*****************************************************************************
*       www.FindStat.org - The Combinatorial Statistic Finder               *
*                                                                           *
*       Copyright (C) 2019 The FindStatCrew <info@findstat.org>             *
*                                                                           *
*    This information is distributed in the hope that it will be useful,    *
*    but WITHOUT ANY WARRANTY; without even the implied warranty of         *
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                   *
*****************************************************************************

-----------------------------------------------------------------------------
Statistic identifier: St000929

-----------------------------------------------------------------------------
Collection: Integer partitions

-----------------------------------------------------------------------------
Description: The constant term of the character polynomial of an integer partition.

The definition of the character polynomial can be found in [1]. Indeed, this constant term is $0$ for partitions $\lambda \neq 1^n$ and $1$ for $\lambda = 1^n$.

-----------------------------------------------------------------------------
References: [1]   Garsia, A. M., Goupil, A. Character polynomials, their $q$-analogs and the Kronecker product [[MathSciNet:2576382]]

-----------------------------------------------------------------------------
Code:
def statistic(L):
    return L.character_polynomial()(*[0]*sum(L))

-----------------------------------------------------------------------------
Statistic values:

[2]                       => 0
[1,1]                     => 1
[3]                       => 0
[2,1]                     => 0
[1,1,1]                   => 1
[4]                       => 0
[3,1]                     => 0
[2,2]                     => 0
[2,1,1]                   => 0
[1,1,1,1]                 => 1
[5]                       => 0
[4,1]                     => 0
[3,2]                     => 0
[3,1,1]                   => 0
[2,2,1]                   => 0
[2,1,1,1]                 => 0
[1,1,1,1,1]               => 1
[6]                       => 0
[5,1]                     => 0
[4,2]                     => 0
[4,1,1]                   => 0
[3,3]                     => 0
[3,2,1]                   => 0
[3,1,1,1]                 => 0
[2,2,2]                   => 0
[2,2,1,1]                 => 0
[2,1,1,1,1]               => 0
[1,1,1,1,1,1]             => 1
[7]                       => 0
[6,1]                     => 0
[5,2]                     => 0
[5,1,1]                   => 0
[4,3]                     => 0
[4,2,1]                   => 0
[4,1,1,1]                 => 0
[3,3,1]                   => 0
[3,2,2]                   => 0
[3,2,1,1]                 => 0
[3,1,1,1,1]               => 0
[2,2,2,1]                 => 0
[2,2,1,1,1]               => 0
[2,1,1,1,1,1]             => 0
[1,1,1,1,1,1,1]           => 1
[8]                       => 0
[7,1]                     => 0
[6,2]                     => 0
[6,1,1]                   => 0
[5,3]                     => 0
[5,2,1]                   => 0
[5,1,1,1]                 => 0
[4,4]                     => 0
[4,3,1]                   => 0
[4,2,2]                   => 0
[4,2,1,1]                 => 0
[4,1,1,1,1]               => 0
[3,3,2]                   => 0
[3,3,1,1]                 => 0
[3,2,2,1]                 => 0
[3,2,1,1,1]               => 0
[3,1,1,1,1,1]             => 0
[2,2,2,2]                 => 0
[2,2,2,1,1]               => 0
[2,2,1,1,1,1]             => 0
[2,1,1,1,1,1,1]           => 0
[1,1,1,1,1,1,1,1]         => 1
[9]                       => 0
[8,1]                     => 0
[7,2]                     => 0
[7,1,1]                   => 0
[6,3]                     => 0
[6,2,1]                   => 0
[6,1,1,1]                 => 0
[5,4]                     => 0
[5,3,1]                   => 0
[5,2,2]                   => 0
[5,2,1,1]                 => 0
[5,1,1,1,1]               => 0
[4,4,1]                   => 0
[4,3,2]                   => 0
[4,3,1,1]                 => 0
[4,2,2,1]                 => 0
[4,2,1,1,1]               => 0
[4,1,1,1,1,1]             => 0
[3,3,3]                   => 0
[3,3,2,1]                 => 0
[3,3,1,1,1]               => 0
[3,2,2,2]                 => 0
[3,2,2,1,1]               => 0
[3,2,1,1,1,1]             => 0
[3,1,1,1,1,1,1]           => 0
[2,2,2,2,1]               => 0
[2,2,2,1,1,1]             => 0
[2,2,1,1,1,1,1]           => 0
[2,1,1,1,1,1,1,1]         => 0
[1,1,1,1,1,1,1,1,1]       => 1
[10]                      => 0
[9,1]                     => 0
[8,2]                     => 0
[8,1,1]                   => 0
[7,3]                     => 0
[7,2,1]                   => 0
[7,1,1,1]                 => 0
[6,4]                     => 0
[6,3,1]                   => 0
[6,2,2]                   => 0
[6,2,1,1]                 => 0
[6,1,1,1,1]               => 0
[5,5]                     => 0
[5,4,1]                   => 0
[5,3,2]                   => 0
[5,3,1,1]                 => 0
[5,2,2,1]                 => 0
[5,2,1,1,1]               => 0
[5,1,1,1,1,1]             => 0
[4,4,2]                   => 0
[4,4,1,1]                 => 0
[4,3,3]                   => 0
[4,3,2,1]                 => 0
[4,3,1,1,1]               => 0
[4,2,2,2]                 => 0
[4,2,2,1,1]               => 0
[4,2,1,1,1,1]             => 0
[4,1,1,1,1,1,1]           => 0
[3,3,3,1]                 => 0
[3,3,2,2]                 => 0
[3,3,2,1,1]               => 0
[3,3,1,1,1,1]             => 0
[3,2,2,2,1]               => 0
[3,2,2,1,1,1]             => 0
[3,2,1,1,1,1,1]           => 0
[3,1,1,1,1,1,1,1]         => 0
[2,2,2,2,2]               => 0
[2,2,2,2,1,1]             => 0
[2,2,2,1,1,1,1]           => 0
[2,2,1,1,1,1,1,1]         => 0
[2,1,1,1,1,1,1,1,1]       => 0
[1,1,1,1,1,1,1,1,1,1]     => 1
[11]                      => 0
[10,1]                    => 0
[9,2]                     => 0
[9,1,1]                   => 0
[8,3]                     => 0
[8,2,1]                   => 0
[8,1,1,1]                 => 0
[7,4]                     => 0
[7,3,1]                   => 0
[7,2,2]                   => 0
[7,2,1,1]                 => 0
[7,1,1,1,1]               => 0
[6,5]                     => 0
[6,4,1]                   => 0
[6,3,2]                   => 0
[6,3,1,1]                 => 0
[6,2,2,1]                 => 0
[6,2,1,1,1]               => 0
[6,1,1,1,1,1]             => 0
[5,5,1]                   => 0
[5,4,2]                   => 0
[5,4,1,1]                 => 0
[5,3,3]                   => 0
[5,3,2,1]                 => 0
[5,3,1,1,1]               => 0
[5,2,2,2]                 => 0
[5,2,2,1,1]               => 0
[5,2,1,1,1,1]             => 0
[5,1,1,1,1,1,1]           => 0
[4,4,3]                   => 0
[4,4,2,1]                 => 0
[4,4,1,1,1]               => 0
[4,3,3,1]                 => 0
[4,3,2,2]                 => 0
[4,3,2,1,1]               => 0
[4,3,1,1,1,1]             => 0
[4,2,2,2,1]               => 0
[4,2,2,1,1,1]             => 0
[4,2,1,1,1,1,1]           => 0
[4,1,1,1,1,1,1,1]         => 0
[3,3,3,2]                 => 0
[3,3,3,1,1]               => 0
[3,3,2,2,1]               => 0
[3,3,2,1,1,1]             => 0
[3,3,1,1,1,1,1]           => 0
[3,2,2,2,2]               => 0
[3,2,2,2,1,1]             => 0
[3,2,2,1,1,1,1]           => 0
[3,2,1,1,1,1,1,1]         => 0
[3,1,1,1,1,1,1,1,1]       => 0
[2,2,2,2,2,1]             => 0
[2,2,2,2,1,1,1]           => 0
[2,2,2,1,1,1,1,1]         => 0
[2,2,1,1,1,1,1,1,1]       => 0
[2,1,1,1,1,1,1,1,1,1]     => 0
[1,1,1,1,1,1,1,1,1,1,1]   => 1
[12]                      => 0
[11,1]                    => 0
[10,2]                    => 0
[10,1,1]                  => 0
[9,3]                     => 0
[9,2,1]                   => 0
[9,1,1,1]                 => 0
[8,4]                     => 0
[8,3,1]                   => 0
[8,2,2]                   => 0
[8,2,1,1]                 => 0
[8,1,1,1,1]               => 0
[7,5]                     => 0
[7,4,1]                   => 0
[7,3,2]                   => 0
[7,3,1,1]                 => 0
[7,2,2,1]                 => 0
[7,2,1,1,1]               => 0
[7,1,1,1,1,1]             => 0
[6,6]                     => 0
[6,5,1]                   => 0
[6,4,2]                   => 0
[6,4,1,1]                 => 0
[6,3,3]                   => 0
[6,3,2,1]                 => 0
[6,3,1,1,1]               => 0
[6,2,2,2]                 => 0
[6,2,2,1,1]               => 0
[6,2,1,1,1,1]             => 0
[6,1,1,1,1,1,1]           => 0
[5,5,2]                   => 0
[5,5,1,1]                 => 0
[5,4,3]                   => 0
[5,4,2,1]                 => 0
[5,4,1,1,1]               => 0
[5,3,3,1]                 => 0
[5,3,2,2]                 => 0
[5,3,2,1,1]               => 0
[5,3,1,1,1,1]             => 0
[5,2,2,2,1]               => 0
[5,2,2,1,1,1]             => 0
[5,2,1,1,1,1,1]           => 0
[5,1,1,1,1,1,1,1]         => 0
[4,4,4]                   => 0
[4,4,3,1]                 => 0
[4,4,2,2]                 => 0
[4,4,2,1,1]               => 0
[4,4,1,1,1,1]             => 0
[4,3,3,2]                 => 0
[4,3,3,1,1]               => 0
[4,3,2,2,1]               => 0
[4,3,2,1,1,1]             => 0
[4,3,1,1,1,1,1]           => 0
[4,2,2,2,2]               => 0
[4,2,2,2,1,1]             => 0
[4,2,2,1,1,1,1]           => 0
[4,2,1,1,1,1,1,1]         => 0
[4,1,1,1,1,1,1,1,1]       => 0
[3,3,3,3]                 => 0
[3,3,3,2,1]               => 0
[3,3,3,1,1,1]             => 0
[3,3,2,2,2]               => 0
[3,3,2,2,1,1]             => 0
[3,3,2,1,1,1,1]           => 0
[3,3,1,1,1,1,1,1]         => 0
[3,2,2,2,2,1]             => 0
[3,2,2,2,1,1,1]           => 0
[3,2,2,1,1,1,1,1]         => 0
[3,2,1,1,1,1,1,1,1]       => 0
[3,1,1,1,1,1,1,1,1,1]     => 0
[2,2,2,2,2,2]             => 0
[2,2,2,2,2,1,1]           => 0
[2,2,2,2,1,1,1,1]         => 0
[2,2,2,1,1,1,1,1,1]       => 0
[2,2,1,1,1,1,1,1,1,1]     => 0
[2,1,1,1,1,1,1,1,1,1,1]   => 0
[1,1,1,1,1,1,1,1,1,1,1,1] => 1

-----------------------------------------------------------------------------
Created: Aug 07, 2017 at 13:59 by Christian Stump

-----------------------------------------------------------------------------
Last Updated: Aug 07, 2017 at 20:05 by Christian Stump