Identifier
-
Mp00120:
Dyck paths
—Lalanne-Kreweras involution⟶
Dyck paths
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
St000957: Permutations ⟶ ℤ
Values
[1,0,1,0] => [1,1,0,0] => [1,0,1,0] => [2,1] => 1
[1,1,0,0] => [1,0,1,0] => [1,1,0,0] => [1,2] => 0
[1,0,1,0,1,0] => [1,1,1,0,0,0] => [1,0,1,0,1,0] => [3,2,1] => 2
[1,0,1,1,0,0] => [1,1,0,0,1,0] => [1,1,0,0,1,0] => [3,1,2] => 2
[1,1,0,0,1,0] => [1,0,1,1,0,0] => [1,1,0,1,0,0] => [2,1,3] => 1
[1,1,0,1,0,0] => [1,1,0,1,0,0] => [1,0,1,1,0,0] => [2,3,1] => 2
[1,1,1,0,0,0] => [1,0,1,0,1,0] => [1,1,1,0,0,0] => [1,2,3] => 0
[1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0] => [4,3,2,1] => 3
[1,0,1,0,1,1,0,0] => [1,1,1,0,0,0,1,0] => [1,1,0,0,1,0,1,0] => [4,3,1,2] => 3
[1,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0] => [1,1,0,1,0,0,1,0] => [4,2,1,3] => 3
[1,0,1,1,0,1,0,0] => [1,1,1,0,0,1,0,0] => [1,0,1,1,0,0,1,0] => [4,2,3,1] => 4
[1,0,1,1,1,0,0,0] => [1,1,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0] => [4,1,2,3] => 3
[1,1,0,0,1,0,1,0] => [1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,0] => [3,2,1,4] => 2
[1,1,0,0,1,1,0,0] => [1,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => [3,1,2,4] => 2
[1,1,0,1,0,0,1,0] => [1,1,0,1,1,0,0,0] => [1,0,1,1,0,1,0,0] => [3,2,4,1] => 3
[1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,0,0] => [1,0,1,0,1,1,0,0] => [3,4,2,1] => 3
[1,1,0,1,1,0,0,0] => [1,1,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0] => [3,4,1,2] => 4
[1,1,1,0,0,0,1,0] => [1,0,1,0,1,1,0,0] => [1,1,1,0,1,0,0,0] => [2,1,3,4] => 1
[1,1,1,0,0,1,0,0] => [1,0,1,1,0,1,0,0] => [1,1,0,1,1,0,0,0] => [2,3,1,4] => 2
[1,1,1,0,1,0,0,0] => [1,1,0,1,0,1,0,0] => [1,0,1,1,1,0,0,0] => [2,3,4,1] => 3
[1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0] => [1,2,3,4] => 0
[1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => [5,4,3,2,1] => 4
[1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,0,0,0,0,1,0] => [1,1,0,0,1,0,1,0,1,0] => [5,4,3,1,2] => 4
[1,0,1,0,1,1,0,0,1,0] => [1,1,1,0,0,0,1,1,0,0] => [1,1,0,1,0,0,1,0,1,0] => [5,4,2,1,3] => 4
[1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,0,0,0,1,0,0] => [1,0,1,1,0,0,1,0,1,0] => [5,4,2,3,1] => 5
[1,0,1,0,1,1,1,0,0,0] => [1,1,1,0,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0,1,0] => [5,4,1,2,3] => 4
[1,0,1,1,0,0,1,0,1,0] => [1,1,0,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,0,1,0] => [5,3,2,1,4] => 4
[1,0,1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,0,1,0] => [5,3,1,2,4] => 4
[1,0,1,1,0,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,0] => [1,0,1,1,0,1,0,0,1,0] => [5,3,2,4,1] => 5
[1,0,1,1,0,1,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0] => [1,0,1,0,1,1,0,0,1,0] => [5,3,4,2,1] => 5
[1,0,1,1,0,1,1,0,0,0] => [1,1,1,0,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,0] => [5,3,4,1,2] => 6
[1,0,1,1,1,0,0,0,1,0] => [1,1,0,0,1,0,1,1,0,0] => [1,1,1,0,1,0,0,0,1,0] => [5,2,1,3,4] => 4
[1,0,1,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,1,0,0] => [1,1,0,1,1,0,0,0,1,0] => [5,2,3,1,4] => 5
[1,0,1,1,1,0,1,0,0,0] => [1,1,1,0,0,1,0,1,0,0] => [1,0,1,1,1,0,0,0,1,0] => [5,2,3,4,1] => 6
[1,0,1,1,1,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0,1,0] => [5,1,2,3,4] => 4
[1,1,0,0,1,0,1,0,1,0] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,0,1,0,1,0,0] => [4,3,2,1,5] => 3
[1,1,0,0,1,0,1,1,0,0] => [1,0,1,1,1,0,0,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => [4,3,1,2,5] => 3
[1,1,0,0,1,1,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,0,0] => [4,2,1,3,5] => 3
[1,1,0,0,1,1,0,1,0,0] => [1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,1,0,0] => [4,2,3,1,5] => 4
[1,1,0,0,1,1,1,0,0,0] => [1,0,1,1,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => [4,1,2,3,5] => 3
[1,1,0,1,0,0,1,0,1,0] => [1,1,0,1,1,1,0,0,0,0] => [1,0,1,1,0,1,0,1,0,0] => [4,3,2,5,1] => 4
[1,1,0,1,0,0,1,1,0,0] => [1,1,0,1,1,0,0,0,1,0] => [1,1,0,0,1,1,0,1,0,0] => [4,3,5,1,2] => 5
[1,1,0,1,0,1,0,0,1,0] => [1,1,1,0,1,1,0,0,0,0] => [1,0,1,0,1,1,0,1,0,0] => [4,3,5,2,1] => 4
[1,1,0,1,0,1,0,1,0,0] => [1,1,1,1,0,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0] => [4,5,3,2,1] => 4
[1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,0,0,1,0] => [1,1,0,0,1,0,1,1,0,0] => [4,5,3,1,2] => 4
[1,1,0,1,1,0,0,0,1,0] => [1,1,0,1,0,0,1,1,0,0] => [1,1,0,1,0,0,1,1,0,0] => [4,5,2,1,3] => 5
[1,1,0,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,1,0,0] => [1,0,1,1,1,0,0,1,0,0] => [4,2,3,5,1] => 5
[1,1,0,1,1,0,1,0,0,0] => [1,1,1,0,1,0,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => [4,5,2,3,1] => 6
[1,1,0,1,1,1,0,0,0,0] => [1,1,0,1,0,0,1,0,1,0] => [1,1,1,0,0,0,1,1,0,0] => [4,5,1,2,3] => 6
[1,1,1,0,0,0,1,0,1,0] => [1,0,1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,1,0,0,0] => [3,2,1,4,5] => 2
[1,1,1,0,0,0,1,1,0,0] => [1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,0] => [3,1,2,4,5] => 2
[1,1,1,0,0,1,0,0,1,0] => [1,0,1,1,0,1,1,0,0,0] => [1,1,0,1,1,0,1,0,0,0] => [3,2,4,1,5] => 3
[1,1,1,0,0,1,0,1,0,0] => [1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,0,1,1,0,0,0] => [3,4,2,1,5] => 3
[1,1,1,0,0,1,1,0,0,0] => [1,0,1,1,0,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,0] => [3,4,1,2,5] => 4
[1,1,1,0,1,0,0,0,1,0] => [1,1,0,1,0,1,1,0,0,0] => [1,0,1,1,1,0,1,0,0,0] => [3,2,4,5,1] => 4
[1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => [1,0,1,1,0,1,1,0,0,0] => [3,4,2,5,1] => 4
[1,1,1,0,1,0,1,0,0,0] => [1,1,1,0,1,0,1,0,0,0] => [1,0,1,0,1,1,1,0,0,0] => [3,4,5,2,1] => 4
[1,1,1,0,1,1,0,0,0,0] => [1,1,0,1,0,1,0,0,1,0] => [1,1,0,0,1,1,1,0,0,0] => [3,4,5,1,2] => 6
[1,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,0,1,0,0,0,0] => [2,1,3,4,5] => 1
[1,1,1,1,0,0,0,1,0,0] => [1,0,1,0,1,1,0,1,0,0] => [1,1,1,0,1,1,0,0,0,0] => [2,3,1,4,5] => 2
[1,1,1,1,0,0,1,0,0,0] => [1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,1,1,0,0,0,0] => [2,3,4,1,5] => 3
[1,1,1,1,0,1,0,0,0,0] => [1,1,0,1,0,1,0,1,0,0] => [1,0,1,1,1,1,0,0,0,0] => [2,3,4,5,1] => 4
[1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0] => [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [6,5,4,3,2,1] => 5
[1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,0,0,1,0,1,0,1,0,1,0] => [6,5,4,3,1,2] => 5
[1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => [1,1,0,1,0,0,1,0,1,0,1,0] => [6,5,4,2,1,3] => 5
[1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [6,5,4,2,3,1] => 6
[1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,0,0,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0,1,0,1,0] => [6,5,4,1,2,3] => 5
[1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,0,1,0,1,0] => [6,5,3,2,1,4] => 5
[1,0,1,0,1,1,0,0,1,1,0,0] => [1,1,1,0,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,0,1,0,1,0] => [6,5,3,1,2,4] => 5
[1,0,1,0,1,1,0,1,0,0,1,0] => [1,1,1,1,0,0,0,1,1,0,0,0] => [1,0,1,1,0,1,0,0,1,0,1,0] => [6,5,3,2,4,1] => 6
[1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [6,5,3,4,2,1] => 6
[1,0,1,0,1,1,0,1,1,0,0,0] => [1,1,1,1,0,0,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,0,1,0] => [6,5,3,4,1,2] => 7
[1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,1,0,0,0,1,0,1,1,0,0] => [1,1,1,0,1,0,0,0,1,0,1,0] => [6,5,2,1,3,4] => 5
[1,0,1,0,1,1,1,0,0,1,0,0] => [1,1,1,0,0,0,1,1,0,1,0,0] => [1,1,0,1,1,0,0,0,1,0,1,0] => [6,5,2,3,1,4] => 6
[1,0,1,0,1,1,1,0,1,0,0,0] => [1,1,1,1,0,0,0,1,0,1,0,0] => [1,0,1,1,1,0,0,0,1,0,1,0] => [6,5,2,3,4,1] => 7
[1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,0,0,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0,1,0,1,0] => [6,5,1,2,3,4] => 5
[1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,1,0,1,0,1,0,1,0,0,1,0] => [6,4,3,2,1,5] => 5
[1,0,1,1,0,0,1,0,1,1,0,0] => [1,1,0,0,1,1,1,0,0,0,1,0] => [1,1,1,0,0,1,0,1,0,0,1,0] => [6,4,3,1,2,5] => 5
[1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,0,0,1,0] => [6,4,2,1,3,5] => 5
[1,0,1,1,0,0,1,1,0,1,0,0] => [1,1,0,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,1,0,0,1,0] => [6,4,2,3,1,5] => 6
[1,0,1,1,0,0,1,1,1,0,0,0] => [1,1,0,0,1,1,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,0,1,0] => [6,4,1,2,3,5] => 5
[1,0,1,1,0,1,0,0,1,0,1,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => [1,0,1,1,0,1,0,1,0,0,1,0] => [6,4,3,2,5,1] => 6
[1,0,1,1,0,1,0,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,0,1,0] => [1,1,0,0,1,1,0,1,0,0,1,0] => [6,4,3,5,1,2] => 7
[1,0,1,1,0,1,0,1,0,0,1,0] => [1,1,1,1,0,0,1,1,0,0,0,0] => [1,0,1,0,1,1,0,1,0,0,1,0] => [6,4,3,5,2,1] => 6
[1,0,1,1,0,1,0,1,0,1,0,0] => [1,1,1,1,1,0,0,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [6,4,5,3,2,1] => 6
[1,0,1,1,0,1,0,1,1,0,0,0] => [1,1,1,1,0,0,1,0,0,0,1,0] => [1,1,0,0,1,0,1,1,0,0,1,0] => [6,4,5,3,1,2] => 6
[1,0,1,1,0,1,1,0,0,0,1,0] => [1,1,1,0,0,1,0,0,1,1,0,0] => [1,1,0,1,0,0,1,1,0,0,1,0] => [6,4,5,2,1,3] => 7
[1,0,1,1,0,1,1,0,0,1,0,0] => [1,1,1,0,0,1,1,0,0,1,0,0] => [1,0,1,1,1,0,0,1,0,0,1,0] => [6,4,2,3,5,1] => 7
[1,0,1,1,0,1,1,0,1,0,0,0] => [1,1,1,1,0,0,1,0,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => [6,4,5,2,3,1] => 8
[1,0,1,1,0,1,1,1,0,0,0,0] => [1,1,1,0,0,1,0,0,1,0,1,0] => [1,1,1,0,0,0,1,1,0,0,1,0] => [6,4,5,1,2,3] => 8
[1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,0,0,1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,1,0,0,0,1,0] => [6,3,2,1,4,5] => 5
[1,0,1,1,1,0,0,0,1,1,0,0] => [1,1,0,0,1,0,1,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,0,1,0] => [6,3,1,2,4,5] => 5
[1,0,1,1,1,0,0,1,0,0,1,0] => [1,1,0,0,1,1,0,1,1,0,0,0] => [1,1,0,1,1,0,1,0,0,0,1,0] => [6,3,2,4,1,5] => 6
[1,0,1,1,1,0,0,1,0,1,0,0] => [1,1,0,0,1,1,1,0,1,0,0,0] => [1,1,0,1,0,1,1,0,0,0,1,0] => [6,3,4,2,1,5] => 6
[1,0,1,1,1,0,0,1,1,0,0,0] => [1,1,0,0,1,1,0,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,0,1,0] => [6,3,4,1,2,5] => 7
[1,0,1,1,1,0,1,0,0,0,1,0] => [1,1,1,0,0,1,0,1,1,0,0,0] => [1,0,1,1,1,0,1,0,0,0,1,0] => [6,3,2,4,5,1] => 7
[1,0,1,1,1,0,1,0,0,1,0,0] => [1,1,1,0,0,1,1,0,1,0,0,0] => [1,0,1,1,0,1,1,0,0,0,1,0] => [6,3,4,2,5,1] => 7
[1,0,1,1,1,0,1,0,1,0,0,0] => [1,1,1,1,0,0,1,0,1,0,0,0] => [1,0,1,0,1,1,1,0,0,0,1,0] => [6,3,4,5,2,1] => 7
[1,0,1,1,1,0,1,1,0,0,0,0] => [1,1,1,0,0,1,0,1,0,0,1,0] => [1,1,0,0,1,1,1,0,0,0,1,0] => [6,3,4,5,1,2] => 9
[1,0,1,1,1,1,0,0,0,0,1,0] => [1,1,0,0,1,0,1,0,1,1,0,0] => [1,1,1,1,0,1,0,0,0,0,1,0] => [6,2,1,3,4,5] => 5
>>> Load all 196 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of Bruhat lower covers of a permutation.
This is, for a permutation π, the number of permutations τ with inv(τ)=inv(π)−1 such that τ∗t=π for a transposition t.
This is also the number of occurrences of the boxed pattern 21: occurrences of the pattern 21 such that any entry between the two matched entries is either larger or smaller than both of the matched entries.
This is, for a permutation π, the number of permutations τ with inv(τ)=inv(π)−1 such that τ∗t=π for a transposition t.
This is also the number of occurrences of the boxed pattern 21: occurrences of the pattern 21 such that any entry between the two matched entries is either larger or smaller than both of the matched entries.
Map
to 132-avoiding permutation
Description
Sends a Dyck path to a 132-avoiding permutation.
This bijection is defined in [1, Section 2].
This bijection is defined in [1, Section 2].
Map
Lalanne-Kreweras involution
Description
The Lalanne-Kreweras involution on Dyck paths.
Label the upsteps from left to right and record the labels on the first up step of each double rise. Do the same for the downsteps. Then form the Dyck path whose ascent lengths and descent lengths are the consecutives differences of the labels.
Label the upsteps from left to right and record the labels on the first up step of each double rise. Do the same for the downsteps. Then form the Dyck path whose ascent lengths and descent lengths are the consecutives differences of the labels.
Map
decomposition reverse
Description
This map is recursively defined as follows.
The unique empty path of semilength 0 is sent to itself.
Let D be a Dyck path of semilength n>0 and decompose it into 1D10D2 with Dyck paths D1,D2 of respective semilengths n1 and n2 such that n1 is minimal. One then has n1+n2=n−1.
Now let ˜D1 and ˜D2 be the recursively defined respective images of D1 and D2 under this map. The image of D is then defined as 1˜D20˜D1.
The unique empty path of semilength 0 is sent to itself.
Let D be a Dyck path of semilength n>0 and decompose it into 1D10D2 with Dyck paths D1,D2 of respective semilengths n1 and n2 such that n1 is minimal. One then has n1+n2=n−1.
Now let ˜D1 and ˜D2 be the recursively defined respective images of D1 and D2 under this map. The image of D is then defined as 1˜D20˜D1.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!