,1,0] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0] => 3
[3,2,2,2,1] => [1,0,1,1,1,1,0,1,0,0,0,1,0,0] => [1,1,1,0,0,1,0,1,0,1,0,0,1,0] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0] => 4
[2,2,2,2,2] => [1,1,1,1,0,1,0,1,0,0,0,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0] => 6
[2,2,2,2,1,1] => [1,1,1,1,0,1,0,0,0,1,0,1,0,0] => [1,1,0,1,0,1,0,1,0,0,1,0,1,0] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => 5
[6,5] => [1,0,1,1,1,0,1,0,1,0,1,0,0,0] => [1,1,1,1,1,1,0,0,1,0,0,0,0,0] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0] => 2
[5,5,1] => [1,1,1,0,1,0,1,0,1,0,0,1,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0,1,0] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0] => 3
[5,4,2] => [1,0,1,1,1,0,1,0,1,1,0,0,0,0] => [1,1,1,1,1,0,0,1,0,0,0,1,0,0] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0] => 2
[5,3,3] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,0,0,1,0,1,0,0,0] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0] => 3
[4,4,3] => [1,1,1,0,1,1,1,0,0,0,0,0] => [1,1,1,1,0,1,0,0,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => 3
[4,4,2,1] => [1,1,1,0,1,0,1,1,0,0,0,1,0,0] => [1,1,1,1,0,1,0,0,0,1,0,0,1,0] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0] => 3
[4,3,3,1] => [1,0,1,1,1,1,1,0,0,0,0,1,0,0] => [1,1,1,1,0,0,1,0,1,0,0,0,1,0] => [1,1,0,0,1,0,1,1,1,0,0,0,1,0] => 3
[4,3,2,2] => [1,0,1,1,1,0,1,1,0,1,0,0,0,0] => [1,1,1,1,0,0,1,0,0,1,0,1,0,0] => [1,1,0,0,1,1,0,0,1,0,1,1,0,0] => 3
[3,3,3,2] => [1,1,1,1,1,0,0,1,0,0,0,0] => [1,1,1,0,1,0,1,0,0,1,0,0] => [1,0,1,0,1,1,0,0,1,1,0,0] => 4
[3,3,3,1,1] => [1,1,1,1,1,0,0,0,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0,1,0,1,0] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0] => 4
[3,3,2,2,1] => [1,1,1,0,1,1,0,1,0,0,0,1,0,0] => [1,1,1,0,1,0,0,1,0,1,0,0,1,0] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0] => 3
[3,2,2,2,2] => [1,0,1,1,1,1,0,1,0,1,0,0,0,0] => [1,1,1,0,0,1,0,1,0,1,0,1,0,0] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0] => 5
[2,2,2,2,2,1] => [1,1,1,1,0,1,0,1,0,0,0,1,0,0] => [1,1,0,1,0,1,0,1,0,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => 6
>>> Load all 127 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
We make a CNakayama algebra out of the LNakayama algebra (corresponding to the Dyck path) $[c_0,c_1,...,c_{n-1}]$ by adding $c_0$ to $c_{n-1}$. Then we calculate the global dimension of that CNakayama algebra.
Map
parallelogram polyomino
Description
Return the Dyck path corresponding to the partition interpreted as a parallogram polyomino.
The Ferrers diagram of an integer partition can be interpreted as a parallogram polyomino, such that each part corresponds to a column.
This map returns the corresponding Dyck path.
The Ferrers diagram of an integer partition can be interpreted as a parallogram polyomino, such that each part corresponds to a column.
This map returns the corresponding Dyck path.
Map
Delest-Viennot-inverse
Description
Return the Dyck path obtained by applying the inverse of Delest-Viennot's bijection to the corresponding parallelogram polyomino.
Let $D$ be a Dyck path of semilength $n$. The parallelogram polyomino $\gamma(D)$ is defined as follows: let $\tilde D = d_0 d_1 \dots d_{2n+1}$ be the Dyck path obtained by prepending an up step and appending a down step to $D$. Then, the upper path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with even indices, and the lower path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with odd indices.
The Delest-Viennot bijection $\beta$ returns the parallelogram polyomino, whose column heights are the heights of the peaks of the Dyck path, and the intersection heights between columns are the heights of the valleys of the Dyck path.
This map returns the Dyck path $(\beta^{(-1)}\circ\gamma)(D)$.
Let $D$ be a Dyck path of semilength $n$. The parallelogram polyomino $\gamma(D)$ is defined as follows: let $\tilde D = d_0 d_1 \dots d_{2n+1}$ be the Dyck path obtained by prepending an up step and appending a down step to $D$. Then, the upper path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with even indices, and the lower path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with odd indices.
The Delest-Viennot bijection $\beta$ returns the parallelogram polyomino, whose column heights are the heights of the peaks of the Dyck path, and the intersection heights between columns are the heights of the valleys of the Dyck path.
This map returns the Dyck path $(\beta^{(-1)}\circ\gamma)(D)$.
Map
switch returns and last double rise
Description
An alternative to the Adin-Bagno-Roichman transformation of a Dyck path.
This is a bijection preserving the number of up steps before each peak and exchanging the number of components with the position of the last double rise.
This is a bijection preserving the number of up steps before each peak and exchanging the number of components with the position of the last double rise.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!