Identifier
Values
=>
Cc0005;cc-rep
[1]=>[1,0]=>1 [1,1]=>[1,0,1,0]=>2 [2]=>[1,1,0,0]=>1 [1,1,1]=>[1,0,1,0,1,0]=>3 [1,2]=>[1,0,1,1,0,0]=>2 [2,1]=>[1,1,0,0,1,0]=>2 [3]=>[1,1,1,0,0,0]=>1 [1,1,1,1]=>[1,0,1,0,1,0,1,0]=>4 [1,1,2]=>[1,0,1,0,1,1,0,0]=>3 [1,2,1]=>[1,0,1,1,0,0,1,0]=>2 [1,3]=>[1,0,1,1,1,0,0,0]=>2 [2,1,1]=>[1,1,0,0,1,0,1,0]=>3 [2,2]=>[1,1,0,0,1,1,0,0]=>2 [3,1]=>[1,1,1,0,0,0,1,0]=>2 [4]=>[1,1,1,1,0,0,0,0]=>1 [1,1,1,1,1]=>[1,0,1,0,1,0,1,0,1,0]=>5 [1,1,1,2]=>[1,0,1,0,1,0,1,1,0,0]=>4 [1,1,2,1]=>[1,0,1,0,1,1,0,0,1,0]=>3 [1,1,3]=>[1,0,1,0,1,1,1,0,0,0]=>3 [1,2,1,1]=>[1,0,1,1,0,0,1,0,1,0]=>3 [1,2,2]=>[1,0,1,1,0,0,1,1,0,0]=>2 [1,3,1]=>[1,0,1,1,1,0,0,0,1,0]=>2 [1,4]=>[1,0,1,1,1,1,0,0,0,0]=>2 [2,1,1,1]=>[1,1,0,0,1,0,1,0,1,0]=>4 [2,1,2]=>[1,1,0,0,1,0,1,1,0,0]=>3 [2,2,1]=>[1,1,0,0,1,1,0,0,1,0]=>2 [2,3]=>[1,1,0,0,1,1,1,0,0,0]=>2 [3,1,1]=>[1,1,1,0,0,0,1,0,1,0]=>3 [3,2]=>[1,1,1,0,0,0,1,1,0,0]=>2 [4,1]=>[1,1,1,1,0,0,0,0,1,0]=>2 [5]=>[1,1,1,1,1,0,0,0,0,0]=>1 [1,1,1,1,1,1]=>[1,0,1,0,1,0,1,0,1,0,1,0]=>6 [1,1,1,1,2]=>[1,0,1,0,1,0,1,0,1,1,0,0]=>5 [1,1,1,2,1]=>[1,0,1,0,1,0,1,1,0,0,1,0]=>4 [1,1,1,3]=>[1,0,1,0,1,0,1,1,1,0,0,0]=>4 [1,1,2,1,1]=>[1,0,1,0,1,1,0,0,1,0,1,0]=>3 [1,1,2,2]=>[1,0,1,0,1,1,0,0,1,1,0,0]=>3 [1,1,3,1]=>[1,0,1,0,1,1,1,0,0,0,1,0]=>3 [1,1,4]=>[1,0,1,0,1,1,1,1,0,0,0,0]=>3 [1,2,1,1,1]=>[1,0,1,1,0,0,1,0,1,0,1,0]=>4 [1,2,1,2]=>[1,0,1,1,0,0,1,0,1,1,0,0]=>3 [1,2,2,1]=>[1,0,1,1,0,0,1,1,0,0,1,0]=>2 [1,2,3]=>[1,0,1,1,0,0,1,1,1,0,0,0]=>2 [1,3,1,1]=>[1,0,1,1,1,0,0,0,1,0,1,0]=>3 [1,3,2]=>[1,0,1,1,1,0,0,0,1,1,0,0]=>2 [1,4,1]=>[1,0,1,1,1,1,0,0,0,0,1,0]=>2 [1,5]=>[1,0,1,1,1,1,1,0,0,0,0,0]=>2 [2,1,1,1,1]=>[1,1,0,0,1,0,1,0,1,0,1,0]=>5 [2,1,1,2]=>[1,1,0,0,1,0,1,0,1,1,0,0]=>4 [2,1,2,1]=>[1,1,0,0,1,0,1,1,0,0,1,0]=>3 [2,1,3]=>[1,1,0,0,1,0,1,1,1,0,0,0]=>3 [2,2,1,1]=>[1,1,0,0,1,1,0,0,1,0,1,0]=>3 [2,2,2]=>[1,1,0,0,1,1,0,0,1,1,0,0]=>2 [2,3,1]=>[1,1,0,0,1,1,1,0,0,0,1,0]=>2 [2,4]=>[1,1,0,0,1,1,1,1,0,0,0,0]=>2 [3,1,1,1]=>[1,1,1,0,0,0,1,0,1,0,1,0]=>4 [3,1,2]=>[1,1,1,0,0,0,1,0,1,1,0,0]=>3 [3,2,1]=>[1,1,1,0,0,0,1,1,0,0,1,0]=>2 [3,3]=>[1,1,1,0,0,0,1,1,1,0,0,0]=>2 [4,1,1]=>[1,1,1,1,0,0,0,0,1,0,1,0]=>3 [4,2]=>[1,1,1,1,0,0,0,0,1,1,0,0]=>2 [5,1]=>[1,1,1,1,1,0,0,0,0,0,1,0]=>2 [6]=>[1,1,1,1,1,1,0,0,0,0,0,0]=>1
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The k-Gorenstein degree of the corresponding Nakayama algebra with linear quiver.
The $k$-Gorenstein degree is the maximal number $k$ such that the algebra is $k$-Gorenstein. We apply the convention that the value is equal to the global dimension of the algebra in case the $k$-Gorenstein degree is greater than or equal to the global dimension.
Map
bounce path
Description
The bounce path determined by an integer composition.