*****************************************************************************
*       www.FindStat.org - The Combinatorial Statistic Finder               *
*                                                                           *
*       Copyright (C) 2019 The FindStatCrew <info@findstat.org>             *
*                                                                           *
*    This information is distributed in the hope that it will be useful,    *
*    but WITHOUT ANY WARRANTY; without even the implied warranty of         *
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                   *
*****************************************************************************

-----------------------------------------------------------------------------
Statistic identifier: St000944

-----------------------------------------------------------------------------
Collection: Integer partitions

-----------------------------------------------------------------------------
Description: The 3-degree of an integer partition.

For an integer partition $\lambda$, this is given by the exponent of 3 in the Gram determinant of the integal Specht module of the symmetric group indexed by $\lambda$.

This stupid comment should not be accepted as an edit!

-----------------------------------------------------------------------------
References: [1]   [[noreference given]]

-----------------------------------------------------------------------------
Code:
def statistic(L):
    return L.prime_degree(12)

-----------------------------------------------------------------------------
Statistic values:

[1]                   => 0
[2]                   => 0
[1,1]                 => 0
[3]                   => 1
[2,1]                 => 1
[1,1,1]               => 0
[4]                   => 1
[3,1]                 => 0
[2,2]                 => 1
[2,1,1]               => 0
[1,1,1,1]             => 0
[5]                   => 1
[4,1]                 => 4
[3,2]                 => 1
[3,1,1]               => 0
[2,2,1]               => 4
[2,1,1,1]             => 0
[1,1,1,1,1]           => 0
[6]                   => 2
[5,1]                 => 9
[4,2]                 => 0
[4,1,1]               => 16
[3,3]                 => 6
[3,2,1]               => 16
[3,1,1,1]             => 4
[2,2,2]               => 4
[2,2,1,1]             => 0
[2,1,1,1,1]           => 1
[1,1,1,1,1,1]         => 0
[7]                   => 2
[6,1]                 => 6
[5,2]                 => 27
[5,1,1]               => 15
[4,3]                 => 15
[4,2,1]               => 42
[4,1,1,1]             => 20
[3,3,1]               => 6
[3,2,2]               => 15
[3,2,1,1]             => 28
[3,1,1,1,1]           => 0
[2,2,2,1]             => 13
[2,2,1,1,1]           => 1
[2,1,1,1,1,1]         => 0
[1,1,1,1,1,1,1]       => 0
[8]                   => 2
[7,1]                 => 14
[6,2]                 => 33
[6,1,1]               => 21
[5,3]                 => 56
[5,2,1]               => 99
[5,1,1,1]             => 35
[4,4]                 => 15
[4,3,1]               => 49
[4,2,2]               => 78
[4,2,1,1]             => 0
[4,1,1,1,1]           => 35
[3,3,2]               => 21
[3,3,1,1]             => 34
[3,2,2,1]             => 91
[3,2,1,1,1]           => 29
[3,1,1,1,1,1]         => 0
[2,2,2,2]             => 13
[2,2,2,1,1]           => 0
[2,2,1,1,1,1]         => 7
[2,1,1,1,1,1,1]       => 0
[1,1,1,1,1,1,1,1]     => 0
[9]                   => 3
[8,1]                 => 23
[7,2]                 => 27
[7,1,1]               => 77
[6,3]                 => 137
[6,2,1]               => 238
[6,1,1,1]             => 91
[5,4]                 => 85
[5,3,1]               => 0
[5,2,2]               => 233
[5,2,1,1]             => 189
[5,1,1,1,1]           => 105
[4,4,1]               => 134
[4,3,2]               => 232
[4,3,1,1]             => 27
[4,2,2,1]             => 189
[4,2,1,1,1]           => 0
[4,1,1,1,1,1]         => 77
[3,3,3]               => 63
[3,3,2,1]             => 272
[3,3,1,1,1]           => 127
[3,2,2,2]             => 118
[3,2,2,1,1]           => 0
[3,2,1,1,1,1]         => 77
[3,1,1,1,1,1,1]       => 7
[2,2,2,2,1]           => 41
[2,2,2,1,1,1]         => 7
[2,2,1,1,1,1,1]       => 0
[2,1,1,1,1,1,1,1]     => 1
[1,1,1,1,1,1,1,1,1]   => 0
[10]                  => 4
[9,1]                 => 18
[8,2]                 => 138
[8,1,1]               => 72
[7,3]                 => 191
[7,2,1]               => 496
[7,1,1,1]             => 168
[6,4]                 => 180
[6,3,1]               => 594
[6,2,2]               => 351
[6,2,1,1]             => 1064
[6,1,1,1,1]           => 126
[5,5]                 => 85
[5,4,1]               => 297
[5,3,2]               => 297
[5,3,1,1]             => 0
[5,2,2,1]             => 1232
[5,2,1,1,1]           => 896
[5,1,1,1,1,1]         => 126
[4,4,2]               => 198
[4,4,1,1]             => 593
[4,3,3]               => 463
[4,3,2,1]             => 1152
[4,3,1,1,1]           => 343
[4,2,2,2]             => 307
[4,2,2,1,1]           => 0
[4,2,1,1,1,1]         => 336
[4,1,1,1,1,1,1]       => 84
[3,3,3,1]             => 167
[3,3,2,2]             => 306
[3,3,2,1,1]           => 603
[3,3,1,1,1,1]         => 99
[3,2,2,2,1]           => 279
[3,2,2,1,1,1]         => 36
[3,2,1,1,1,1,1]       => 144
[3,1,1,1,1,1,1,1]     => 0
[2,2,2,2,2]           => 41
[2,2,2,2,1,1]         => 0
[2,2,2,1,1,1,1]       => 34
[2,2,1,1,1,1,1,1]     => 2
[2,1,1,1,1,1,1,1,1]   => 0
[1,1,1,1,1,1,1,1,1,1] => 0

-----------------------------------------------------------------------------
Created: Aug 22, 2017 at 01:24 by Martin Rubey

-----------------------------------------------------------------------------
Last Updated: Aug 22, 2017 at 10:43 by Christian Stump