Identifier
- St000953: Dyck paths ⟶ ℤ
Values
=>
Cc0005;cc-rep
[1,0]=>2
[1,0,1,0]=>2
[1,1,0,0]=>2
[1,0,1,0,1,0]=>4
[1,0,1,1,0,0]=>4
[1,1,0,0,1,0]=>4
[1,1,0,1,0,0]=>2
[1,1,1,0,0,0]=>4
[1,0,1,0,1,0,1,0]=>2
[1,0,1,0,1,1,0,0]=>2
[1,0,1,1,0,0,1,0]=>2
[1,0,1,1,0,1,0,0]=>4
[1,0,1,1,1,0,0,0]=>2
[1,1,0,0,1,0,1,0]=>2
[1,1,0,0,1,1,0,0]=>2
[1,1,0,1,0,0,1,0]=>4
[1,1,0,1,0,1,0,0]=>4
[1,1,0,1,1,0,0,0]=>4
[1,1,1,0,0,0,1,0]=>2
[1,1,1,0,0,1,0,0]=>4
[1,1,1,0,1,0,0,0]=>4
[1,1,1,1,0,0,0,0]=>2
[1,0,1,0,1,0,1,0,1,0]=>6
[1,0,1,0,1,0,1,1,0,0]=>6
[1,0,1,0,1,1,0,0,1,0]=>6
[1,0,1,0,1,1,0,1,0,0]=>4
[1,0,1,0,1,1,1,0,0,0]=>6
[1,0,1,1,0,0,1,0,1,0]=>6
[1,0,1,1,0,0,1,1,0,0]=>6
[1,0,1,1,0,1,0,0,1,0]=>4
[1,0,1,1,0,1,0,1,0,0]=>4
[1,0,1,1,0,1,1,0,0,0]=>4
[1,0,1,1,1,0,0,0,1,0]=>6
[1,0,1,1,1,0,0,1,0,0]=>4
[1,0,1,1,1,0,1,0,0,0]=>4
[1,0,1,1,1,1,0,0,0,0]=>6
[1,1,0,0,1,0,1,0,1,0]=>6
[1,1,0,0,1,0,1,1,0,0]=>6
[1,1,0,0,1,1,0,0,1,0]=>6
[1,1,0,0,1,1,0,1,0,0]=>4
[1,1,0,0,1,1,1,0,0,0]=>6
[1,1,0,1,0,0,1,0,1,0]=>4
[1,1,0,1,0,0,1,1,0,0]=>4
[1,1,0,1,0,1,0,0,1,0]=>4
[1,1,0,1,0,1,0,1,0,0]=>4
[1,1,0,1,0,1,1,0,0,0]=>4
[1,1,0,1,1,0,0,0,1,0]=>4
[1,1,0,1,1,0,0,1,0,0]=>2
[1,1,0,1,1,0,1,0,0,0]=>4
[1,1,0,1,1,1,0,0,0,0]=>4
[1,1,1,0,0,0,1,0,1,0]=>6
[1,1,1,0,0,0,1,1,0,0]=>6
[1,1,1,0,0,1,0,0,1,0]=>4
[1,1,1,0,0,1,0,1,0,0]=>4
[1,1,1,0,0,1,1,0,0,0]=>4
[1,1,1,0,1,0,0,0,1,0]=>4
[1,1,1,0,1,0,0,1,0,0]=>4
[1,1,1,0,1,0,1,0,0,0]=>4
[1,1,1,0,1,1,0,0,0,0]=>4
[1,1,1,1,0,0,0,0,1,0]=>6
[1,1,1,1,0,0,0,1,0,0]=>4
[1,1,1,1,0,0,1,0,0,0]=>4
[1,1,1,1,0,1,0,0,0,0]=>4
[1,1,1,1,1,0,0,0,0,0]=>6
[1,0,1,0,1,0,1,0,1,0,1,0]=>4
[1,0,1,0,1,0,1,0,1,1,0,0]=>4
[1,0,1,0,1,0,1,1,0,0,1,0]=>4
[1,0,1,0,1,0,1,1,0,1,0,0]=>4
[1,0,1,0,1,0,1,1,1,0,0,0]=>4
[1,0,1,0,1,1,0,0,1,0,1,0]=>4
[1,0,1,0,1,1,0,0,1,1,0,0]=>4
[1,0,1,0,1,1,0,1,0,0,1,0]=>6
[1,0,1,0,1,1,0,1,0,1,0,0]=>4
[1,0,1,0,1,1,0,1,1,0,0,0]=>6
[1,0,1,0,1,1,1,0,0,0,1,0]=>4
[1,0,1,0,1,1,1,0,0,1,0,0]=>4
[1,0,1,0,1,1,1,0,1,0,0,0]=>6
[1,0,1,0,1,1,1,1,0,0,0,0]=>4
[1,0,1,1,0,0,1,0,1,0,1,0]=>4
[1,0,1,1,0,0,1,0,1,1,0,0]=>4
[1,0,1,1,0,0,1,1,0,0,1,0]=>4
[1,0,1,1,0,0,1,1,0,1,0,0]=>4
[1,0,1,1,0,0,1,1,1,0,0,0]=>4
[1,0,1,1,0,1,0,0,1,0,1,0]=>6
[1,0,1,1,0,1,0,0,1,1,0,0]=>6
[1,0,1,1,0,1,0,1,0,0,1,0]=>4
[1,0,1,1,0,1,0,1,0,1,0,0]=>6
[1,0,1,1,0,1,0,1,1,0,0,0]=>4
[1,0,1,1,0,1,1,0,0,0,1,0]=>6
[1,0,1,1,0,1,1,0,0,1,0,0]=>6
[1,0,1,1,0,1,1,0,1,0,0,0]=>6
[1,0,1,1,0,1,1,1,0,0,0,0]=>6
[1,0,1,1,1,0,0,0,1,0,1,0]=>4
[1,0,1,1,1,0,0,0,1,1,0,0]=>4
[1,0,1,1,1,0,0,1,0,0,1,0]=>6
[1,0,1,1,1,0,0,1,0,1,0,0]=>4
[1,0,1,1,1,0,0,1,1,0,0,0]=>6
[1,0,1,1,1,0,1,0,0,0,1,0]=>2
[1,0,1,1,1,0,1,0,0,1,0,0]=>6
[1,0,1,1,1,0,1,0,1,0,0,0]=>6
[1,0,1,1,1,0,1,1,0,0,0,0]=>2
[1,0,1,1,1,1,0,0,0,0,1,0]=>4
[1,0,1,1,1,1,0,0,0,1,0,0]=>4
[1,0,1,1,1,1,0,0,1,0,0,0]=>6
[1,0,1,1,1,1,0,1,0,0,0,0]=>6
[1,0,1,1,1,1,1,0,0,0,0,0]=>4
[1,1,0,0,1,0,1,0,1,0,1,0]=>4
[1,1,0,0,1,0,1,0,1,1,0,0]=>4
[1,1,0,0,1,0,1,1,0,0,1,0]=>4
[1,1,0,0,1,0,1,1,0,1,0,0]=>4
[1,1,0,0,1,0,1,1,1,0,0,0]=>4
[1,1,0,0,1,1,0,0,1,0,1,0]=>4
[1,1,0,0,1,1,0,0,1,1,0,0]=>4
[1,1,0,0,1,1,0,1,0,0,1,0]=>6
[1,1,0,0,1,1,0,1,0,1,0,0]=>4
[1,1,0,0,1,1,0,1,1,0,0,0]=>6
[1,1,0,0,1,1,1,0,0,0,1,0]=>4
[1,1,0,0,1,1,1,0,0,1,0,0]=>4
[1,1,0,0,1,1,1,0,1,0,0,0]=>6
[1,1,0,0,1,1,1,1,0,0,0,0]=>4
[1,1,0,1,0,0,1,0,1,0,1,0]=>4
[1,1,0,1,0,0,1,0,1,1,0,0]=>4
[1,1,0,1,0,0,1,1,0,0,1,0]=>4
[1,1,0,1,0,0,1,1,0,1,0,0]=>2
[1,1,0,1,0,0,1,1,1,0,0,0]=>4
[1,1,0,1,0,1,0,0,1,0,1,0]=>4
[1,1,0,1,0,1,0,0,1,1,0,0]=>4
[1,1,0,1,0,1,0,1,0,0,1,0]=>6
[1,1,0,1,0,1,0,1,0,1,0,0]=>6
[1,1,0,1,0,1,0,1,1,0,0,0]=>6
[1,1,0,1,0,1,1,0,0,0,1,0]=>4
[1,1,0,1,0,1,1,0,0,1,0,0]=>2
[1,1,0,1,0,1,1,0,1,0,0,0]=>6
[1,1,0,1,0,1,1,1,0,0,0,0]=>4
[1,1,0,1,1,0,0,0,1,0,1,0]=>4
[1,1,0,1,1,0,0,0,1,1,0,0]=>4
[1,1,0,1,1,0,0,1,0,0,1,0]=>6
[1,1,0,1,1,0,0,1,0,1,0,0]=>2
[1,1,0,1,1,0,0,1,1,0,0,0]=>6
[1,1,0,1,1,0,1,0,0,0,1,0]=>6
[1,1,0,1,1,0,1,0,0,1,0,0]=>6
[1,1,0,1,1,0,1,0,1,0,0,0]=>2
[1,1,0,1,1,0,1,1,0,0,0,0]=>6
[1,1,0,1,1,1,0,0,0,0,1,0]=>4
[1,1,0,1,1,1,0,0,0,1,0,0]=>2
[1,1,0,1,1,1,0,0,1,0,0,0]=>6
[1,1,0,1,1,1,0,1,0,0,0,0]=>6
[1,1,0,1,1,1,1,0,0,0,0,0]=>4
[1,1,1,0,0,0,1,0,1,0,1,0]=>4
[1,1,1,0,0,0,1,0,1,1,0,0]=>4
[1,1,1,0,0,0,1,1,0,0,1,0]=>4
[1,1,1,0,0,0,1,1,0,1,0,0]=>4
[1,1,1,0,0,0,1,1,1,0,0,0]=>4
[1,1,1,0,0,1,0,0,1,0,1,0]=>6
[1,1,1,0,0,1,0,0,1,1,0,0]=>6
[1,1,1,0,0,1,0,1,0,0,1,0]=>4
[1,1,1,0,0,1,0,1,0,1,0,0]=>6
[1,1,1,0,0,1,0,1,1,0,0,0]=>4
[1,1,1,0,0,1,1,0,0,0,1,0]=>6
[1,1,1,0,0,1,1,0,0,1,0,0]=>6
[1,1,1,0,0,1,1,0,1,0,0,0]=>6
[1,1,1,0,0,1,1,1,0,0,0,0]=>6
[1,1,1,0,1,0,0,0,1,0,1,0]=>6
[1,1,1,0,1,0,0,0,1,1,0,0]=>6
[1,1,1,0,1,0,0,1,0,0,1,0]=>6
[1,1,1,0,1,0,0,1,0,1,0,0]=>6
[1,1,1,0,1,0,0,1,1,0,0,0]=>6
[1,1,1,0,1,0,1,0,0,0,1,0]=>6
[1,1,1,0,1,0,1,0,0,1,0,0]=>2
[1,1,1,0,1,0,1,0,1,0,0,0]=>6
[1,1,1,0,1,0,1,1,0,0,0,0]=>6
[1,1,1,0,1,1,0,0,0,0,1,0]=>6
[1,1,1,0,1,1,0,0,0,1,0,0]=>6
[1,1,1,0,1,1,0,0,1,0,0,0]=>2
[1,1,1,0,1,1,0,1,0,0,0,0]=>6
[1,1,1,0,1,1,1,0,0,0,0,0]=>6
[1,1,1,1,0,0,0,0,1,0,1,0]=>4
[1,1,1,1,0,0,0,0,1,1,0,0]=>4
[1,1,1,1,0,0,0,1,0,0,1,0]=>6
[1,1,1,1,0,0,0,1,0,1,0,0]=>4
[1,1,1,1,0,0,0,1,1,0,0,0]=>6
[1,1,1,1,0,0,1,0,0,0,1,0]=>2
[1,1,1,1,0,0,1,0,0,1,0,0]=>6
[1,1,1,1,0,0,1,0,1,0,0,0]=>6
[1,1,1,1,0,0,1,1,0,0,0,0]=>2
[1,1,1,1,0,1,0,0,0,0,1,0]=>6
[1,1,1,1,0,1,0,0,0,1,0,0]=>6
[1,1,1,1,0,1,0,0,1,0,0,0]=>6
[1,1,1,1,0,1,0,1,0,0,0,0]=>6
[1,1,1,1,0,1,1,0,0,0,0,0]=>6
[1,1,1,1,1,0,0,0,0,0,1,0]=>4
[1,1,1,1,1,0,0,0,0,1,0,0]=>4
[1,1,1,1,1,0,0,0,1,0,0,0]=>6
[1,1,1,1,1,0,0,1,0,0,0,0]=>6
[1,1,1,1,1,0,1,0,0,0,0,0]=>4
[1,1,1,1,1,1,0,0,0,0,0,0]=>4
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The largest degree of an irreducible factor of the Coxeter polynomial of the Dyck path over the rational numbers.
References
Code
DeclareOperation("MaxDegree",[IsList]);
InstallMethod(MaxDegree, "for a representation of a quiver", [IsList],0,function(LIST)
local M, n, f, N, i, h;
u:=LIST[1];
A:=NakayamaAlgebra(GF(3),u);
p:=CoxeterPolynomial(A);
F:=Factors(p);
temp2:=[];
for i in F do Append(temp2,[Degree(i)]);od;
t:=Maximum(temp2);
return(t);
end);
Created
Aug 25, 2017 at 15:33 by Rene Marczinzik
Updated
Aug 25, 2017 at 15:33 by Rene Marczinzik
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!