*****************************************************************************
*       www.FindStat.org - The Combinatorial Statistic Finder               *
*                                                                           *
*       Copyright (C) 2019 The FindStatCrew <info@findstat.org>             *
*                                                                           *
*    This information is distributed in the hope that it will be useful,    *
*    but WITHOUT ANY WARRANTY; without even the implied warranty of         *
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                   *
*****************************************************************************

-----------------------------------------------------------------------------
Statistic identifier: St000927

-----------------------------------------------------------------------------
Collection: Integer partitions

-----------------------------------------------------------------------------
Description: The alternating sum of the coefficients of the character polynomial of an integer partition.

The definition of the character polynomial can be found in [1].

-----------------------------------------------------------------------------
References: [1]   Garsia, A. M., Goupil, A. Character polynomials, their $q$-analogs and the Kronecker product [[MathSciNet:2576382]]

-----------------------------------------------------------------------------
Code:
def statistic(L):
    return L.character_polynomial()(*[-1]*sum(L))


-----------------------------------------------------------------------------
Statistic values:

[2]                       => 1
[1,1]                     => 4
[3]                       => -1
[2,1]                     => -4
[1,1,1]                   => -7
[4]                       => 2
[3,1]                     => 4
[2,2]                     => 6
[2,1,1]                   => 9
[1,1,1,1]                 => 12
[5]                       => -2
[4,1]                     => -7
[3,2]                     => -10
[3,1,1]                   => -11
[2,2,1]                   => -17
[2,1,1,1]                 => -19
[1,1,1,1,1]               => -19
[6]                       => 2
[5,1]                     => 9
[4,2]                     => 14
[4,1,1]                   => 22
[3,3]                     => 15
[3,2,1]                   => 36
[3,1,1,1]                 => 26
[2,2,2]                   => 15
[2,2,1,1]                 => 42
[2,1,1,1,1]               => 34
[1,1,1,1,1,1]             => 30
[7]                       => -2
[6,1]                     => -11
[5,2]                     => -22
[5,1,1]                   => -32
[4,3]                     => -29
[4,2,1]                   => -70
[4,1,1,1]                 => -53
[3,3,1]                   => -56
[3,2,2]                   => -48
[3,2,1,1]                 => -102
[3,1,1,1,1]               => -53
[2,2,2,1]                 => -58
[2,2,1,1,1]               => -83
[2,1,1,1,1,1]             => -60
[1,1,1,1,1,1,1]           => -45
[8]                       => 3
[7,1]                     => 12
[6,2]                     => 36
[6,1,1]                   => 41
[5,3]                     => 46
[5,2,1]                   => 125
[5,1,1,1]                 => 87
[4,4]                     => 39
[4,3,1]                   => 150
[4,2,2]                   => 127
[4,2,1,1]                 => 218
[4,1,1,1,1]               => 116
[3,3,2]                   => 98
[3,3,1,1]                 => 174
[3,2,2,1]                 => 202
[3,2,1,1,1]               => 233
[3,1,1,1,1,1]             => 101
[2,2,2,2]                 => 68
[2,2,2,1,1]               => 138
[2,2,1,1,1,1]             => 158
[2,1,1,1,1,1,1]           => 98
[1,1,1,1,1,1,1,1]         => 67
[9]                       => -4
[8,1]                     => -15
[7,2]                     => -48
[7,1,1]                   => -52
[6,3]                     => -85
[6,2,1]                   => -202
[6,1,1,1]                 => -127
[5,4]                     => -84
[5,3,1]                   => -314
[5,2,2]                   => -260
[5,2,1,1]                 => -430
[5,1,1,1,1]               => -206
[4,4,1]                   => -200
[4,3,2]                   => -371
[4,3,1,1]                 => -537
[4,2,2,1]                 => -552
[4,2,1,1,1]               => -560
[4,1,1,1,1,1]             => -231
[3,3,3]                   => -98
[3,3,2,1]                 => -472
[3,3,1,1,1]               => -430
[3,2,2,2]                 => -274
[3,2,2,1,1]               => -560
[3,2,1,1,1,1]             => -484
[3,1,1,1,1,1,1]           => -181
[2,2,2,2,1]               => -212
[2,2,2,1,1,1]             => -300
[2,2,1,1,1,1,1]           => -275
[2,1,1,1,1,1,1,1]         => -157
[1,1,1,1,1,1,1,1,1]       => -97
[10]                      => 4
[9,1]                     => 20
[8,2]                     => 58
[8,1,1]                   => 71
[7,3]                     => 140
[7,2,1]                   => 300
[7,1,1,1]                 => 176
[6,4]                     => 157
[6,3,1]                   => 609
[6,2,2]                   => 447
[6,2,1,1]                 => 768
[6,1,1,1,1]               => 326
[5,5]                     => 99
[5,4,1]                   => 594
[5,3,2]                   => 956
[5,3,1,1]                 => 1259
[5,2,2,1]                 => 1254
[5,2,1,1,1]               => 1197
[5,1,1,1,1,1]             => 446
[4,4,2]                   => 548
[4,4,1,1]                 => 775
[4,3,3]                   => 485
[4,3,2,1]                 => 1924
[4,3,1,1,1]               => 1514
[4,2,2,2]                 => 803
[4,2,2,1,1]               => 1696
[4,2,1,1,1,1]             => 1256
[4,1,1,1,1,1,1]           => 436
[3,3,3,1]                 => 554
[3,3,2,2]                 => 778
[3,3,2,1,1]               => 1452
[3,3,1,1,1,1]             => 960
[3,2,2,2,1]               => 1041
[3,2,2,1,1,1]             => 1322
[3,2,1,1,1,1,1]           => 927
[3,1,1,1,1,1,1,1]         => 309
[2,2,2,2,2]               => 196
[2,2,2,2,1,1]             => 539
[2,2,2,1,1,1,1]           => 574
[2,2,1,1,1,1,1,1]         => 465
[2,1,1,1,1,1,1,1,1]       => 242
[1,1,1,1,1,1,1,1,1,1]     => 139
[11]                      => -4
[10,1]                    => -24
[9,2]                     => -76
[9,1,1]                   => -94
[8,3]                     => -196
[8,2,1]                   => -428
[8,1,1,1]                 => -249
[7,4]                     => -299
[7,3,1]                   => -1056
[7,2,2]                   => -739
[7,2,1,1]                 => -1244
[7,1,1,1,1]               => -497
[6,5]                     => -252
[6,4,1]                   => -1350
[6,3,2]                   => -2012
[6,3,1,1]                 => -2647
[6,2,2,1]                 => -2462
[6,2,1,1,1]               => -2296
[6,1,1,1,1,1]             => -765
[5,5,1]                   => -712
[5,4,2]                   => -2089
[5,4,1,1]                 => -2624
[5,3,3]                   => -1457
[5,3,2,1]                 => -5397
[5,3,1,1,1]               => -3937
[5,2,2,2]                 => -2046
[5,2,2,1,1]               => -4173
[5,2,1,1,1,1]             => -2902
[5,1,1,1,1,1,1]           => -895
[4,4,3]                   => -1026
[4,4,2,1]                 => -3240
[4,4,1,1,1]               => -2338
[4,3,3,1]                 => -2970
[4,3,2,2]                 => -3503
[4,3,2,1,1]               => -6576
[4,3,1,1,1,1]             => -3711
[4,2,2,2,1]               => -3530
[4,2,2,1,1,1]             => -4292
[4,2,1,1,1,1,1]           => -2598
[4,1,1,1,1,1,1,1]         => -777
[3,3,3,2]                 => -1338
[3,3,3,1,1]               => -1977
[3,3,2,2,1]               => -3299
[3,3,2,1,1,1]             => -3735
[3,3,1,1,1,1,1]           => -1951
[3,2,2,2,2]               => -1218
[3,2,2,2,1,1]             => -2898
[3,2,2,1,1,1,1]           => -2786
[3,2,1,1,1,1,1,1]         => -1682
[3,1,1,1,1,1,1,1,1]       => -509
[2,2,2,2,2,1]             => -738
[2,2,2,2,1,1,1]           => -1141
[2,2,2,1,1,1,1,1]         => -1047
[2,2,1,1,1,1,1,1,1]       => -751
[2,1,1,1,1,1,1,1,1,1]     => -367
[1,1,1,1,1,1,1,1,1,1,1]   => -195
[12]                      => 5
[11,1]                    => 27
[10,2]                    => 104
[10,1,1]                  => 115
[9,3]                     => 268
[9,2,1]                   => 596
[9,1,1,1]                 => 351
[8,4]                     => 507
[8,3,1]                   => 1670
[8,2,2]                   => 1195
[8,2,1,1]                 => 1904
[8,1,1,1,1]               => 757
[7,5]                     => 531
[7,4,1]                   => 2715
[7,3,2]                   => 3782
[7,3,1,1]                 => 4979
[7,2,2,1]                 => 4434
[7,2,1,1,1]               => 4033
[7,1,1,1,1,1]             => 1250
[6,6]                     => 286
[6,5,1]                   => 2296
[6,4,2]                   => 5503
[6,4,1,1]                 => 6567
[6,3,3]                   => 3443
[6,3,2,1]                 => 12517
[6,3,1,1,1]               => 8914
[6,2,2,2]                 => 4561
[6,2,2,1,1]               => 8883
[6,2,1,1,1,1]             => 5986
[6,1,1,1,1,1,1]           => 1642
[5,5,2]                   => 2760
[5,5,1,1]                 => 3414
[5,4,3]                   => 4564
[5,4,2,1]                 => 13338
[5,4,1,1,1]               => 8883
[5,3,3,1]                 => 9874
[5,3,2,2]                 => 10886
[5,3,2,1,1]               => 20110
[5,3,1,1,1,1]             => 10472
[5,2,2,2,1]               => 9745
[5,2,2,1,1,1]             => 11418
[5,2,1,1,1,1,1]           => 6402
[5,1,1,1,1,1,1,1]         => 1696
[4,4,4]                   => 1075
[4,4,3,1]                 => 7188
[4,4,2,2]                 => 6853
[4,4,2,1,1]               => 12097
[4,4,1,1,1,1]             => 6171
[4,3,3,2]                 => 7765
[4,3,3,1,1]               => 11574
[4,3,2,2,1]               => 16902
[4,3,2,1,1,1]             => 18289
[4,3,1,1,1,1,1]           => 8222
[4,2,2,2,2]               => 4809
[4,2,2,2,1,1]             => 10659
[4,2,2,1,1,1,1]           => 9729
[4,2,1,1,1,1,1,1]         => 5014
[4,1,1,1,1,1,1,1,1]       => 1337
[3,3,3,3]                 => 1408
[3,3,3,2,1]               => 6596
[3,3,3,1,1,1]             => 5650
[3,3,2,2,2]               => 4467
[3,3,2,2,1,1]             => 10034
[3,3,2,1,1,1,1]           => 8458
[3,3,1,1,1,1,1,1]         => 3749
[3,2,2,2,2,1]             => 4824
[3,2,2,2,1,1,1]           => 6810
[3,2,2,1,1,1,1,1]         => 5454
[3,2,1,1,1,1,1,1,1]       => 2911
[3,1,1,1,1,1,1,1,1,1]     => 814
[2,2,2,2,2,2]             => 791
[2,2,2,2,2,1,1]           => 1859
[2,2,2,2,1,1,1,1]         => 2251
[2,2,2,1,1,1,1,1,1]       => 1804
[2,2,1,1,1,1,1,1,1,1]     => 1187
[2,1,1,1,1,1,1,1,1,1,1]   => 541
[1,1,1,1,1,1,1,1,1,1,1,1] => 272

-----------------------------------------------------------------------------
Created: Aug 07, 2017 at 14:00 by Christian Stump

-----------------------------------------------------------------------------
Last Updated: Aug 07, 2017 at 14:00 by Christian Stump