Identifier
-
Mp00042:
Integer partitions
—initial tableau⟶
Standard tableaux
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000948: Graphs ⟶ ℤ
Values
[1] => [[1]] => [1] => ([],1) => 1
[2] => [[1,2]] => [1,2] => ([],2) => 0
[1,1] => [[1],[2]] => [2,1] => ([(0,1)],2) => 1
[3] => [[1,2,3]] => [1,2,3] => ([],3) => 0
[2,1] => [[1,2],[3]] => [3,1,2] => ([(0,2),(1,2)],3) => 1
[1,1,1] => [[1],[2],[3]] => [3,2,1] => ([(0,1),(0,2),(1,2)],3) => 2
[4] => [[1,2,3,4]] => [1,2,3,4] => ([],4) => 0
[3,1] => [[1,2,3],[4]] => [4,1,2,3] => ([(0,3),(1,3),(2,3)],4) => 1
[2,2] => [[1,2],[3,4]] => [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4) => 3
[2,1,1] => [[1,2],[3],[4]] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
[1,1,1,1] => [[1],[2],[3],[4]] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 6
[5] => [[1,2,3,4,5]] => [1,2,3,4,5] => ([],5) => 0
[4,1] => [[1,2,3,4],[5]] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5) => 1
[3,2] => [[1,2,3],[4,5]] => [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => 7
[3,1,1] => [[1,2,3],[4],[5]] => [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 8
[2,2,1] => [[1,2],[3,4],[5]] => [5,3,4,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => 14
[2,1,1,1] => [[1,2],[3],[4],[5]] => [5,4,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 18
[1,1,1,1,1] => [[1],[2],[3],[4],[5]] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 24
[6] => [[1,2,3,4,5,6]] => [1,2,3,4,5,6] => ([],6) => 0
[5,1] => [[1,2,3,4,5],[6]] => [6,1,2,3,4,5] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 1
[4,2] => [[1,2,3,4],[5,6]] => [5,6,1,2,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 15
[4,1,1] => [[1,2,3,4],[5],[6]] => [6,5,1,2,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 16
[3,3] => [[1,2,3],[4,5,6]] => [4,5,6,1,2,3] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => 31
[3,2,1] => [[1,2,3],[4,5],[6]] => [6,4,5,1,2,3] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 46
[3,1,1,1] => [[1,2,3],[4],[5],[6]] => [6,5,4,1,2,3] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 54
[2,2,2] => [[1,2],[3,4],[5,6]] => [5,6,3,4,1,2] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 64
[2,2,1,1] => [[1,2],[3,4],[5],[6]] => [6,5,3,4,1,2] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 78
[2,1,1,1,1] => [[1,2],[3],[4],[5],[6]] => [6,5,4,3,1,2] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 96
[1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6]] => [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 120
[7] => [[1,2,3,4,5,6,7]] => [1,2,3,4,5,6,7] => ([],7) => 0
[6,1] => [[1,2,3,4,5,6],[7]] => [7,1,2,3,4,5,6] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 1
[5,2] => [[1,2,3,4,5],[6,7]] => [6,7,1,2,3,4,5] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 31
[5,1,1] => [[1,2,3,4,5],[6],[7]] => [7,6,1,2,3,4,5] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 32
[4,3] => [[1,2,3,4],[5,6,7]] => [5,6,7,1,2,3,4] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => 115
[4,2,1] => [[1,2,3,4],[5,6],[7]] => [7,5,6,1,2,3,4] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => 146
[4,1,1,1] => [[1,2,3,4],[5],[6],[7]] => [7,6,5,1,2,3,4] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 162
[3,3,1] => [[1,2,3],[4,5,6],[7]] => [7,4,5,6,1,2,3] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,6),(4,6),(5,6)],7) => 230
[3,2,2] => [[1,2,3],[4,5],[6,7]] => [6,7,4,5,1,2,3] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 284
[3,2,1,1] => [[1,2,3],[4,5],[6],[7]] => [7,6,4,5,1,2,3] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 330
[3,1,1,1,1] => [[1,2,3],[4],[5],[6],[7]] => [7,6,5,4,1,2,3] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 384
[2,2,2,1] => [[1,2],[3,4],[5,6],[7]] => [7,5,6,3,4,1,2] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => 426
[2,2,1,1,1] => [[1,2],[3,4],[5],[6],[7]] => [7,6,5,3,4,1,2] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 504
[2,1,1,1,1,1] => [[1,2],[3],[4],[5],[6],[7]] => [7,6,5,4,3,1,2] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 600
[1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7]] => [7,6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 720
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The chromatic discriminant of a graph.
The chromatic discriminant α(G) is the coefficient of the linear term of the chromatic polynomial χ(G,q).
According to [1], it equals the cardinality of any of the following sets:
(1) Acyclic orientations of G with unique sink at q,
(2) Maximum G-parking functions relative to q,
(3) Minimal q-critical states,
(4) Spanning trees of G without broken circuits,
(5) Conjugacy classes of Coxeter elements in the Coxeter group associated to G,
(6) Multilinear Lyndon heaps on G.
In addition, α(G) is also equal to the the dimension of the root space corresponding to the sum of all simple roots in the Kac-Moody Lie algebra associated to the graph.
The chromatic discriminant α(G) is the coefficient of the linear term of the chromatic polynomial χ(G,q).
According to [1], it equals the cardinality of any of the following sets:
(1) Acyclic orientations of G with unique sink at q,
(2) Maximum G-parking functions relative to q,
(3) Minimal q-critical states,
(4) Spanning trees of G without broken circuits,
(5) Conjugacy classes of Coxeter elements in the Coxeter group associated to G,
(6) Multilinear Lyndon heaps on G.
In addition, α(G) is also equal to the the dimension of the root space corresponding to the sum of all simple roots in the Kac-Moody Lie algebra associated to the graph.
Map
graph of inversions
Description
The graph of inversions of a permutation.
For a permutation of {1,…,n}, this is the graph with vertices {1,…,n}, where (i,j) is an edge if and only if it is an inversion of the permutation.
For a permutation of {1,…,n}, this is the graph with vertices {1,…,n}, where (i,j) is an edge if and only if it is an inversion of the permutation.
Map
initial tableau
Description
Sends an integer partition to the standard tableau obtained by filling the numbers 1 through n row by row.
Map
reading word permutation
Description
Return the permutation obtained by reading the entries of the tableau row by row, starting with the bottom-most row in English notation.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!