*****************************************************************************
*       www.FindStat.org - The Combinatorial Statistic Finder               *
*                                                                           *
*       Copyright (C) 2019 The FindStatCrew <info@findstat.org>             *
*                                                                           *
*    This information is distributed in the hope that it will be useful,    *
*    but WITHOUT ANY WARRANTY; without even the implied warranty of         *
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                   *
*****************************************************************************

-----------------------------------------------------------------------------
Statistic identifier: St000933

-----------------------------------------------------------------------------
Collection: Integer partitions

-----------------------------------------------------------------------------
Description: The number of multipartitions of sizes given by an integer partition.

This is, for $\lambda = (\lambda_1,\ldots,\lambda_n)$, this is the number of $n$-tuples $(\lambda^{(1)},\ldots,\lambda^{(n)})$ of partitions $\lambda^{(i)}$ such that $\lambda^{(i)} \vdash \lambda_i$.

-----------------------------------------------------------------------------
References: 

-----------------------------------------------------------------------------
Code:
def statistic(L):
    return prod(Partitions(i).cardinality() for i in L)


-----------------------------------------------------------------------------
Statistic values:

[2]                       => 2
[1,1]                     => 1
[3]                       => 3
[2,1]                     => 2
[1,1,1]                   => 1
[4]                       => 5
[3,1]                     => 3
[2,2]                     => 4
[2,1,1]                   => 2
[1,1,1,1]                 => 1
[5]                       => 7
[4,1]                     => 5
[3,2]                     => 6
[3,1,1]                   => 3
[2,2,1]                   => 4
[2,1,1,1]                 => 2
[1,1,1,1,1]               => 1
[6]                       => 11
[5,1]                     => 7
[4,2]                     => 10
[4,1,1]                   => 5
[3,3]                     => 9
[3,2,1]                   => 6
[3,1,1,1]                 => 3
[2,2,2]                   => 8
[2,2,1,1]                 => 4
[2,1,1,1,1]               => 2
[1,1,1,1,1,1]             => 1
[7]                       => 15
[6,1]                     => 11
[5,2]                     => 14
[5,1,1]                   => 7
[4,3]                     => 15
[4,2,1]                   => 10
[4,1,1,1]                 => 5
[3,3,1]                   => 9
[3,2,2]                   => 12
[3,2,1,1]                 => 6
[3,1,1,1,1]               => 3
[2,2,2,1]                 => 8
[2,2,1,1,1]               => 4
[2,1,1,1,1,1]             => 2
[1,1,1,1,1,1,1]           => 1
[8]                       => 22
[7,1]                     => 15
[6,2]                     => 22
[6,1,1]                   => 11
[5,3]                     => 21
[5,2,1]                   => 14
[5,1,1,1]                 => 7
[4,4]                     => 25
[4,3,1]                   => 15
[4,2,2]                   => 20
[4,2,1,1]                 => 10
[4,1,1,1,1]               => 5
[3,3,2]                   => 18
[3,3,1,1]                 => 9
[3,2,2,1]                 => 12
[3,2,1,1,1]               => 6
[3,1,1,1,1,1]             => 3
[2,2,2,2]                 => 16
[2,2,2,1,1]               => 8
[2,2,1,1,1,1]             => 4
[2,1,1,1,1,1,1]           => 2
[1,1,1,1,1,1,1,1]         => 1
[9]                       => 30
[8,1]                     => 22
[7,2]                     => 30
[7,1,1]                   => 15
[6,3]                     => 33
[6,2,1]                   => 22
[6,1,1,1]                 => 11
[5,4]                     => 35
[5,3,1]                   => 21
[5,2,2]                   => 28
[5,2,1,1]                 => 14
[5,1,1,1,1]               => 7
[4,4,1]                   => 25
[4,3,2]                   => 30
[4,3,1,1]                 => 15
[4,2,2,1]                 => 20
[4,2,1,1,1]               => 10
[4,1,1,1,1,1]             => 5
[3,3,3]                   => 27
[3,3,2,1]                 => 18
[3,3,1,1,1]               => 9
[3,2,2,2]                 => 24
[3,2,2,1,1]               => 12
[3,2,1,1,1,1]             => 6
[3,1,1,1,1,1,1]           => 3
[2,2,2,2,1]               => 16
[2,2,2,1,1,1]             => 8
[2,2,1,1,1,1,1]           => 4
[2,1,1,1,1,1,1,1]         => 2
[1,1,1,1,1,1,1,1,1]       => 1
[10]                      => 42
[9,1]                     => 30
[8,2]                     => 44
[8,1,1]                   => 22
[7,3]                     => 45
[7,2,1]                   => 30
[7,1,1,1]                 => 15
[6,4]                     => 55
[6,3,1]                   => 33
[6,2,2]                   => 44
[6,2,1,1]                 => 22
[6,1,1,1,1]               => 11
[5,5]                     => 49
[5,4,1]                   => 35
[5,3,2]                   => 42
[5,3,1,1]                 => 21
[5,2,2,1]                 => 28
[5,2,1,1,1]               => 14
[5,1,1,1,1,1]             => 7
[4,4,2]                   => 50
[4,4,1,1]                 => 25
[4,3,3]                   => 45
[4,3,2,1]                 => 30
[4,3,1,1,1]               => 15
[4,2,2,2]                 => 40
[4,2,2,1,1]               => 20
[4,2,1,1,1,1]             => 10
[4,1,1,1,1,1,1]           => 5
[3,3,3,1]                 => 27
[3,3,2,2]                 => 36
[3,3,2,1,1]               => 18
[3,3,1,1,1,1]             => 9
[3,2,2,2,1]               => 24
[3,2,2,1,1,1]             => 12
[3,2,1,1,1,1,1]           => 6
[3,1,1,1,1,1,1,1]         => 3
[2,2,2,2,2]               => 32
[2,2,2,2,1,1]             => 16
[2,2,2,1,1,1,1]           => 8
[2,2,1,1,1,1,1,1]         => 4
[2,1,1,1,1,1,1,1,1]       => 2
[1,1,1,1,1,1,1,1,1,1]     => 1
[11]                      => 56
[10,1]                    => 42
[9,2]                     => 60
[9,1,1]                   => 30
[8,3]                     => 66
[8,2,1]                   => 44
[8,1,1,1]                 => 22
[7,4]                     => 75
[7,3,1]                   => 45
[7,2,2]                   => 60
[7,2,1,1]                 => 30
[7,1,1,1,1]               => 15
[6,5]                     => 77
[6,4,1]                   => 55
[6,3,2]                   => 66
[6,3,1,1]                 => 33
[6,2,2,1]                 => 44
[6,2,1,1,1]               => 22
[6,1,1,1,1,1]             => 11
[5,5,1]                   => 49
[5,4,2]                   => 70
[5,4,1,1]                 => 35
[5,3,3]                   => 63
[5,3,2,1]                 => 42
[5,3,1,1,1]               => 21
[5,2,2,2]                 => 56
[5,2,2,1,1]               => 28
[5,2,1,1,1,1]             => 14
[5,1,1,1,1,1,1]           => 7
[4,4,3]                   => 75
[4,4,2,1]                 => 50
[4,4,1,1,1]               => 25
[4,3,3,1]                 => 45
[4,3,2,2]                 => 60
[4,3,2,1,1]               => 30
[4,3,1,1,1,1]             => 15
[4,2,2,2,1]               => 40
[4,2,2,1,1,1]             => 20
[4,2,1,1,1,1,1]           => 10
[4,1,1,1,1,1,1,1]         => 5
[3,3,3,2]                 => 54
[3,3,3,1,1]               => 27
[3,3,2,2,1]               => 36
[3,3,2,1,1,1]             => 18
[3,3,1,1,1,1,1]           => 9
[3,2,2,2,2]               => 48
[3,2,2,2,1,1]             => 24
[3,2,2,1,1,1,1]           => 12
[3,2,1,1,1,1,1,1]         => 6
[3,1,1,1,1,1,1,1,1]       => 3
[2,2,2,2,2,1]             => 32
[2,2,2,2,1,1,1]           => 16
[2,2,2,1,1,1,1,1]         => 8
[2,2,1,1,1,1,1,1,1]       => 4
[2,1,1,1,1,1,1,1,1,1]     => 2
[1,1,1,1,1,1,1,1,1,1,1]   => 1
[12]                      => 77
[11,1]                    => 56
[10,2]                    => 84
[10,1,1]                  => 42
[9,3]                     => 90
[9,2,1]                   => 60
[9,1,1,1]                 => 30
[8,4]                     => 110
[8,3,1]                   => 66
[8,2,2]                   => 88
[8,2,1,1]                 => 44
[8,1,1,1,1]               => 22
[7,5]                     => 105
[7,4,1]                   => 75
[7,3,2]                   => 90
[7,3,1,1]                 => 45
[7,2,2,1]                 => 60
[7,2,1,1,1]               => 30
[7,1,1,1,1,1]             => 15
[6,6]                     => 121
[6,5,1]                   => 77
[6,4,2]                   => 110
[6,4,1,1]                 => 55
[6,3,3]                   => 99
[6,3,2,1]                 => 66
[6,3,1,1,1]               => 33
[6,2,2,2]                 => 88
[6,2,2,1,1]               => 44
[6,2,1,1,1,1]             => 22
[6,1,1,1,1,1,1]           => 11
[5,5,2]                   => 98
[5,5,1,1]                 => 49
[5,4,3]                   => 105
[5,4,2,1]                 => 70
[5,4,1,1,1]               => 35
[5,3,3,1]                 => 63
[5,3,2,2]                 => 84
[5,3,2,1,1]               => 42
[5,3,1,1,1,1]             => 21
[5,2,2,2,1]               => 56
[5,2,2,1,1,1]             => 28
[5,2,1,1,1,1,1]           => 14
[5,1,1,1,1,1,1,1]         => 7
[4,4,4]                   => 125
[4,4,3,1]                 => 75
[4,4,2,2]                 => 100
[4,4,2,1,1]               => 50
[4,4,1,1,1,1]             => 25
[4,3,3,2]                 => 90
[4,3,3,1,1]               => 45
[4,3,2,2,1]               => 60
[4,3,2,1,1,1]             => 30
[4,3,1,1,1,1,1]           => 15
[4,2,2,2,2]               => 80
[4,2,2,2,1,1]             => 40
[4,2,2,1,1,1,1]           => 20
[4,2,1,1,1,1,1,1]         => 10
[4,1,1,1,1,1,1,1,1]       => 5
[3,3,3,3]                 => 81
[3,3,3,2,1]               => 54
[3,3,3,1,1,1]             => 27
[3,3,2,2,2]               => 72
[3,3,2,2,1,1]             => 36
[3,3,2,1,1,1,1]           => 18
[3,3,1,1,1,1,1,1]         => 9
[3,2,2,2,2,1]             => 48
[3,2,2,2,1,1,1]           => 24
[3,2,2,1,1,1,1,1]         => 12
[3,2,1,1,1,1,1,1,1]       => 6
[3,1,1,1,1,1,1,1,1,1]     => 3
[2,2,2,2,2,2]             => 64
[2,2,2,2,2,1,1]           => 32
[2,2,2,2,1,1,1,1]         => 16
[2,2,2,1,1,1,1,1,1]       => 8
[2,2,1,1,1,1,1,1,1,1]     => 4
[2,1,1,1,1,1,1,1,1,1,1]   => 2
[1,1,1,1,1,1,1,1,1,1,1,1] => 1

-----------------------------------------------------------------------------
Created: Aug 11, 2017 at 16:56 by Christian Stump

-----------------------------------------------------------------------------
Last Updated: Aug 11, 2017 at 16:56 by Christian Stump