*****************************************************************************
*       www.FindStat.org - The Combinatorial Statistic Finder               *
*                                                                           *
*       Copyright (C) 2019 The FindStatCrew <info@findstat.org>             *
*                                                                           *
*    This information is distributed in the hope that it will be useful,    *
*    but WITHOUT ANY WARRANTY; without even the implied warranty of         *
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                   *
*****************************************************************************

-----------------------------------------------------------------------------
Statistic identifier: St000934

-----------------------------------------------------------------------------
Collection: Integer partitions

-----------------------------------------------------------------------------
Description: The 2-degree of an integer partition.

For an integer partition $\lambda$, this is given by the exponent of 2 in the Gram determinant of the integal Specht module of the symmetric group indexed by $\lambda$.

-----------------------------------------------------------------------------
References: 

-----------------------------------------------------------------------------
Code:
def statistic(L):
    return L.prime_degree(2)


-----------------------------------------------------------------------------
Statistic values:

[2]                       => 1
[1,1]                     => 0
[3]                       => 1
[2,1]                     => 0
[1,1,1]                   => 0
[4]                       => 2
[3,1]                     => 5
[2,2]                     => 2
[2,1,1]                   => 1
[1,1,1,1]                 => 0
[5]                       => 3
[4,1]                     => 4
[3,2]                     => 14
[3,1,1]                   => 6
[2,2,1]                   => 1
[2,1,1,1]                 => 0
[1,1,1,1,1]               => 0
[6]                       => 4
[5,1]                     => 19
[4,2]                     => 27
[4,1,1]                   => 16
[3,3]                     => 14
[3,2,1]                   => 0
[3,1,1,1]                 => 14
[2,2,2]                   => 6
[2,2,1,1]                 => 9
[2,1,1,1,1]               => 1
[1,1,1,1,1,1]             => 0
[7]                       => 4
[6,1]                     => 18
[5,2]                     => 42
[5,1,1]                   => 45
[4,3]                     => 36
[4,2,1]                   => 97
[4,1,1,1]                 => 20
[3,3,1]                   => 62
[3,2,2]                   => 22
[3,2,1,1]                 => 43
[3,1,1,1,1]               => 15
[2,2,2,1]                 => 6
[2,2,1,1,1]               => 0
[2,1,1,1,1,1]             => 0
[1,1,1,1,1,1,1]           => 0
[8]                       => 6
[7,1]                     => 40
[6,2]                     => 94
[6,1,1]                   => 93
[5,3]                     => 106
[5,2,1]                   => 64
[5,1,1,1]                 => 145
[4,4]                     => 64
[4,3,1]                   => 342
[4,2,2]                   => 154
[4,2,1,1]                 => 270
[4,1,1,1,1]               => 65
[3,3,2]                   => 126
[3,3,1,1]                 => 70
[3,2,2,1]                 => 78
[3,2,1,1,1]               => 0
[3,1,1,1,1,1]             => 33
[2,2,2,2]                 => 20
[2,2,2,1,1]               => 34
[2,2,1,1,1,1]             => 6
[2,1,1,1,1,1,1]           => 2
[1,1,1,1,1,1,1,1]         => 0
[9]                       => 7
[8,1]                     => 32
[7,2]                     => 187
[7,1,1]                   => 112
[6,3]                     => 144
[6,2,1]                   => 629
[6,1,1,1]                 => 168
[5,4]                     => 226
[5,3,1]                   => 704
[5,2,2]                   => 282
[5,2,1,1]                 => 659
[5,1,1,1,1]               => 210
[4,4,1]                   => 266
[4,3,2]                   => 664
[4,3,1,1]                 => 592
[4,2,2,1]                 => 272
[4,2,1,1,1]               => 664
[4,1,1,1,1,1]             => 56
[3,3,3]                   => 126
[3,3,2,1]                 => 8
[3,3,1,1,1]               => 198
[3,2,2,2]                 => 154
[3,2,2,1,1]               => 268
[3,2,1,1,1,1]             => 106
[3,1,1,1,1,1,1]           => 28
[2,2,2,2,1]               => 26
[2,2,2,1,1,1]             => 0
[2,2,1,1,1,1,1]           => 2
[2,1,1,1,1,1,1,1]         => 0
[1,1,1,1,1,1,1,1,1]       => 0
[10]                      => 8
[9,1]                     => 71
[8,2]                     => 254
[8,1,1]                   => 172
[7,3]                     => 571
[7,2,1]                   => 480
[7,1,1,1]                 => 392
[6,4]                     => 508
[6,3,1]                   => 2116
[6,2,2]                   => 1496
[6,2,1,1]                 => 1568
[6,1,1,1,1]               => 448
[5,5]                     => 226
[5,4,1]                   => 704
[5,3,2]                   => 2436
[5,3,1,1]                 => 2630
[5,2,2,1]                 => 1888
[5,2,1,1,1]               => 448
[5,1,1,1,1,1]             => 434
[4,4,2]                   => 1182
[4,4,1,1]                 => 1074
[4,3,3]                   => 832
[4,3,2,1]                 => 0
[4,3,1,1,1]               => 2312
[4,2,2,2]                 => 726
[4,2,2,1,1]               => 1906
[4,2,1,1,1,1]             => 882
[4,1,1,1,1,1,1]           => 112
[3,3,3,1]                 => 638
[3,3,2,2]                 => 330
[3,3,2,1,1]               => 714
[3,3,1,1,1,1]             => 304
[3,2,2,2,1]               => 160
[3,2,2,1,1,1]             => 404
[3,2,1,1,1,1,1]           => 0
[3,1,1,1,1,1,1,1]         => 44
[2,2,2,2,2]               => 68
[2,2,2,2,1,1]             => 122
[2,2,2,1,1,1,1]           => 29
[2,2,1,1,1,1,1,1]         => 26
[2,1,1,1,1,1,1,1,1]       => 1
[1,1,1,1,1,1,1,1,1,1]     => 0
[11]                      => 8
[10,1]                    => 70
[9,2]                     => 264
[9,1,1]                   => 315
[8,3]                     => 750
[8,2,1]                   => 1670
[8,1,1,1]                 => 480
[7,4]                     => 1319
[7,3,1]                   => 3332
[7,2,2]                   => 2136
[7,2,1,1]                 => 2608
[7,1,1,1,1]               => 840
[6,5]                     => 692
[6,4,1]                   => 4138
[6,3,2]                   => 6588
[6,3,1,1]                 => 3696
[6,2,2,1]                 => 3552
[6,2,1,1,1]               => 4004
[6,1,1,1,1,1]             => 756
[5,5,1]                   => 1794
[5,4,2]                   => 5312
[5,4,1,1]                 => 5575
[5,3,3]                   => 3058
[5,3,2,1]                 => 10188
[5,3,1,1,1]               => 5236
[5,2,2,2]                 => 3739
[5,2,2,1,1]               => 4004
[5,2,1,1,1,1]             => 1540
[5,1,1,1,1,1,1]           => 630
[4,4,3]                   => 1804
[4,4,2,1]                 => 5028
[4,4,1,1,1]               => 2861
[4,3,3,1]                 => 3564
[4,3,2,2]                 => 1572
[4,3,2,1,1]               => 5982
[4,3,1,1,1,1]             => 3048
[4,2,2,2,1]               => 3665
[4,2,2,1,1,1]             => 1232
[4,2,1,1,1,1,1]           => 1550
[4,1,1,1,1,1,1,1]         => 120
[3,3,3,2]                 => 1430
[3,3,3,1,1]               => 902
[3,3,2,2,1]               => 1618
[3,3,2,1,1,1]             => 342
[3,3,1,1,1,1,1]           => 944
[3,2,2,2,2]               => 516
[3,2,2,2,1,1]             => 1406
[3,2,2,1,1,1,1]           => 518
[3,2,1,1,1,1,1,1]         => 178
[3,1,1,1,1,1,1,1,1]       => 45
[2,2,2,2,2,1]             => 100
[2,2,2,2,1,1,1]           => 1
[2,2,2,1,1,1,1,1]         => 20
[2,2,1,1,1,1,1,1,1]       => 0
[2,1,1,1,1,1,1,1,1,1]     => 0
[1,1,1,1,1,1,1,1,1,1,1]   => 0
[12]                      => 10
[11,1]                    => 108
[10,2]                    => 476
[10,1,1]                  => 475
[9,3]                     => 1234
[9,2,1]                   => 1280
[9,1,1,1]                 => 1395
[8,4]                     => 2619
[8,3,1]                   => 8095
[8,2,2]                   => 3652
[8,2,1,1]                 => 6780
[8,1,1,1,1]               => 1740
[7,5]                     => 2539
[7,4,1]                   => 4224
[7,3,2]                   => 15961
[7,3,1,1]                 => 12738
[7,2,2,1]                 => 12102
[7,2,1,1,1]               => 5184
[7,1,1,1,1,1]             => 2352
[6,6]                     => 824
[6,5,1]                   => 9693
[6,4,2]                   => 20691
[6,4,1,1]                 => 13486
[6,3,3]                   => 11626
[6,3,2,1]                 => 5632
[6,3,1,1,1]               => 14784
[6,2,2,2]                 => 10041
[6,2,2,1,1]               => 16488
[6,2,1,1,1,1]             => 8400
[6,1,1,1,1,1,1]           => 1806
[5,5,2]                   => 6446
[5,5,1,1]                 => 8524
[5,4,3]                   => 8128
[5,4,2,1]                 => 40788
[5,4,1,1,1]               => 8832
[5,3,3,1]                 => 27304
[5,3,2,2]                 => 24409
[5,3,2,1,1]               => 30800
[5,3,1,1,1,1]             => 12024
[5,2,2,2,1]               => 5248
[5,2,2,1,1,1]             => 7392
[5,2,1,1,1,1,1]           => 1728
[5,1,1,1,1,1,1,1]         => 1230
[4,4,4]                   => 2728
[4,4,3,1]                 => 16732
[4,4,2,2]                 => 7920
[4,4,2,1,1]               => 20141
[4,4,1,1,1,1]             => 9209
[4,3,3,2]                 => 9998
[4,3,3,1,1]               => 10118
[4,3,2,2,1]               => 16962
[4,3,2,1,1,1]             => 0
[4,3,1,1,1,1,1]           => 8688
[4,2,2,2,2]               => 6326
[4,2,2,2,1,1]             => 8074
[4,2,2,1,1,1,1]           => 3894
[4,2,1,1,1,1,1,1]         => 2670
[4,1,1,1,1,1,1,1,1]       => 255
[3,3,3,3]                 => 1430
[3,3,3,2,1]               => 320
[3,3,3,1,1,1]             => 3224
[3,3,2,2,2]               => 2794
[3,3,2,2,1,1]             => 6039
[3,3,2,1,1,1,1]           => 3289
[3,3,1,1,1,1,1,1]         => 660
[3,2,2,2,2,1]             => 1857
[3,2,2,2,1,1,1]           => 0
[3,2,2,1,1,1,1,1]         => 815
[3,2,1,1,1,1,1,1,1]       => 0
[3,1,1,1,1,1,1,1,1,1]     => 75
[2,2,2,2,2,2]             => 232
[2,2,2,2,2,1,1]           => 431
[2,2,2,2,1,1,1,1]         => 131
[2,2,2,1,1,1,1,1,1]       => 152
[2,2,1,1,1,1,1,1,1,1]     => 10
[2,1,1,1,1,1,1,1,1,1,1]   => 2
[1,1,1,1,1,1,1,1,1,1,1,1] => 0

-----------------------------------------------------------------------------
Created: Aug 11, 2017 at 17:05 by Christian Stump

-----------------------------------------------------------------------------
Last Updated: Aug 11, 2017 at 17:05 by Christian Stump