Identifier
Values
[(1,2)] => 1
[(1,2),(3,4)] => 2
[(1,3),(2,4)] => 1
[(1,4),(2,3)] => 2
[(1,2),(3,4),(5,6)] => 3
[(1,3),(2,4),(5,6)] => 2
[(1,4),(2,3),(5,6)] => 3
[(1,5),(2,3),(4,6)] => 2
[(1,6),(2,3),(4,5)] => 3
[(1,6),(2,4),(3,5)] => 2
[(1,5),(2,4),(3,6)] => 1
[(1,4),(2,5),(3,6)] => 1
[(1,3),(2,5),(4,6)] => 1
[(1,2),(3,5),(4,6)] => 2
[(1,2),(3,6),(4,5)] => 3
[(1,3),(2,6),(4,5)] => 2
[(1,4),(2,6),(3,5)] => 1
[(1,5),(2,6),(3,4)] => 2
[(1,6),(2,5),(3,4)] => 3
[(1,2),(3,4),(5,6),(7,8)] => 4
[(1,3),(2,4),(5,6),(7,8)] => 3
[(1,4),(2,3),(5,6),(7,8)] => 4
[(1,5),(2,3),(4,6),(7,8)] => 3
[(1,6),(2,3),(4,5),(7,8)] => 4
[(1,7),(2,3),(4,5),(6,8)] => 3
[(1,8),(2,3),(4,5),(6,7)] => 4
[(1,8),(2,4),(3,5),(6,7)] => 3
[(1,7),(2,4),(3,5),(6,8)] => 2
[(1,6),(2,4),(3,5),(7,8)] => 3
[(1,5),(2,4),(3,6),(7,8)] => 2
[(1,4),(2,5),(3,6),(7,8)] => 2
[(1,3),(2,5),(4,6),(7,8)] => 2
[(1,2),(3,5),(4,6),(7,8)] => 3
[(1,2),(3,6),(4,5),(7,8)] => 4
[(1,3),(2,6),(4,5),(7,8)] => 3
[(1,4),(2,6),(3,5),(7,8)] => 2
[(1,5),(2,6),(3,4),(7,8)] => 3
[(1,6),(2,5),(3,4),(7,8)] => 4
[(1,7),(2,5),(3,4),(6,8)] => 3
[(1,8),(2,5),(3,4),(6,7)] => 4
[(1,8),(2,6),(3,4),(5,7)] => 3
[(1,7),(2,6),(3,4),(5,8)] => 2
[(1,6),(2,7),(3,4),(5,8)] => 2
[(1,5),(2,7),(3,4),(6,8)] => 2
[(1,4),(2,7),(3,5),(6,8)] => 1
[(1,3),(2,7),(4,5),(6,8)] => 2
[(1,2),(3,7),(4,5),(6,8)] => 3
[(1,2),(3,8),(4,5),(6,7)] => 4
[(1,3),(2,8),(4,5),(6,7)] => 3
[(1,4),(2,8),(3,5),(6,7)] => 2
[(1,5),(2,8),(3,4),(6,7)] => 3
[(1,6),(2,8),(3,4),(5,7)] => 2
[(1,7),(2,8),(3,4),(5,6)] => 3
[(1,8),(2,7),(3,4),(5,6)] => 4
[(1,8),(2,7),(3,5),(4,6)] => 3
[(1,7),(2,8),(3,5),(4,6)] => 2
[(1,6),(2,8),(3,5),(4,7)] => 1
[(1,5),(2,8),(3,6),(4,7)] => 1
[(1,4),(2,8),(3,6),(5,7)] => 1
[(1,3),(2,8),(4,6),(5,7)] => 2
[(1,2),(3,8),(4,6),(5,7)] => 3
[(1,2),(3,7),(4,6),(5,8)] => 2
[(1,3),(2,7),(4,6),(5,8)] => 1
[(1,4),(2,7),(3,6),(5,8)] => 1
[(1,5),(2,7),(3,6),(4,8)] => 1
[(1,6),(2,7),(3,5),(4,8)] => 1
[(1,7),(2,6),(3,5),(4,8)] => 1
[(1,8),(2,6),(3,5),(4,7)] => 2
[(1,8),(2,5),(3,6),(4,7)] => 2
[(1,7),(2,5),(3,6),(4,8)] => 1
[(1,6),(2,5),(3,7),(4,8)] => 1
[(1,5),(2,6),(3,7),(4,8)] => 1
[(1,4),(2,6),(3,7),(5,8)] => 1
[(1,3),(2,6),(4,7),(5,8)] => 1
[(1,2),(3,6),(4,7),(5,8)] => 2
[(1,2),(3,5),(4,7),(6,8)] => 2
[(1,3),(2,5),(4,7),(6,8)] => 1
[(1,4),(2,5),(3,7),(6,8)] => 1
[(1,5),(2,4),(3,7),(6,8)] => 1
[(1,6),(2,4),(3,7),(5,8)] => 1
[(1,7),(2,4),(3,6),(5,8)] => 1
[(1,8),(2,4),(3,6),(5,7)] => 2
[(1,8),(2,3),(4,6),(5,7)] => 3
[(1,7),(2,3),(4,6),(5,8)] => 2
[(1,6),(2,3),(4,7),(5,8)] => 2
[(1,5),(2,3),(4,7),(6,8)] => 2
[(1,4),(2,3),(5,7),(6,8)] => 3
[(1,3),(2,4),(5,7),(6,8)] => 2
[(1,2),(3,4),(5,7),(6,8)] => 3
[(1,2),(3,4),(5,8),(6,7)] => 4
[(1,3),(2,4),(5,8),(6,7)] => 3
[(1,4),(2,3),(5,8),(6,7)] => 4
[(1,5),(2,3),(4,8),(6,7)] => 3
[(1,6),(2,3),(4,8),(5,7)] => 2
[(1,7),(2,3),(4,8),(5,6)] => 3
[(1,8),(2,3),(4,7),(5,6)] => 4
[(1,8),(2,4),(3,7),(5,6)] => 3
[(1,7),(2,4),(3,8),(5,6)] => 2
[(1,6),(2,4),(3,8),(5,7)] => 1
[(1,5),(2,4),(3,8),(6,7)] => 2
[(1,4),(2,5),(3,8),(6,7)] => 2
>>> Load all 1200 entries. <<<[(1,3),(2,5),(4,8),(6,7)] => 2
[(1,2),(3,5),(4,8),(6,7)] => 3
[(1,2),(3,6),(4,8),(5,7)] => 2
[(1,3),(2,6),(4,8),(5,7)] => 1
[(1,4),(2,6),(3,8),(5,7)] => 1
[(1,5),(2,6),(3,8),(4,7)] => 1
[(1,6),(2,5),(3,8),(4,7)] => 1
[(1,7),(2,5),(3,8),(4,6)] => 1
[(1,8),(2,5),(3,7),(4,6)] => 2
[(1,8),(2,6),(3,7),(4,5)] => 3
[(1,7),(2,6),(3,8),(4,5)] => 2
[(1,6),(2,7),(3,8),(4,5)] => 2
[(1,5),(2,7),(3,8),(4,6)] => 1
[(1,4),(2,7),(3,8),(5,6)] => 2
[(1,3),(2,7),(4,8),(5,6)] => 2
[(1,2),(3,7),(4,8),(5,6)] => 3
[(1,2),(3,8),(4,7),(5,6)] => 4
[(1,3),(2,8),(4,7),(5,6)] => 3
[(1,4),(2,8),(3,7),(5,6)] => 2
[(1,5),(2,8),(3,7),(4,6)] => 1
[(1,6),(2,8),(3,7),(4,5)] => 2
[(1,7),(2,8),(3,6),(4,5)] => 3
[(1,8),(2,7),(3,6),(4,5)] => 4
[(1,2),(3,4),(5,6),(7,8),(9,10)] => 5
[(1,3),(2,4),(5,6),(7,8),(9,10)] => 4
[(1,4),(2,3),(5,6),(7,8),(9,10)] => 5
[(1,5),(2,3),(4,6),(7,8),(9,10)] => 4
[(1,6),(2,3),(4,5),(7,8),(9,10)] => 5
[(1,7),(2,3),(4,5),(6,8),(9,10)] => 4
[(1,8),(2,3),(4,5),(6,7),(9,10)] => 5
[(1,9),(2,3),(4,5),(6,7),(8,10)] => 4
[(1,10),(2,3),(4,5),(6,7),(8,9)] => 5
[(1,10),(2,4),(3,5),(6,7),(8,9)] => 4
[(1,9),(2,4),(3,5),(6,7),(8,10)] => 3
[(1,8),(2,4),(3,5),(6,7),(9,10)] => 4
[(1,7),(2,4),(3,5),(6,8),(9,10)] => 3
[(1,6),(2,4),(3,5),(7,8),(9,10)] => 4
[(1,5),(2,4),(3,6),(7,8),(9,10)] => 3
[(1,4),(2,5),(3,6),(7,8),(9,10)] => 3
[(1,3),(2,5),(4,6),(7,8),(9,10)] => 3
[(1,2),(3,5),(4,6),(7,8),(9,10)] => 4
[(1,2),(3,6),(4,5),(7,8),(9,10)] => 5
[(1,3),(2,6),(4,5),(7,8),(9,10)] => 4
[(1,4),(2,6),(3,5),(7,8),(9,10)] => 3
[(1,5),(2,6),(3,4),(7,8),(9,10)] => 4
[(1,6),(2,5),(3,4),(7,8),(9,10)] => 5
[(1,7),(2,5),(3,4),(6,8),(9,10)] => 4
[(1,8),(2,5),(3,4),(6,7),(9,10)] => 5
[(1,9),(2,5),(3,4),(6,7),(8,10)] => 4
[(1,10),(2,5),(3,4),(6,7),(8,9)] => 5
[(1,10),(2,6),(3,4),(5,7),(8,9)] => 4
[(1,9),(2,6),(3,4),(5,7),(8,10)] => 3
[(1,8),(2,6),(3,4),(5,7),(9,10)] => 4
[(1,7),(2,6),(3,4),(5,8),(9,10)] => 3
[(1,6),(2,7),(3,4),(5,8),(9,10)] => 3
[(1,5),(2,7),(3,4),(6,8),(9,10)] => 3
[(1,4),(2,7),(3,5),(6,8),(9,10)] => 2
[(1,3),(2,7),(4,5),(6,8),(9,10)] => 3
[(1,2),(3,7),(4,5),(6,8),(9,10)] => 4
[(1,2),(3,8),(4,5),(6,7),(9,10)] => 5
[(1,3),(2,8),(4,5),(6,7),(9,10)] => 4
[(1,4),(2,8),(3,5),(6,7),(9,10)] => 3
[(1,5),(2,8),(3,4),(6,7),(9,10)] => 4
[(1,6),(2,8),(3,4),(5,7),(9,10)] => 3
[(1,7),(2,8),(3,4),(5,6),(9,10)] => 4
[(1,8),(2,7),(3,4),(5,6),(9,10)] => 5
[(1,9),(2,7),(3,4),(5,6),(8,10)] => 4
[(1,10),(2,7),(3,4),(5,6),(8,9)] => 5
[(1,10),(2,8),(3,4),(5,6),(7,9)] => 4
[(1,9),(2,8),(3,4),(5,6),(7,10)] => 3
[(1,8),(2,9),(3,4),(5,6),(7,10)] => 3
[(1,7),(2,9),(3,4),(5,6),(8,10)] => 3
[(1,6),(2,9),(3,4),(5,7),(8,10)] => 2
[(1,5),(2,9),(3,4),(6,7),(8,10)] => 3
[(1,4),(2,9),(3,5),(6,7),(8,10)] => 2
[(1,3),(2,9),(4,5),(6,7),(8,10)] => 3
[(1,2),(3,9),(4,5),(6,7),(8,10)] => 4
[(1,2),(3,10),(4,5),(6,7),(8,9)] => 5
[(1,3),(2,10),(4,5),(6,7),(8,9)] => 4
[(1,4),(2,10),(3,5),(6,7),(8,9)] => 3
[(1,5),(2,10),(3,4),(6,7),(8,9)] => 4
[(1,6),(2,10),(3,4),(5,7),(8,9)] => 3
[(1,7),(2,10),(3,4),(5,6),(8,9)] => 4
[(1,8),(2,10),(3,4),(5,6),(7,9)] => 3
[(1,9),(2,10),(3,4),(5,6),(7,8)] => 4
[(1,10),(2,9),(3,4),(5,6),(7,8)] => 5
[(1,10),(2,9),(3,5),(4,6),(7,8)] => 4
[(1,9),(2,10),(3,5),(4,6),(7,8)] => 3
[(1,8),(2,10),(3,5),(4,6),(7,9)] => 2
[(1,7),(2,10),(3,5),(4,6),(8,9)] => 3
[(1,6),(2,10),(3,5),(4,7),(8,9)] => 2
[(1,5),(2,10),(3,6),(4,7),(8,9)] => 2
[(1,4),(2,10),(3,6),(5,7),(8,9)] => 2
[(1,3),(2,10),(4,6),(5,7),(8,9)] => 3
[(1,2),(3,10),(4,6),(5,7),(8,9)] => 4
[(1,2),(3,9),(4,6),(5,7),(8,10)] => 3
[(1,3),(2,9),(4,6),(5,7),(8,10)] => 2
[(1,4),(2,9),(3,6),(5,7),(8,10)] => 1
[(1,5),(2,9),(3,6),(4,7),(8,10)] => 1
[(1,6),(2,9),(3,5),(4,7),(8,10)] => 1
[(1,7),(2,9),(3,5),(4,6),(8,10)] => 2
[(1,8),(2,9),(3,5),(4,6),(7,10)] => 2
[(1,9),(2,8),(3,5),(4,6),(7,10)] => 2
[(1,10),(2,8),(3,5),(4,6),(7,9)] => 3
[(1,10),(2,7),(3,5),(4,6),(8,9)] => 4
[(1,9),(2,7),(3,5),(4,6),(8,10)] => 3
[(1,8),(2,7),(3,5),(4,6),(9,10)] => 4
[(1,7),(2,8),(3,5),(4,6),(9,10)] => 3
[(1,6),(2,8),(3,5),(4,7),(9,10)] => 2
[(1,5),(2,8),(3,6),(4,7),(9,10)] => 2
[(1,4),(2,8),(3,6),(5,7),(9,10)] => 2
[(1,3),(2,8),(4,6),(5,7),(9,10)] => 3
[(1,2),(3,8),(4,6),(5,7),(9,10)] => 4
[(1,2),(3,7),(4,6),(5,8),(9,10)] => 3
[(1,3),(2,7),(4,6),(5,8),(9,10)] => 2
[(1,4),(2,7),(3,6),(5,8),(9,10)] => 2
[(1,5),(2,7),(3,6),(4,8),(9,10)] => 2
[(1,6),(2,7),(3,5),(4,8),(9,10)] => 2
[(1,7),(2,6),(3,5),(4,8),(9,10)] => 2
[(1,8),(2,6),(3,5),(4,7),(9,10)] => 3
[(1,9),(2,6),(3,5),(4,7),(8,10)] => 2
[(1,10),(2,6),(3,5),(4,7),(8,9)] => 3
[(1,10),(2,5),(3,6),(4,7),(8,9)] => 3
[(1,9),(2,5),(3,6),(4,7),(8,10)] => 2
[(1,8),(2,5),(3,6),(4,7),(9,10)] => 3
[(1,7),(2,5),(3,6),(4,8),(9,10)] => 2
[(1,6),(2,5),(3,7),(4,8),(9,10)] => 2
[(1,5),(2,6),(3,7),(4,8),(9,10)] => 2
[(1,4),(2,6),(3,7),(5,8),(9,10)] => 2
[(1,3),(2,6),(4,7),(5,8),(9,10)] => 2
[(1,2),(3,6),(4,7),(5,8),(9,10)] => 3
[(1,2),(3,5),(4,7),(6,8),(9,10)] => 3
[(1,3),(2,5),(4,7),(6,8),(9,10)] => 2
[(1,4),(2,5),(3,7),(6,8),(9,10)] => 2
[(1,5),(2,4),(3,7),(6,8),(9,10)] => 2
[(1,6),(2,4),(3,7),(5,8),(9,10)] => 2
[(1,7),(2,4),(3,6),(5,8),(9,10)] => 2
[(1,8),(2,4),(3,6),(5,7),(9,10)] => 3
[(1,9),(2,4),(3,6),(5,7),(8,10)] => 2
[(1,10),(2,4),(3,6),(5,7),(8,9)] => 3
[(1,10),(2,3),(4,6),(5,7),(8,9)] => 4
[(1,9),(2,3),(4,6),(5,7),(8,10)] => 3
[(1,8),(2,3),(4,6),(5,7),(9,10)] => 4
[(1,7),(2,3),(4,6),(5,8),(9,10)] => 3
[(1,6),(2,3),(4,7),(5,8),(9,10)] => 3
[(1,5),(2,3),(4,7),(6,8),(9,10)] => 3
[(1,4),(2,3),(5,7),(6,8),(9,10)] => 4
[(1,3),(2,4),(5,7),(6,8),(9,10)] => 3
[(1,2),(3,4),(5,7),(6,8),(9,10)] => 4
[(1,2),(3,4),(5,8),(6,7),(9,10)] => 5
[(1,3),(2,4),(5,8),(6,7),(9,10)] => 4
[(1,4),(2,3),(5,8),(6,7),(9,10)] => 5
[(1,5),(2,3),(4,8),(6,7),(9,10)] => 4
[(1,6),(2,3),(4,8),(5,7),(9,10)] => 3
[(1,7),(2,3),(4,8),(5,6),(9,10)] => 4
[(1,8),(2,3),(4,7),(5,6),(9,10)] => 5
[(1,9),(2,3),(4,7),(5,6),(8,10)] => 4
[(1,10),(2,3),(4,7),(5,6),(8,9)] => 5
[(1,10),(2,4),(3,7),(5,6),(8,9)] => 4
[(1,9),(2,4),(3,7),(5,6),(8,10)] => 3
[(1,8),(2,4),(3,7),(5,6),(9,10)] => 4
[(1,7),(2,4),(3,8),(5,6),(9,10)] => 3
[(1,6),(2,4),(3,8),(5,7),(9,10)] => 2
[(1,5),(2,4),(3,8),(6,7),(9,10)] => 3
[(1,4),(2,5),(3,8),(6,7),(9,10)] => 3
[(1,3),(2,5),(4,8),(6,7),(9,10)] => 3
[(1,2),(3,5),(4,8),(6,7),(9,10)] => 4
[(1,2),(3,6),(4,8),(5,7),(9,10)] => 3
[(1,3),(2,6),(4,8),(5,7),(9,10)] => 2
[(1,4),(2,6),(3,8),(5,7),(9,10)] => 2
[(1,5),(2,6),(3,8),(4,7),(9,10)] => 2
[(1,6),(2,5),(3,8),(4,7),(9,10)] => 2
[(1,7),(2,5),(3,8),(4,6),(9,10)] => 2
[(1,8),(2,5),(3,7),(4,6),(9,10)] => 3
[(1,9),(2,5),(3,7),(4,6),(8,10)] => 2
[(1,10),(2,5),(3,7),(4,6),(8,9)] => 3
[(1,10),(2,6),(3,7),(4,5),(8,9)] => 4
[(1,9),(2,6),(3,7),(4,5),(8,10)] => 3
[(1,8),(2,6),(3,7),(4,5),(9,10)] => 4
[(1,7),(2,6),(3,8),(4,5),(9,10)] => 3
[(1,6),(2,7),(3,8),(4,5),(9,10)] => 3
[(1,5),(2,7),(3,8),(4,6),(9,10)] => 2
[(1,4),(2,7),(3,8),(5,6),(9,10)] => 3
[(1,3),(2,7),(4,8),(5,6),(9,10)] => 3
[(1,2),(3,7),(4,8),(5,6),(9,10)] => 4
[(1,2),(3,8),(4,7),(5,6),(9,10)] => 5
[(1,3),(2,8),(4,7),(5,6),(9,10)] => 4
[(1,4),(2,8),(3,7),(5,6),(9,10)] => 3
[(1,5),(2,8),(3,7),(4,6),(9,10)] => 2
[(1,6),(2,8),(3,7),(4,5),(9,10)] => 3
[(1,7),(2,8),(3,6),(4,5),(9,10)] => 4
[(1,8),(2,7),(3,6),(4,5),(9,10)] => 5
[(1,9),(2,7),(3,6),(4,5),(8,10)] => 4
[(1,10),(2,7),(3,6),(4,5),(8,9)] => 5
[(1,10),(2,8),(3,6),(4,5),(7,9)] => 4
[(1,9),(2,8),(3,6),(4,5),(7,10)] => 3
[(1,8),(2,9),(3,6),(4,5),(7,10)] => 3
[(1,7),(2,9),(3,6),(4,5),(8,10)] => 3
[(1,6),(2,9),(3,7),(4,5),(8,10)] => 2
[(1,5),(2,9),(3,7),(4,6),(8,10)] => 1
[(1,4),(2,9),(3,7),(5,6),(8,10)] => 2
[(1,3),(2,9),(4,7),(5,6),(8,10)] => 3
[(1,2),(3,9),(4,7),(5,6),(8,10)] => 4
[(1,2),(3,10),(4,7),(5,6),(8,9)] => 5
[(1,3),(2,10),(4,7),(5,6),(8,9)] => 4
[(1,4),(2,10),(3,7),(5,6),(8,9)] => 3
[(1,5),(2,10),(3,7),(4,6),(8,9)] => 2
[(1,6),(2,10),(3,7),(4,5),(8,9)] => 3
[(1,7),(2,10),(3,6),(4,5),(8,9)] => 4
[(1,8),(2,10),(3,6),(4,5),(7,9)] => 3
[(1,9),(2,10),(3,6),(4,5),(7,8)] => 4
[(1,10),(2,9),(3,6),(4,5),(7,8)] => 5
[(1,10),(2,9),(3,7),(4,5),(6,8)] => 4
[(1,9),(2,10),(3,7),(4,5),(6,8)] => 3
[(1,8),(2,10),(3,7),(4,5),(6,9)] => 2
[(1,7),(2,10),(3,8),(4,5),(6,9)] => 2
[(1,6),(2,10),(3,8),(4,5),(7,9)] => 2
[(1,5),(2,10),(3,8),(4,6),(7,9)] => 1
[(1,4),(2,10),(3,8),(5,6),(7,9)] => 2
[(1,3),(2,10),(4,8),(5,6),(7,9)] => 3
[(1,2),(3,10),(4,8),(5,6),(7,9)] => 4
[(1,2),(3,9),(4,8),(5,6),(7,10)] => 3
[(1,3),(2,9),(4,8),(5,6),(7,10)] => 2
[(1,4),(2,9),(3,8),(5,6),(7,10)] => 2
[(1,5),(2,9),(3,8),(4,6),(7,10)] => 1
[(1,6),(2,9),(3,8),(4,5),(7,10)] => 2
[(1,7),(2,9),(3,8),(4,5),(6,10)] => 2
[(1,8),(2,9),(3,7),(4,5),(6,10)] => 2
[(1,9),(2,8),(3,7),(4,5),(6,10)] => 2
[(1,10),(2,8),(3,7),(4,5),(6,9)] => 3
[(1,10),(2,7),(3,8),(4,5),(6,9)] => 3
[(1,9),(2,7),(3,8),(4,5),(6,10)] => 2
[(1,8),(2,7),(3,9),(4,5),(6,10)] => 2
[(1,7),(2,8),(3,9),(4,5),(6,10)] => 2
[(1,6),(2,8),(3,9),(4,5),(7,10)] => 2
[(1,5),(2,8),(3,9),(4,6),(7,10)] => 1
[(1,4),(2,8),(3,9),(5,6),(7,10)] => 2
[(1,3),(2,8),(4,9),(5,6),(7,10)] => 2
[(1,2),(3,8),(4,9),(5,6),(7,10)] => 3
[(1,2),(3,7),(4,9),(5,6),(8,10)] => 3
[(1,3),(2,7),(4,9),(5,6),(8,10)] => 2
[(1,4),(2,7),(3,9),(5,6),(8,10)] => 2
[(1,5),(2,7),(3,9),(4,6),(8,10)] => 1
[(1,6),(2,7),(3,9),(4,5),(8,10)] => 2
[(1,7),(2,6),(3,9),(4,5),(8,10)] => 2
[(1,8),(2,6),(3,9),(4,5),(7,10)] => 2
[(1,9),(2,6),(3,8),(4,5),(7,10)] => 2
[(1,10),(2,6),(3,8),(4,5),(7,9)] => 3
[(1,10),(2,5),(3,8),(4,6),(7,9)] => 2
[(1,9),(2,5),(3,8),(4,6),(7,10)] => 1
[(1,8),(2,5),(3,9),(4,6),(7,10)] => 1
[(1,7),(2,5),(3,9),(4,6),(8,10)] => 1
[(1,6),(2,5),(3,9),(4,7),(8,10)] => 1
[(1,5),(2,6),(3,9),(4,7),(8,10)] => 1
[(1,4),(2,6),(3,9),(5,7),(8,10)] => 1
[(1,3),(2,6),(4,9),(5,7),(8,10)] => 1
[(1,2),(3,6),(4,9),(5,7),(8,10)] => 2
[(1,2),(3,5),(4,9),(6,7),(8,10)] => 3
[(1,3),(2,5),(4,9),(6,7),(8,10)] => 2
[(1,4),(2,5),(3,9),(6,7),(8,10)] => 2
[(1,5),(2,4),(3,9),(6,7),(8,10)] => 2
[(1,6),(2,4),(3,9),(5,7),(8,10)] => 1
[(1,7),(2,4),(3,9),(5,6),(8,10)] => 2
[(1,8),(2,4),(3,9),(5,6),(7,10)] => 2
[(1,9),(2,4),(3,8),(5,6),(7,10)] => 2
[(1,10),(2,4),(3,8),(5,6),(7,9)] => 3
[(1,10),(2,3),(4,8),(5,6),(7,9)] => 4
[(1,9),(2,3),(4,8),(5,6),(7,10)] => 3
[(1,8),(2,3),(4,9),(5,6),(7,10)] => 3
[(1,7),(2,3),(4,9),(5,6),(8,10)] => 3
[(1,6),(2,3),(4,9),(5,7),(8,10)] => 2
[(1,5),(2,3),(4,9),(6,7),(8,10)] => 3
[(1,4),(2,3),(5,9),(6,7),(8,10)] => 4
[(1,3),(2,4),(5,9),(6,7),(8,10)] => 3
[(1,2),(3,4),(5,9),(6,7),(8,10)] => 4
[(1,2),(3,4),(5,10),(6,7),(8,9)] => 5
[(1,3),(2,4),(5,10),(6,7),(8,9)] => 4
[(1,4),(2,3),(5,10),(6,7),(8,9)] => 5
[(1,5),(2,3),(4,10),(6,7),(8,9)] => 4
[(1,6),(2,3),(4,10),(5,7),(8,9)] => 3
[(1,7),(2,3),(4,10),(5,6),(8,9)] => 4
[(1,8),(2,3),(4,10),(5,6),(7,9)] => 3
[(1,9),(2,3),(4,10),(5,6),(7,8)] => 4
[(1,10),(2,3),(4,9),(5,6),(7,8)] => 5
[(1,10),(2,4),(3,9),(5,6),(7,8)] => 4
[(1,9),(2,4),(3,10),(5,6),(7,8)] => 3
[(1,8),(2,4),(3,10),(5,6),(7,9)] => 2
[(1,7),(2,4),(3,10),(5,6),(8,9)] => 3
[(1,6),(2,4),(3,10),(5,7),(8,9)] => 2
[(1,5),(2,4),(3,10),(6,7),(8,9)] => 3
[(1,4),(2,5),(3,10),(6,7),(8,9)] => 3
[(1,3),(2,5),(4,10),(6,7),(8,9)] => 3
[(1,2),(3,5),(4,10),(6,7),(8,9)] => 4
[(1,2),(3,6),(4,10),(5,7),(8,9)] => 3
[(1,3),(2,6),(4,10),(5,7),(8,9)] => 2
[(1,4),(2,6),(3,10),(5,7),(8,9)] => 2
[(1,5),(2,6),(3,10),(4,7),(8,9)] => 2
[(1,6),(2,5),(3,10),(4,7),(8,9)] => 2
[(1,7),(2,5),(3,10),(4,6),(8,9)] => 2
[(1,8),(2,5),(3,10),(4,6),(7,9)] => 1
[(1,9),(2,5),(3,10),(4,6),(7,8)] => 2
[(1,10),(2,5),(3,9),(4,6),(7,8)] => 3
[(1,10),(2,6),(3,9),(4,5),(7,8)] => 4
[(1,9),(2,6),(3,10),(4,5),(7,8)] => 3
[(1,8),(2,6),(3,10),(4,5),(7,9)] => 2
[(1,7),(2,6),(3,10),(4,5),(8,9)] => 3
[(1,6),(2,7),(3,10),(4,5),(8,9)] => 3
[(1,5),(2,7),(3,10),(4,6),(8,9)] => 2
[(1,4),(2,7),(3,10),(5,6),(8,9)] => 3
[(1,3),(2,7),(4,10),(5,6),(8,9)] => 3
[(1,2),(3,7),(4,10),(5,6),(8,9)] => 4
[(1,2),(3,8),(4,10),(5,6),(7,9)] => 3
[(1,3),(2,8),(4,10),(5,6),(7,9)] => 2
[(1,4),(2,8),(3,10),(5,6),(7,9)] => 2
[(1,5),(2,8),(3,10),(4,6),(7,9)] => 1
[(1,6),(2,8),(3,10),(4,5),(7,9)] => 2
[(1,7),(2,8),(3,10),(4,5),(6,9)] => 2
[(1,8),(2,7),(3,10),(4,5),(6,9)] => 2
[(1,9),(2,7),(3,10),(4,5),(6,8)] => 2
[(1,10),(2,7),(3,9),(4,5),(6,8)] => 3
[(1,10),(2,8),(3,9),(4,5),(6,7)] => 4
[(1,9),(2,8),(3,10),(4,5),(6,7)] => 3
[(1,8),(2,9),(3,10),(4,5),(6,7)] => 3
[(1,7),(2,9),(3,10),(4,5),(6,8)] => 2
[(1,6),(2,9),(3,10),(4,5),(7,8)] => 3
[(1,5),(2,9),(3,10),(4,6),(7,8)] => 2
[(1,4),(2,9),(3,10),(5,6),(7,8)] => 3
[(1,3),(2,9),(4,10),(5,6),(7,8)] => 3
[(1,2),(3,9),(4,10),(5,6),(7,8)] => 4
[(1,2),(3,10),(4,9),(5,6),(7,8)] => 5
[(1,3),(2,10),(4,9),(5,6),(7,8)] => 4
[(1,4),(2,10),(3,9),(5,6),(7,8)] => 3
[(1,5),(2,10),(3,9),(4,6),(7,8)] => 2
[(1,6),(2,10),(3,9),(4,5),(7,8)] => 3
[(1,7),(2,10),(3,9),(4,5),(6,8)] => 2
[(1,8),(2,10),(3,9),(4,5),(6,7)] => 3
[(1,9),(2,10),(3,8),(4,5),(6,7)] => 4
[(1,10),(2,9),(3,8),(4,5),(6,7)] => 5
[(1,10),(2,9),(3,8),(4,6),(5,7)] => 4
[(1,9),(2,10),(3,8),(4,6),(5,7)] => 3
[(1,8),(2,10),(3,9),(4,6),(5,7)] => 2
[(1,7),(2,10),(3,9),(4,6),(5,8)] => 1
[(1,6),(2,10),(3,9),(4,7),(5,8)] => 1
[(1,5),(2,10),(3,9),(4,7),(6,8)] => 1
[(1,4),(2,10),(3,9),(5,7),(6,8)] => 2
[(1,3),(2,10),(4,9),(5,7),(6,8)] => 3
[(1,2),(3,10),(4,9),(5,7),(6,8)] => 4
[(1,2),(3,9),(4,10),(5,7),(6,8)] => 3
[(1,3),(2,9),(4,10),(5,7),(6,8)] => 2
[(1,4),(2,9),(3,10),(5,7),(6,8)] => 2
[(1,5),(2,9),(3,10),(4,7),(6,8)] => 1
[(1,6),(2,9),(3,10),(4,7),(5,8)] => 1
[(1,7),(2,9),(3,10),(4,6),(5,8)] => 1
[(1,8),(2,9),(3,10),(4,6),(5,7)] => 2
[(1,9),(2,8),(3,10),(4,6),(5,7)] => 2
[(1,10),(2,8),(3,9),(4,6),(5,7)] => 3
[(1,10),(2,7),(3,9),(4,6),(5,8)] => 2
[(1,9),(2,7),(3,10),(4,6),(5,8)] => 1
[(1,8),(2,7),(3,10),(4,6),(5,9)] => 1
[(1,7),(2,8),(3,10),(4,6),(5,9)] => 1
[(1,6),(2,8),(3,10),(4,7),(5,9)] => 1
[(1,5),(2,8),(3,10),(4,7),(6,9)] => 1
[(1,4),(2,8),(3,10),(5,7),(6,9)] => 1
[(1,3),(2,8),(4,10),(5,7),(6,9)] => 1
[(1,2),(3,8),(4,10),(5,7),(6,9)] => 2
[(1,2),(3,7),(4,10),(5,8),(6,9)] => 2
[(1,3),(2,7),(4,10),(5,8),(6,9)] => 1
[(1,4),(2,7),(3,10),(5,8),(6,9)] => 1
[(1,5),(2,7),(3,10),(4,8),(6,9)] => 1
[(1,6),(2,7),(3,10),(4,8),(5,9)] => 1
[(1,7),(2,6),(3,10),(4,8),(5,9)] => 1
[(1,8),(2,6),(3,10),(4,7),(5,9)] => 1
[(1,9),(2,6),(3,10),(4,7),(5,8)] => 1
[(1,10),(2,6),(3,9),(4,7),(5,8)] => 2
[(1,10),(2,5),(3,9),(4,7),(6,8)] => 2
[(1,9),(2,5),(3,10),(4,7),(6,8)] => 1
[(1,8),(2,5),(3,10),(4,7),(6,9)] => 1
[(1,7),(2,5),(3,10),(4,8),(6,9)] => 1
[(1,6),(2,5),(3,10),(4,8),(7,9)] => 1
[(1,5),(2,6),(3,10),(4,8),(7,9)] => 1
[(1,4),(2,6),(3,10),(5,8),(7,9)] => 1
[(1,3),(2,6),(4,10),(5,8),(7,9)] => 1
[(1,2),(3,6),(4,10),(5,8),(7,9)] => 2
[(1,2),(3,5),(4,10),(6,8),(7,9)] => 3
[(1,3),(2,5),(4,10),(6,8),(7,9)] => 2
[(1,4),(2,5),(3,10),(6,8),(7,9)] => 2
[(1,5),(2,4),(3,10),(6,8),(7,9)] => 2
[(1,6),(2,4),(3,10),(5,8),(7,9)] => 1
[(1,7),(2,4),(3,10),(5,8),(6,9)] => 1
[(1,8),(2,4),(3,10),(5,7),(6,9)] => 1
[(1,9),(2,4),(3,10),(5,7),(6,8)] => 2
[(1,10),(2,4),(3,9),(5,7),(6,8)] => 3
[(1,10),(2,3),(4,9),(5,7),(6,8)] => 4
[(1,9),(2,3),(4,10),(5,7),(6,8)] => 3
[(1,8),(2,3),(4,10),(5,7),(6,9)] => 2
[(1,7),(2,3),(4,10),(5,8),(6,9)] => 2
[(1,6),(2,3),(4,10),(5,8),(7,9)] => 2
[(1,5),(2,3),(4,10),(6,8),(7,9)] => 3
[(1,4),(2,3),(5,10),(6,8),(7,9)] => 4
[(1,3),(2,4),(5,10),(6,8),(7,9)] => 3
[(1,2),(3,4),(5,10),(6,8),(7,9)] => 4
[(1,2),(3,4),(5,9),(6,8),(7,10)] => 3
[(1,3),(2,4),(5,9),(6,8),(7,10)] => 2
[(1,4),(2,3),(5,9),(6,8),(7,10)] => 3
[(1,5),(2,3),(4,9),(6,8),(7,10)] => 2
[(1,6),(2,3),(4,9),(5,8),(7,10)] => 2
[(1,7),(2,3),(4,9),(5,8),(6,10)] => 2
[(1,8),(2,3),(4,9),(5,7),(6,10)] => 2
[(1,9),(2,3),(4,8),(5,7),(6,10)] => 2
[(1,10),(2,3),(4,8),(5,7),(6,9)] => 3
[(1,10),(2,4),(3,8),(5,7),(6,9)] => 2
[(1,9),(2,4),(3,8),(5,7),(6,10)] => 1
[(1,8),(2,4),(3,9),(5,7),(6,10)] => 1
[(1,7),(2,4),(3,9),(5,8),(6,10)] => 1
[(1,6),(2,4),(3,9),(5,8),(7,10)] => 1
[(1,5),(2,4),(3,9),(6,8),(7,10)] => 1
[(1,4),(2,5),(3,9),(6,8),(7,10)] => 1
[(1,3),(2,5),(4,9),(6,8),(7,10)] => 1
[(1,2),(3,5),(4,9),(6,8),(7,10)] => 2
[(1,2),(3,6),(4,9),(5,8),(7,10)] => 2
[(1,3),(2,6),(4,9),(5,8),(7,10)] => 1
[(1,4),(2,6),(3,9),(5,8),(7,10)] => 1
[(1,5),(2,6),(3,9),(4,8),(7,10)] => 1
[(1,6),(2,5),(3,9),(4,8),(7,10)] => 1
[(1,7),(2,5),(3,9),(4,8),(6,10)] => 1
[(1,8),(2,5),(3,9),(4,7),(6,10)] => 1
[(1,9),(2,5),(3,8),(4,7),(6,10)] => 1
[(1,10),(2,5),(3,8),(4,7),(6,9)] => 2
[(1,10),(2,6),(3,8),(4,7),(5,9)] => 2
[(1,9),(2,6),(3,8),(4,7),(5,10)] => 1
[(1,8),(2,6),(3,9),(4,7),(5,10)] => 1
[(1,7),(2,6),(3,9),(4,8),(5,10)] => 1
[(1,6),(2,7),(3,9),(4,8),(5,10)] => 1
[(1,5),(2,7),(3,9),(4,8),(6,10)] => 1
[(1,4),(2,7),(3,9),(5,8),(6,10)] => 1
[(1,3),(2,7),(4,9),(5,8),(6,10)] => 1
[(1,2),(3,7),(4,9),(5,8),(6,10)] => 2
[(1,2),(3,8),(4,9),(5,7),(6,10)] => 2
[(1,3),(2,8),(4,9),(5,7),(6,10)] => 1
[(1,4),(2,8),(3,9),(5,7),(6,10)] => 1
[(1,5),(2,8),(3,9),(4,7),(6,10)] => 1
[(1,6),(2,8),(3,9),(4,7),(5,10)] => 1
[(1,7),(2,8),(3,9),(4,6),(5,10)] => 1
[(1,8),(2,7),(3,9),(4,6),(5,10)] => 1
[(1,9),(2,7),(3,8),(4,6),(5,10)] => 1
[(1,10),(2,7),(3,8),(4,6),(5,9)] => 2
[(1,10),(2,8),(3,7),(4,6),(5,9)] => 2
[(1,9),(2,8),(3,7),(4,6),(5,10)] => 1
[(1,8),(2,9),(3,7),(4,6),(5,10)] => 1
[(1,7),(2,9),(3,8),(4,6),(5,10)] => 1
[(1,6),(2,9),(3,8),(4,7),(5,10)] => 1
[(1,5),(2,9),(3,8),(4,7),(6,10)] => 1
[(1,4),(2,9),(3,8),(5,7),(6,10)] => 1
[(1,3),(2,9),(4,8),(5,7),(6,10)] => 1
[(1,2),(3,9),(4,8),(5,7),(6,10)] => 2
[(1,2),(3,10),(4,8),(5,7),(6,9)] => 3
[(1,3),(2,10),(4,8),(5,7),(6,9)] => 2
[(1,4),(2,10),(3,8),(5,7),(6,9)] => 1
[(1,5),(2,10),(3,8),(4,7),(6,9)] => 1
[(1,6),(2,10),(3,8),(4,7),(5,9)] => 1
[(1,7),(2,10),(3,8),(4,6),(5,9)] => 1
[(1,8),(2,10),(3,7),(4,6),(5,9)] => 1
[(1,9),(2,10),(3,7),(4,6),(5,8)] => 2
[(1,10),(2,9),(3,7),(4,6),(5,8)] => 3
[(1,10),(2,9),(3,6),(4,7),(5,8)] => 3
[(1,9),(2,10),(3,6),(4,7),(5,8)] => 2
[(1,8),(2,10),(3,6),(4,7),(5,9)] => 1
[(1,7),(2,10),(3,6),(4,8),(5,9)] => 1
[(1,6),(2,10),(3,7),(4,8),(5,9)] => 1
[(1,5),(2,10),(3,7),(4,8),(6,9)] => 1
[(1,4),(2,10),(3,7),(5,8),(6,9)] => 1
[(1,3),(2,10),(4,7),(5,8),(6,9)] => 2
[(1,2),(3,10),(4,7),(5,8),(6,9)] => 3
[(1,2),(3,9),(4,7),(5,8),(6,10)] => 2
[(1,3),(2,9),(4,7),(5,8),(6,10)] => 1
[(1,4),(2,9),(3,7),(5,8),(6,10)] => 1
[(1,5),(2,9),(3,7),(4,8),(6,10)] => 1
[(1,6),(2,9),(3,7),(4,8),(5,10)] => 1
[(1,7),(2,9),(3,6),(4,8),(5,10)] => 1
[(1,8),(2,9),(3,6),(4,7),(5,10)] => 1
[(1,9),(2,8),(3,6),(4,7),(5,10)] => 1
[(1,10),(2,8),(3,6),(4,7),(5,9)] => 2
[(1,10),(2,7),(3,6),(4,8),(5,9)] => 2
[(1,9),(2,7),(3,6),(4,8),(5,10)] => 1
[(1,8),(2,7),(3,6),(4,9),(5,10)] => 1
[(1,7),(2,8),(3,6),(4,9),(5,10)] => 1
[(1,6),(2,8),(3,7),(4,9),(5,10)] => 1
[(1,5),(2,8),(3,7),(4,9),(6,10)] => 1
[(1,4),(2,8),(3,7),(5,9),(6,10)] => 1
[(1,3),(2,8),(4,7),(5,9),(6,10)] => 1
[(1,2),(3,8),(4,7),(5,9),(6,10)] => 2
[(1,2),(3,7),(4,8),(5,9),(6,10)] => 2
[(1,3),(2,7),(4,8),(5,9),(6,10)] => 1
[(1,4),(2,7),(3,8),(5,9),(6,10)] => 1
[(1,5),(2,7),(3,8),(4,9),(6,10)] => 1
[(1,6),(2,7),(3,8),(4,9),(5,10)] => 1
[(1,7),(2,6),(3,8),(4,9),(5,10)] => 1
[(1,8),(2,6),(3,7),(4,9),(5,10)] => 1
[(1,9),(2,6),(3,7),(4,8),(5,10)] => 1
[(1,10),(2,6),(3,7),(4,8),(5,9)] => 2
[(1,10),(2,5),(3,7),(4,8),(6,9)] => 2
[(1,9),(2,5),(3,7),(4,8),(6,10)] => 1
[(1,8),(2,5),(3,7),(4,9),(6,10)] => 1
[(1,7),(2,5),(3,8),(4,9),(6,10)] => 1
[(1,6),(2,5),(3,8),(4,9),(7,10)] => 1
[(1,5),(2,6),(3,8),(4,9),(7,10)] => 1
[(1,4),(2,6),(3,8),(5,9),(7,10)] => 1
[(1,3),(2,6),(4,8),(5,9),(7,10)] => 1
[(1,2),(3,6),(4,8),(5,9),(7,10)] => 2
[(1,2),(3,5),(4,8),(6,9),(7,10)] => 2
[(1,3),(2,5),(4,8),(6,9),(7,10)] => 1
[(1,4),(2,5),(3,8),(6,9),(7,10)] => 1
[(1,5),(2,4),(3,8),(6,9),(7,10)] => 1
[(1,6),(2,4),(3,8),(5,9),(7,10)] => 1
[(1,7),(2,4),(3,8),(5,9),(6,10)] => 1
[(1,8),(2,4),(3,7),(5,9),(6,10)] => 1
[(1,9),(2,4),(3,7),(5,8),(6,10)] => 1
[(1,10),(2,4),(3,7),(5,8),(6,9)] => 2
[(1,10),(2,3),(4,7),(5,8),(6,9)] => 3
[(1,9),(2,3),(4,7),(5,8),(6,10)] => 2
[(1,8),(2,3),(4,7),(5,9),(6,10)] => 2
[(1,7),(2,3),(4,8),(5,9),(6,10)] => 2
[(1,6),(2,3),(4,8),(5,9),(7,10)] => 2
[(1,5),(2,3),(4,8),(6,9),(7,10)] => 2
[(1,4),(2,3),(5,8),(6,9),(7,10)] => 3
[(1,3),(2,4),(5,8),(6,9),(7,10)] => 2
[(1,2),(3,4),(5,8),(6,9),(7,10)] => 3
[(1,2),(3,4),(5,7),(6,9),(8,10)] => 3
[(1,3),(2,4),(5,7),(6,9),(8,10)] => 2
[(1,4),(2,3),(5,7),(6,9),(8,10)] => 3
[(1,5),(2,3),(4,7),(6,9),(8,10)] => 2
[(1,6),(2,3),(4,7),(5,9),(8,10)] => 2
[(1,7),(2,3),(4,6),(5,9),(8,10)] => 2
[(1,8),(2,3),(4,6),(5,9),(7,10)] => 2
[(1,9),(2,3),(4,6),(5,8),(7,10)] => 2
[(1,10),(2,3),(4,6),(5,8),(7,9)] => 3
[(1,10),(2,4),(3,6),(5,8),(7,9)] => 2
[(1,9),(2,4),(3,6),(5,8),(7,10)] => 1
[(1,8),(2,4),(3,6),(5,9),(7,10)] => 1
[(1,7),(2,4),(3,6),(5,9),(8,10)] => 1
[(1,6),(2,4),(3,7),(5,9),(8,10)] => 1
[(1,5),(2,4),(3,7),(6,9),(8,10)] => 1
[(1,4),(2,5),(3,7),(6,9),(8,10)] => 1
[(1,3),(2,5),(4,7),(6,9),(8,10)] => 1
[(1,2),(3,5),(4,7),(6,9),(8,10)] => 2
[(1,2),(3,6),(4,7),(5,9),(8,10)] => 2
[(1,3),(2,6),(4,7),(5,9),(8,10)] => 1
[(1,4),(2,6),(3,7),(5,9),(8,10)] => 1
[(1,5),(2,6),(3,7),(4,9),(8,10)] => 1
[(1,6),(2,5),(3,7),(4,9),(8,10)] => 1
[(1,7),(2,5),(3,6),(4,9),(8,10)] => 1
[(1,8),(2,5),(3,6),(4,9),(7,10)] => 1
[(1,9),(2,5),(3,6),(4,8),(7,10)] => 1
[(1,10),(2,5),(3,6),(4,8),(7,9)] => 2
[(1,10),(2,6),(3,5),(4,8),(7,9)] => 2
[(1,9),(2,6),(3,5),(4,8),(7,10)] => 1
[(1,8),(2,6),(3,5),(4,9),(7,10)] => 1
[(1,7),(2,6),(3,5),(4,9),(8,10)] => 1
[(1,6),(2,7),(3,5),(4,9),(8,10)] => 1
[(1,5),(2,7),(3,6),(4,9),(8,10)] => 1
[(1,4),(2,7),(3,6),(5,9),(8,10)] => 1
[(1,3),(2,7),(4,6),(5,9),(8,10)] => 1
[(1,2),(3,7),(4,6),(5,9),(8,10)] => 2
[(1,2),(3,8),(4,6),(5,9),(7,10)] => 2
[(1,3),(2,8),(4,6),(5,9),(7,10)] => 1
[(1,4),(2,8),(3,6),(5,9),(7,10)] => 1
[(1,5),(2,8),(3,6),(4,9),(7,10)] => 1
[(1,6),(2,8),(3,5),(4,9),(7,10)] => 1
[(1,7),(2,8),(3,5),(4,9),(6,10)] => 1
[(1,8),(2,7),(3,5),(4,9),(6,10)] => 1
[(1,9),(2,7),(3,5),(4,8),(6,10)] => 1
[(1,10),(2,7),(3,5),(4,8),(6,9)] => 2
[(1,10),(2,8),(3,5),(4,7),(6,9)] => 2
[(1,9),(2,8),(3,5),(4,7),(6,10)] => 1
[(1,8),(2,9),(3,5),(4,7),(6,10)] => 1
[(1,7),(2,9),(3,5),(4,8),(6,10)] => 1
[(1,6),(2,9),(3,5),(4,8),(7,10)] => 1
[(1,5),(2,9),(3,6),(4,8),(7,10)] => 1
[(1,4),(2,9),(3,6),(5,8),(7,10)] => 1
[(1,3),(2,9),(4,6),(5,8),(7,10)] => 1
[(1,2),(3,9),(4,6),(5,8),(7,10)] => 2
[(1,2),(3,10),(4,6),(5,8),(7,9)] => 3
[(1,3),(2,10),(4,6),(5,8),(7,9)] => 2
[(1,4),(2,10),(3,6),(5,8),(7,9)] => 1
[(1,5),(2,10),(3,6),(4,8),(7,9)] => 1
[(1,6),(2,10),(3,5),(4,8),(7,9)] => 1
[(1,7),(2,10),(3,5),(4,8),(6,9)] => 1
[(1,8),(2,10),(3,5),(4,7),(6,9)] => 1
[(1,9),(2,10),(3,5),(4,7),(6,8)] => 2
[(1,10),(2,9),(3,5),(4,7),(6,8)] => 3
[(1,10),(2,9),(3,4),(5,7),(6,8)] => 4
[(1,9),(2,10),(3,4),(5,7),(6,8)] => 3
[(1,8),(2,10),(3,4),(5,7),(6,9)] => 2
[(1,7),(2,10),(3,4),(5,8),(6,9)] => 2
[(1,6),(2,10),(3,4),(5,8),(7,9)] => 2
[(1,5),(2,10),(3,4),(6,8),(7,9)] => 3
[(1,4),(2,10),(3,5),(6,8),(7,9)] => 2
[(1,3),(2,10),(4,5),(6,8),(7,9)] => 3
[(1,2),(3,10),(4,5),(6,8),(7,9)] => 4
[(1,2),(3,9),(4,5),(6,8),(7,10)] => 3
[(1,3),(2,9),(4,5),(6,8),(7,10)] => 2
[(1,4),(2,9),(3,5),(6,8),(7,10)] => 1
[(1,5),(2,9),(3,4),(6,8),(7,10)] => 2
[(1,6),(2,9),(3,4),(5,8),(7,10)] => 2
[(1,7),(2,9),(3,4),(5,8),(6,10)] => 2
[(1,8),(2,9),(3,4),(5,7),(6,10)] => 2
[(1,9),(2,8),(3,4),(5,7),(6,10)] => 2
[(1,10),(2,8),(3,4),(5,7),(6,9)] => 3
[(1,10),(2,7),(3,4),(5,8),(6,9)] => 3
[(1,9),(2,7),(3,4),(5,8),(6,10)] => 2
[(1,8),(2,7),(3,4),(5,9),(6,10)] => 2
[(1,7),(2,8),(3,4),(5,9),(6,10)] => 2
[(1,6),(2,8),(3,4),(5,9),(7,10)] => 2
[(1,5),(2,8),(3,4),(6,9),(7,10)] => 2
[(1,4),(2,8),(3,5),(6,9),(7,10)] => 1
[(1,3),(2,8),(4,5),(6,9),(7,10)] => 2
[(1,2),(3,8),(4,5),(6,9),(7,10)] => 3
[(1,2),(3,7),(4,5),(6,9),(8,10)] => 3
[(1,3),(2,7),(4,5),(6,9),(8,10)] => 2
[(1,4),(2,7),(3,5),(6,9),(8,10)] => 1
[(1,5),(2,7),(3,4),(6,9),(8,10)] => 2
[(1,6),(2,7),(3,4),(5,9),(8,10)] => 2
[(1,7),(2,6),(3,4),(5,9),(8,10)] => 2
[(1,8),(2,6),(3,4),(5,9),(7,10)] => 2
[(1,9),(2,6),(3,4),(5,8),(7,10)] => 2
[(1,10),(2,6),(3,4),(5,8),(7,9)] => 3
[(1,10),(2,5),(3,4),(6,8),(7,9)] => 4
[(1,9),(2,5),(3,4),(6,8),(7,10)] => 3
[(1,8),(2,5),(3,4),(6,9),(7,10)] => 3
[(1,7),(2,5),(3,4),(6,9),(8,10)] => 3
[(1,6),(2,5),(3,4),(7,9),(8,10)] => 4
[(1,5),(2,6),(3,4),(7,9),(8,10)] => 3
[(1,4),(2,6),(3,5),(7,9),(8,10)] => 2
[(1,3),(2,6),(4,5),(7,9),(8,10)] => 3
[(1,2),(3,6),(4,5),(7,9),(8,10)] => 4
[(1,2),(3,5),(4,6),(7,9),(8,10)] => 3
[(1,3),(2,5),(4,6),(7,9),(8,10)] => 2
[(1,4),(2,5),(3,6),(7,9),(8,10)] => 2
[(1,5),(2,4),(3,6),(7,9),(8,10)] => 2
[(1,6),(2,4),(3,5),(7,9),(8,10)] => 3
[(1,7),(2,4),(3,5),(6,9),(8,10)] => 2
[(1,8),(2,4),(3,5),(6,9),(7,10)] => 2
[(1,9),(2,4),(3,5),(6,8),(7,10)] => 2
[(1,10),(2,4),(3,5),(6,8),(7,9)] => 3
[(1,10),(2,3),(4,5),(6,8),(7,9)] => 4
[(1,9),(2,3),(4,5),(6,8),(7,10)] => 3
[(1,8),(2,3),(4,5),(6,9),(7,10)] => 3
[(1,7),(2,3),(4,5),(6,9),(8,10)] => 3
[(1,6),(2,3),(4,5),(7,9),(8,10)] => 4
[(1,5),(2,3),(4,6),(7,9),(8,10)] => 3
[(1,4),(2,3),(5,6),(7,9),(8,10)] => 4
[(1,3),(2,4),(5,6),(7,9),(8,10)] => 3
[(1,2),(3,4),(5,6),(7,9),(8,10)] => 4
[(1,2),(3,4),(5,6),(7,10),(8,9)] => 5
[(1,3),(2,4),(5,6),(7,10),(8,9)] => 4
[(1,4),(2,3),(5,6),(7,10),(8,9)] => 5
[(1,5),(2,3),(4,6),(7,10),(8,9)] => 4
[(1,6),(2,3),(4,5),(7,10),(8,9)] => 5
[(1,7),(2,3),(4,5),(6,10),(8,9)] => 4
[(1,8),(2,3),(4,5),(6,10),(7,9)] => 3
[(1,9),(2,3),(4,5),(6,10),(7,8)] => 4
[(1,10),(2,3),(4,5),(6,9),(7,8)] => 5
[(1,10),(2,4),(3,5),(6,9),(7,8)] => 4
[(1,9),(2,4),(3,5),(6,10),(7,8)] => 3
[(1,8),(2,4),(3,5),(6,10),(7,9)] => 2
[(1,7),(2,4),(3,5),(6,10),(8,9)] => 3
[(1,6),(2,4),(3,5),(7,10),(8,9)] => 4
[(1,5),(2,4),(3,6),(7,10),(8,9)] => 3
[(1,4),(2,5),(3,6),(7,10),(8,9)] => 3
[(1,3),(2,5),(4,6),(7,10),(8,9)] => 3
[(1,2),(3,5),(4,6),(7,10),(8,9)] => 4
[(1,2),(3,6),(4,5),(7,10),(8,9)] => 5
[(1,3),(2,6),(4,5),(7,10),(8,9)] => 4
[(1,4),(2,6),(3,5),(7,10),(8,9)] => 3
[(1,5),(2,6),(3,4),(7,10),(8,9)] => 4
[(1,6),(2,5),(3,4),(7,10),(8,9)] => 5
[(1,7),(2,5),(3,4),(6,10),(8,9)] => 4
[(1,8),(2,5),(3,4),(6,10),(7,9)] => 3
[(1,9),(2,5),(3,4),(6,10),(7,8)] => 4
[(1,10),(2,5),(3,4),(6,9),(7,8)] => 5
[(1,10),(2,6),(3,4),(5,9),(7,8)] => 4
[(1,9),(2,6),(3,4),(5,10),(7,8)] => 3
[(1,8),(2,6),(3,4),(5,10),(7,9)] => 2
[(1,7),(2,6),(3,4),(5,10),(8,9)] => 3
[(1,6),(2,7),(3,4),(5,10),(8,9)] => 3
[(1,5),(2,7),(3,4),(6,10),(8,9)] => 3
[(1,4),(2,7),(3,5),(6,10),(8,9)] => 2
[(1,3),(2,7),(4,5),(6,10),(8,9)] => 3
[(1,2),(3,7),(4,5),(6,10),(8,9)] => 4
[(1,2),(3,8),(4,5),(6,10),(7,9)] => 3
[(1,3),(2,8),(4,5),(6,10),(7,9)] => 2
[(1,4),(2,8),(3,5),(6,10),(7,9)] => 1
[(1,5),(2,8),(3,4),(6,10),(7,9)] => 2
[(1,6),(2,8),(3,4),(5,10),(7,9)] => 2
[(1,7),(2,8),(3,4),(5,10),(6,9)] => 2
[(1,8),(2,7),(3,4),(5,10),(6,9)] => 2
[(1,9),(2,7),(3,4),(5,10),(6,8)] => 2
[(1,10),(2,7),(3,4),(5,9),(6,8)] => 3
[(1,10),(2,8),(3,4),(5,9),(6,7)] => 4
[(1,9),(2,8),(3,4),(5,10),(6,7)] => 3
[(1,8),(2,9),(3,4),(5,10),(6,7)] => 3
[(1,7),(2,9),(3,4),(5,10),(6,8)] => 2
[(1,6),(2,9),(3,4),(5,10),(7,8)] => 3
[(1,5),(2,9),(3,4),(6,10),(7,8)] => 3
[(1,4),(2,9),(3,5),(6,10),(7,8)] => 2
[(1,3),(2,9),(4,5),(6,10),(7,8)] => 3
[(1,2),(3,9),(4,5),(6,10),(7,8)] => 4
[(1,2),(3,10),(4,5),(6,9),(7,8)] => 5
[(1,3),(2,10),(4,5),(6,9),(7,8)] => 4
[(1,4),(2,10),(3,5),(6,9),(7,8)] => 3
[(1,5),(2,10),(3,4),(6,9),(7,8)] => 4
[(1,6),(2,10),(3,4),(5,9),(7,8)] => 3
[(1,7),(2,10),(3,4),(5,9),(6,8)] => 2
[(1,8),(2,10),(3,4),(5,9),(6,7)] => 3
[(1,9),(2,10),(3,4),(5,8),(6,7)] => 4
[(1,10),(2,9),(3,4),(5,8),(6,7)] => 5
[(1,10),(2,9),(3,5),(4,8),(6,7)] => 4
[(1,9),(2,10),(3,5),(4,8),(6,7)] => 3
[(1,8),(2,10),(3,5),(4,9),(6,7)] => 2
[(1,7),(2,10),(3,5),(4,9),(6,8)] => 1
[(1,6),(2,10),(3,5),(4,9),(7,8)] => 2
[(1,5),(2,10),(3,6),(4,9),(7,8)] => 2
[(1,4),(2,10),(3,6),(5,9),(7,8)] => 2
[(1,3),(2,10),(4,6),(5,9),(7,8)] => 3
[(1,2),(3,10),(4,6),(5,9),(7,8)] => 4
[(1,2),(3,9),(4,6),(5,10),(7,8)] => 3
[(1,3),(2,9),(4,6),(5,10),(7,8)] => 2
[(1,4),(2,9),(3,6),(5,10),(7,8)] => 2
[(1,5),(2,9),(3,6),(4,10),(7,8)] => 2
[(1,6),(2,9),(3,5),(4,10),(7,8)] => 2
[(1,7),(2,9),(3,5),(4,10),(6,8)] => 1
[(1,8),(2,9),(3,5),(4,10),(6,7)] => 2
[(1,9),(2,8),(3,5),(4,10),(6,7)] => 2
[(1,10),(2,8),(3,5),(4,9),(6,7)] => 3
[(1,10),(2,7),(3,5),(4,9),(6,8)] => 2
[(1,9),(2,7),(3,5),(4,10),(6,8)] => 1
[(1,8),(2,7),(3,5),(4,10),(6,9)] => 1
[(1,7),(2,8),(3,5),(4,10),(6,9)] => 1
[(1,6),(2,8),(3,5),(4,10),(7,9)] => 1
[(1,5),(2,8),(3,6),(4,10),(7,9)] => 1
[(1,4),(2,8),(3,6),(5,10),(7,9)] => 1
[(1,3),(2,8),(4,6),(5,10),(7,9)] => 1
[(1,2),(3,8),(4,6),(5,10),(7,9)] => 2
[(1,2),(3,7),(4,6),(5,10),(8,9)] => 3
[(1,3),(2,7),(4,6),(5,10),(8,9)] => 2
[(1,4),(2,7),(3,6),(5,10),(8,9)] => 2
[(1,5),(2,7),(3,6),(4,10),(8,9)] => 2
[(1,6),(2,7),(3,5),(4,10),(8,9)] => 2
[(1,7),(2,6),(3,5),(4,10),(8,9)] => 2
[(1,8),(2,6),(3,5),(4,10),(7,9)] => 1
[(1,9),(2,6),(3,5),(4,10),(7,8)] => 2
[(1,10),(2,6),(3,5),(4,9),(7,8)] => 3
[(1,10),(2,5),(3,6),(4,9),(7,8)] => 3
[(1,9),(2,5),(3,6),(4,10),(7,8)] => 2
[(1,8),(2,5),(3,6),(4,10),(7,9)] => 1
[(1,7),(2,5),(3,6),(4,10),(8,9)] => 2
[(1,6),(2,5),(3,7),(4,10),(8,9)] => 2
[(1,5),(2,6),(3,7),(4,10),(8,9)] => 2
[(1,4),(2,6),(3,7),(5,10),(8,9)] => 2
[(1,3),(2,6),(4,7),(5,10),(8,9)] => 2
[(1,2),(3,6),(4,7),(5,10),(8,9)] => 3
[(1,2),(3,5),(4,7),(6,10),(8,9)] => 3
[(1,3),(2,5),(4,7),(6,10),(8,9)] => 2
[(1,4),(2,5),(3,7),(6,10),(8,9)] => 2
[(1,5),(2,4),(3,7),(6,10),(8,9)] => 2
[(1,6),(2,4),(3,7),(5,10),(8,9)] => 2
[(1,7),(2,4),(3,6),(5,10),(8,9)] => 2
[(1,8),(2,4),(3,6),(5,10),(7,9)] => 1
[(1,9),(2,4),(3,6),(5,10),(7,8)] => 2
[(1,10),(2,4),(3,6),(5,9),(7,8)] => 3
[(1,10),(2,3),(4,6),(5,9),(7,8)] => 4
[(1,9),(2,3),(4,6),(5,10),(7,8)] => 3
[(1,8),(2,3),(4,6),(5,10),(7,9)] => 2
[(1,7),(2,3),(4,6),(5,10),(8,9)] => 3
[(1,6),(2,3),(4,7),(5,10),(8,9)] => 3
[(1,5),(2,3),(4,7),(6,10),(8,9)] => 3
[(1,4),(2,3),(5,7),(6,10),(8,9)] => 4
[(1,3),(2,4),(5,7),(6,10),(8,9)] => 3
[(1,2),(3,4),(5,7),(6,10),(8,9)] => 4
[(1,2),(3,4),(5,8),(6,10),(7,9)] => 3
[(1,3),(2,4),(5,8),(6,10),(7,9)] => 2
[(1,4),(2,3),(5,8),(6,10),(7,9)] => 3
[(1,5),(2,3),(4,8),(6,10),(7,9)] => 2
[(1,6),(2,3),(4,8),(5,10),(7,9)] => 2
[(1,7),(2,3),(4,8),(5,10),(6,9)] => 2
[(1,8),(2,3),(4,7),(5,10),(6,9)] => 2
[(1,9),(2,3),(4,7),(5,10),(6,8)] => 2
[(1,10),(2,3),(4,7),(5,9),(6,8)] => 3
[(1,10),(2,4),(3,7),(5,9),(6,8)] => 2
[(1,9),(2,4),(3,7),(5,10),(6,8)] => 1
[(1,8),(2,4),(3,7),(5,10),(6,9)] => 1
[(1,7),(2,4),(3,8),(5,10),(6,9)] => 1
[(1,6),(2,4),(3,8),(5,10),(7,9)] => 1
[(1,5),(2,4),(3,8),(6,10),(7,9)] => 1
[(1,4),(2,5),(3,8),(6,10),(7,9)] => 1
[(1,3),(2,5),(4,8),(6,10),(7,9)] => 1
[(1,2),(3,5),(4,8),(6,10),(7,9)] => 2
[(1,2),(3,6),(4,8),(5,10),(7,9)] => 2
[(1,3),(2,6),(4,8),(5,10),(7,9)] => 1
[(1,4),(2,6),(3,8),(5,10),(7,9)] => 1
[(1,5),(2,6),(3,8),(4,10),(7,9)] => 1
[(1,6),(2,5),(3,8),(4,10),(7,9)] => 1
[(1,7),(2,5),(3,8),(4,10),(6,9)] => 1
[(1,8),(2,5),(3,7),(4,10),(6,9)] => 1
[(1,9),(2,5),(3,7),(4,10),(6,8)] => 1
[(1,10),(2,5),(3,7),(4,9),(6,8)] => 2
[(1,10),(2,6),(3,7),(4,9),(5,8)] => 2
[(1,9),(2,6),(3,7),(4,10),(5,8)] => 1
[(1,8),(2,6),(3,7),(4,10),(5,9)] => 1
[(1,7),(2,6),(3,8),(4,10),(5,9)] => 1
[(1,6),(2,7),(3,8),(4,10),(5,9)] => 1
[(1,5),(2,7),(3,8),(4,10),(6,9)] => 1
[(1,4),(2,7),(3,8),(5,10),(6,9)] => 1
[(1,3),(2,7),(4,8),(5,10),(6,9)] => 1
[(1,2),(3,7),(4,8),(5,10),(6,9)] => 2
[(1,2),(3,8),(4,7),(5,10),(6,9)] => 2
[(1,3),(2,8),(4,7),(5,10),(6,9)] => 1
[(1,4),(2,8),(3,7),(5,10),(6,9)] => 1
[(1,5),(2,8),(3,7),(4,10),(6,9)] => 1
[(1,6),(2,8),(3,7),(4,10),(5,9)] => 1
[(1,7),(2,8),(3,6),(4,10),(5,9)] => 1
[(1,8),(2,7),(3,6),(4,10),(5,9)] => 1
[(1,9),(2,7),(3,6),(4,10),(5,8)] => 1
[(1,10),(2,7),(3,6),(4,9),(5,8)] => 2
[(1,10),(2,8),(3,6),(4,9),(5,7)] => 2
[(1,9),(2,8),(3,6),(4,10),(5,7)] => 1
[(1,8),(2,9),(3,6),(4,10),(5,7)] => 1
[(1,7),(2,9),(3,6),(4,10),(5,8)] => 1
[(1,6),(2,9),(3,7),(4,10),(5,8)] => 1
[(1,5),(2,9),(3,7),(4,10),(6,8)] => 1
[(1,4),(2,9),(3,7),(5,10),(6,8)] => 1
[(1,3),(2,9),(4,7),(5,10),(6,8)] => 1
[(1,2),(3,9),(4,7),(5,10),(6,8)] => 2
[(1,2),(3,10),(4,7),(5,9),(6,8)] => 3
[(1,3),(2,10),(4,7),(5,9),(6,8)] => 2
[(1,4),(2,10),(3,7),(5,9),(6,8)] => 1
[(1,5),(2,10),(3,7),(4,9),(6,8)] => 1
[(1,6),(2,10),(3,7),(4,9),(5,8)] => 1
[(1,7),(2,10),(3,6),(4,9),(5,8)] => 1
[(1,8),(2,10),(3,6),(4,9),(5,7)] => 1
[(1,9),(2,10),(3,6),(4,8),(5,7)] => 2
[(1,10),(2,9),(3,6),(4,8),(5,7)] => 3
[(1,10),(2,9),(3,7),(4,8),(5,6)] => 4
[(1,9),(2,10),(3,7),(4,8),(5,6)] => 3
[(1,8),(2,10),(3,7),(4,9),(5,6)] => 2
[(1,7),(2,10),(3,8),(4,9),(5,6)] => 2
[(1,6),(2,10),(3,8),(4,9),(5,7)] => 1
[(1,5),(2,10),(3,8),(4,9),(6,7)] => 2
[(1,4),(2,10),(3,8),(5,9),(6,7)] => 2
[(1,3),(2,10),(4,8),(5,9),(6,7)] => 3
[(1,2),(3,10),(4,8),(5,9),(6,7)] => 4
[(1,2),(3,9),(4,8),(5,10),(6,7)] => 3
[(1,3),(2,9),(4,8),(5,10),(6,7)] => 2
[(1,4),(2,9),(3,8),(5,10),(6,7)] => 2
[(1,5),(2,9),(3,8),(4,10),(6,7)] => 2
[(1,6),(2,9),(3,8),(4,10),(5,7)] => 1
[(1,7),(2,9),(3,8),(4,10),(5,6)] => 2
[(1,8),(2,9),(3,7),(4,10),(5,6)] => 2
[(1,9),(2,8),(3,7),(4,10),(5,6)] => 2
[(1,10),(2,8),(3,7),(4,9),(5,6)] => 3
[(1,10),(2,7),(3,8),(4,9),(5,6)] => 3
[(1,9),(2,7),(3,8),(4,10),(5,6)] => 2
[(1,8),(2,7),(3,9),(4,10),(5,6)] => 2
[(1,7),(2,8),(3,9),(4,10),(5,6)] => 2
[(1,6),(2,8),(3,9),(4,10),(5,7)] => 1
[(1,5),(2,8),(3,9),(4,10),(6,7)] => 2
[(1,4),(2,8),(3,9),(5,10),(6,7)] => 2
[(1,3),(2,8),(4,9),(5,10),(6,7)] => 2
[(1,2),(3,8),(4,9),(5,10),(6,7)] => 3
[(1,2),(3,7),(4,9),(5,10),(6,8)] => 2
[(1,3),(2,7),(4,9),(5,10),(6,8)] => 1
[(1,4),(2,7),(3,9),(5,10),(6,8)] => 1
[(1,5),(2,7),(3,9),(4,10),(6,8)] => 1
[(1,6),(2,7),(3,9),(4,10),(5,8)] => 1
[(1,7),(2,6),(3,9),(4,10),(5,8)] => 1
[(1,8),(2,6),(3,9),(4,10),(5,7)] => 1
[(1,9),(2,6),(3,8),(4,10),(5,7)] => 1
[(1,10),(2,6),(3,8),(4,9),(5,7)] => 2
[(1,10),(2,5),(3,8),(4,9),(6,7)] => 3
[(1,9),(2,5),(3,8),(4,10),(6,7)] => 2
[(1,8),(2,5),(3,9),(4,10),(6,7)] => 2
[(1,7),(2,5),(3,9),(4,10),(6,8)] => 1
[(1,6),(2,5),(3,9),(4,10),(7,8)] => 2
[(1,5),(2,6),(3,9),(4,10),(7,8)] => 2
[(1,4),(2,6),(3,9),(5,10),(7,8)] => 2
[(1,3),(2,6),(4,9),(5,10),(7,8)] => 2
[(1,2),(3,6),(4,9),(5,10),(7,8)] => 3
[(1,2),(3,5),(4,9),(6,10),(7,8)] => 3
[(1,3),(2,5),(4,9),(6,10),(7,8)] => 2
[(1,4),(2,5),(3,9),(6,10),(7,8)] => 2
[(1,5),(2,4),(3,9),(6,10),(7,8)] => 2
[(1,6),(2,4),(3,9),(5,10),(7,8)] => 2
[(1,7),(2,4),(3,9),(5,10),(6,8)] => 1
[(1,8),(2,4),(3,9),(5,10),(6,7)] => 2
[(1,9),(2,4),(3,8),(5,10),(6,7)] => 2
[(1,10),(2,4),(3,8),(5,9),(6,7)] => 3
[(1,10),(2,3),(4,8),(5,9),(6,7)] => 4
[(1,9),(2,3),(4,8),(5,10),(6,7)] => 3
[(1,8),(2,3),(4,9),(5,10),(6,7)] => 3
[(1,7),(2,3),(4,9),(5,10),(6,8)] => 2
[(1,6),(2,3),(4,9),(5,10),(7,8)] => 3
[(1,5),(2,3),(4,9),(6,10),(7,8)] => 3
[(1,4),(2,3),(5,9),(6,10),(7,8)] => 4
[(1,3),(2,4),(5,9),(6,10),(7,8)] => 3
[(1,2),(3,4),(5,9),(6,10),(7,8)] => 4
[(1,2),(3,4),(5,10),(6,9),(7,8)] => 5
[(1,3),(2,4),(5,10),(6,9),(7,8)] => 4
[(1,4),(2,3),(5,10),(6,9),(7,8)] => 5
[(1,5),(2,3),(4,10),(6,9),(7,8)] => 4
[(1,6),(2,3),(4,10),(5,9),(7,8)] => 3
[(1,7),(2,3),(4,10),(5,9),(6,8)] => 2
[(1,8),(2,3),(4,10),(5,9),(6,7)] => 3
[(1,9),(2,3),(4,10),(5,8),(6,7)] => 4
[(1,10),(2,3),(4,9),(5,8),(6,7)] => 5
[(1,10),(2,4),(3,9),(5,8),(6,7)] => 4
[(1,9),(2,4),(3,10),(5,8),(6,7)] => 3
[(1,8),(2,4),(3,10),(5,9),(6,7)] => 2
[(1,7),(2,4),(3,10),(5,9),(6,8)] => 1
[(1,6),(2,4),(3,10),(5,9),(7,8)] => 2
[(1,5),(2,4),(3,10),(6,9),(7,8)] => 3
[(1,4),(2,5),(3,10),(6,9),(7,8)] => 3
[(1,3),(2,5),(4,10),(6,9),(7,8)] => 3
[(1,2),(3,5),(4,10),(6,9),(7,8)] => 4
[(1,2),(3,6),(4,10),(5,9),(7,8)] => 3
[(1,3),(2,6),(4,10),(5,9),(7,8)] => 2
[(1,4),(2,6),(3,10),(5,9),(7,8)] => 2
[(1,5),(2,6),(3,10),(4,9),(7,8)] => 2
[(1,6),(2,5),(3,10),(4,9),(7,8)] => 2
[(1,7),(2,5),(3,10),(4,9),(6,8)] => 1
[(1,8),(2,5),(3,10),(4,9),(6,7)] => 2
[(1,9),(2,5),(3,10),(4,8),(6,7)] => 2
[(1,10),(2,5),(3,9),(4,8),(6,7)] => 3
[(1,10),(2,6),(3,9),(4,8),(5,7)] => 2
[(1,9),(2,6),(3,10),(4,8),(5,7)] => 1
[(1,8),(2,6),(3,10),(4,9),(5,7)] => 1
[(1,7),(2,6),(3,10),(4,9),(5,8)] => 1
[(1,6),(2,7),(3,10),(4,9),(5,8)] => 1
[(1,5),(2,7),(3,10),(4,9),(6,8)] => 1
[(1,4),(2,7),(3,10),(5,9),(6,8)] => 1
[(1,3),(2,7),(4,10),(5,9),(6,8)] => 1
[(1,2),(3,7),(4,10),(5,9),(6,8)] => 2
[(1,2),(3,8),(4,10),(5,9),(6,7)] => 3
[(1,3),(2,8),(4,10),(5,9),(6,7)] => 2
[(1,4),(2,8),(3,10),(5,9),(6,7)] => 2
[(1,5),(2,8),(3,10),(4,9),(6,7)] => 2
[(1,6),(2,8),(3,10),(4,9),(5,7)] => 1
[(1,7),(2,8),(3,10),(4,9),(5,6)] => 2
[(1,8),(2,7),(3,10),(4,9),(5,6)] => 2
[(1,9),(2,7),(3,10),(4,8),(5,6)] => 2
[(1,10),(2,7),(3,9),(4,8),(5,6)] => 3
[(1,10),(2,8),(3,9),(4,7),(5,6)] => 4
[(1,9),(2,8),(3,10),(4,7),(5,6)] => 3
[(1,8),(2,9),(3,10),(4,7),(5,6)] => 3
[(1,7),(2,9),(3,10),(4,8),(5,6)] => 2
[(1,6),(2,9),(3,10),(4,8),(5,7)] => 1
[(1,5),(2,9),(3,10),(4,8),(6,7)] => 2
[(1,4),(2,9),(3,10),(5,8),(6,7)] => 3
[(1,3),(2,9),(4,10),(5,8),(6,7)] => 3
[(1,2),(3,9),(4,10),(5,8),(6,7)] => 4
[(1,2),(3,10),(4,9),(5,8),(6,7)] => 5
[(1,3),(2,10),(4,9),(5,8),(6,7)] => 4
[(1,4),(2,10),(3,9),(5,8),(6,7)] => 3
[(1,5),(2,10),(3,9),(4,8),(6,7)] => 2
[(1,6),(2,10),(3,9),(4,8),(5,7)] => 1
[(1,7),(2,10),(3,9),(4,8),(5,6)] => 2
[(1,8),(2,10),(3,9),(4,7),(5,6)] => 3
[(1,9),(2,10),(3,8),(4,7),(5,6)] => 4
[(1,10),(2,9),(3,8),(4,7),(5,6)] => 5
[(1,2),(3,4),(5,8),(6,7),(9,10),(11,12)] => 6
[(1,2),(3,4),(5,8),(6,7),(9,12),(10,11)] => 6
[(1,2),(3,4),(5,10),(6,7),(8,9),(11,12)] => 6
[(1,2),(3,4),(5,12),(6,7),(8,9),(10,11)] => 6
[(1,2),(3,4),(5,12),(6,7),(8,11),(9,10)] => 6
[(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)] => 6
[(1,2),(3,4),(5,6),(7,8),(9,12),(10,11)] => 6
[(1,2),(3,4),(5,10),(6,9),(7,8),(11,12)] => 6
[(1,2),(3,4),(5,12),(6,9),(7,8),(10,11)] => 6
[(1,2),(3,4),(5,12),(6,11),(7,8),(9,10)] => 6
[(1,2),(3,4),(5,6),(7,10),(8,9),(11,12)] => 6
[(1,2),(3,4),(5,6),(7,12),(8,9),(10,11)] => 6
[(1,2),(3,4),(5,6),(7,12),(8,11),(9,10)] => 6
[(1,2),(3,4),(5,12),(6,11),(7,10),(8,9)] => 6
[(1,2),(3,4),(5,6),(7,8),(9,11),(10,12)] => 5
[(1,2),(3,4),(5,6),(7,9),(8,10),(11,12)] => 5
[(1,2),(3,4),(5,6),(7,9),(8,11),(10,12)] => 4
[(1,2),(3,4),(5,6),(7,10),(8,11),(9,12)] => 4
[(1,2),(3,4),(5,7),(6,8),(9,10),(11,12)] => 5
[(1,2),(3,4),(5,7),(6,8),(9,11),(10,12)] => 4
[(1,2),(3,4),(5,7),(6,9),(8,10),(11,12)] => 4
[(1,2),(3,4),(5,7),(6,9),(8,11),(10,12)] => 3
[(1,2),(3,4),(5,7),(6,10),(8,11),(9,12)] => 3
[(1,2),(3,4),(5,8),(6,9),(7,10),(11,12)] => 4
[(1,2),(3,4),(5,8),(6,9),(7,11),(10,12)] => 3
[(1,2),(3,4),(5,8),(6,10),(7,11),(9,12)] => 3
[(1,2),(3,4),(5,9),(6,10),(7,11),(8,12)] => 3
[(1,2),(3,5),(4,6),(7,8),(9,10),(11,12)] => 5
[(1,2),(3,5),(4,6),(7,8),(9,11),(10,12)] => 4
[(1,2),(3,5),(4,6),(7,9),(8,10),(11,12)] => 4
[(1,2),(3,5),(4,6),(7,9),(8,11),(10,12)] => 3
[(1,2),(3,5),(4,6),(7,10),(8,11),(9,12)] => 3
[(1,2),(3,5),(4,7),(6,8),(9,10),(11,12)] => 4
[(1,2),(3,5),(4,7),(6,8),(9,11),(10,12)] => 3
[(1,2),(3,5),(4,7),(6,9),(8,10),(11,12)] => 3
[(1,2),(3,5),(4,7),(6,9),(8,11),(10,12)] => 2
[(1,2),(3,5),(4,7),(6,10),(8,11),(9,12)] => 2
[(1,2),(3,4),(5,6),(7,9),(8,12),(10,11)] => 5
[(1,2),(3,4),(5,6),(7,10),(8,12),(9,11)] => 4
[(1,2),(3,4),(5,6),(7,11),(8,9),(10,12)] => 5
[(1,2),(3,4),(5,6),(7,11),(8,10),(9,12)] => 4
[(1,2),(3,4),(5,6),(7,11),(8,12),(9,10)] => 5
[(1,2),(3,4),(5,6),(7,12),(8,10),(9,11)] => 5
[(1,2),(3,4),(5,7),(6,8),(9,12),(10,11)] => 5
[(1,2),(3,4),(5,7),(6,9),(8,12),(10,11)] => 4
[(1,2),(3,4),(5,7),(6,10),(8,9),(11,12)] => 5
[(1,2),(3,4),(5,7),(6,10),(8,12),(9,11)] => 3
[(1,2),(3,4),(5,7),(6,11),(8,9),(10,12)] => 4
[(1,2),(3,4),(5,7),(6,11),(8,10),(9,12)] => 3
[(1,2),(3,4),(5,7),(6,11),(8,12),(9,10)] => 4
[(1,2),(3,4),(5,7),(6,12),(8,9),(10,11)] => 5
[(1,2),(3,4),(5,7),(6,12),(8,10),(9,11)] => 4
[(1,2),(3,4),(5,7),(6,12),(8,11),(9,10)] => 5
[(1,2),(3,4),(5,8),(6,7),(9,11),(10,12)] => 5
[(1,2),(3,4),(5,8),(6,9),(7,12),(10,11)] => 4
[(1,2),(3,4),(5,8),(6,10),(7,12),(9,11)] => 3
[(1,2),(3,4),(5,8),(6,10),(7,9),(11,12)] => 4
[(1,2),(3,4),(5,8),(6,11),(7,12),(9,10)] => 4
[(1,2),(3,4),(5,8),(6,11),(7,10),(9,12)] => 3
[(1,2),(3,4),(5,8),(6,11),(7,9),(10,12)] => 3
[(1,2),(3,4),(5,8),(6,12),(7,11),(9,10)] => 4
[(1,2),(3,4),(5,8),(6,12),(7,10),(9,11)] => 3
[(1,2),(3,4),(5,8),(6,12),(7,9),(10,11)] => 4
[(1,2),(3,4),(5,9),(6,7),(8,10),(11,12)] => 5
[(1,2),(3,4),(5,9),(6,7),(8,11),(10,12)] => 4
[(1,2),(3,4),(5,9),(6,7),(8,12),(10,11)] => 5
[(1,2),(3,4),(5,9),(6,8),(7,12),(10,11)] => 4
[(1,2),(3,4),(5,9),(6,8),(7,11),(10,12)] => 3
[(1,2),(3,4),(5,9),(6,8),(7,10),(11,12)] => 4
[(1,2),(3,4),(5,9),(6,10),(7,12),(8,11)] => 3
[(1,2),(3,4),(5,9),(6,10),(7,8),(11,12)] => 5
[(1,2),(3,4),(5,9),(6,11),(7,12),(8,10)] => 3
[(1,2),(3,4),(5,9),(6,11),(7,10),(8,12)] => 3
[(1,2),(3,4),(5,9),(6,11),(7,8),(10,12)] => 4
[(1,2),(3,4),(5,9),(6,12),(7,11),(8,10)] => 3
[(1,2),(3,4),(5,9),(6,12),(7,10),(8,11)] => 3
[(1,2),(3,4),(5,9),(6,12),(7,8),(10,11)] => 5
[(1,2),(3,4),(5,10),(6,7),(8,11),(9,12)] => 4
[(1,2),(3,4),(5,10),(6,7),(8,12),(9,11)] => 4
[(1,2),(3,4),(5,10),(6,8),(7,12),(9,11)] => 3
[(1,2),(3,4),(5,10),(6,8),(7,11),(9,12)] => 3
[(1,2),(3,4),(5,10),(6,8),(7,9),(11,12)] => 5
[(1,2),(3,4),(5,10),(6,9),(7,12),(8,11)] => 3
[(1,2),(3,4),(5,10),(6,9),(7,11),(8,12)] => 3
[(1,2),(3,4),(5,10),(6,11),(7,12),(8,9)] => 4
[(1,2),(3,4),(5,10),(6,11),(7,9),(8,12)] => 3
[(1,2),(3,4),(5,10),(6,11),(7,8),(9,12)] => 4
[(1,2),(3,4),(5,10),(6,12),(7,11),(8,9)] => 4
[(1,2),(3,4),(5,10),(6,12),(7,9),(8,11)] => 3
[(1,2),(3,4),(5,10),(6,12),(7,8),(9,11)] => 4
[(1,2),(3,4),(5,11),(6,7),(8,9),(10,12)] => 5
[(1,2),(3,4),(5,11),(6,7),(8,10),(9,12)] => 4
[(1,2),(3,4),(5,11),(6,7),(8,12),(9,10)] => 5
[(1,2),(3,4),(5,11),(6,8),(7,12),(9,10)] => 4
[(1,2),(3,4),(5,11),(6,8),(7,10),(9,12)] => 3
[(1,2),(3,4),(5,11),(6,8),(7,9),(10,12)] => 4
[(1,2),(3,4),(5,11),(6,9),(7,12),(8,10)] => 3
[(1,2),(3,4),(5,11),(6,9),(7,10),(8,12)] => 3
[(1,2),(3,4),(5,11),(6,9),(7,8),(10,12)] => 5
[(1,2),(3,4),(5,11),(6,10),(7,12),(8,9)] => 4
[(1,2),(3,4),(5,11),(6,10),(7,9),(8,12)] => 3
[(1,2),(3,4),(5,11),(6,10),(7,8),(9,12)] => 4
[(1,2),(3,4),(5,11),(6,12),(7,10),(8,9)] => 5
[(1,2),(3,4),(5,11),(6,12),(7,9),(8,10)] => 4
[(1,2),(3,4),(5,11),(6,12),(7,8),(9,10)] => 5
[(1,2),(3,4),(5,12),(6,7),(8,10),(9,11)] => 5
[(1,2),(3,4),(5,12),(6,8),(7,11),(9,10)] => 5
[(1,2),(3,4),(5,12),(6,8),(7,10),(9,11)] => 4
[(1,2),(3,4),(5,12),(6,8),(7,9),(10,11)] => 5
[(1,2),(3,4),(5,12),(6,9),(7,11),(8,10)] => 4
[(1,2),(3,4),(5,12),(6,9),(7,10),(8,11)] => 4
[(1,2),(3,4),(5,12),(6,10),(7,11),(8,9)] => 5
[(1,2),(3,4),(5,12),(6,10),(7,9),(8,11)] => 4
[(1,2),(3,4),(5,12),(6,10),(7,8),(9,11)] => 5
[(1,2),(3,4),(5,12),(6,11),(7,9),(8,10)] => 5
[(1,2),(3,5),(4,6),(7,8),(9,12),(10,11)] => 5
[(1,2),(3,5),(4,6),(7,9),(8,12),(10,11)] => 4
[(1,2),(3,5),(4,6),(7,10),(8,9),(11,12)] => 5
[(1,2),(3,5),(4,6),(7,10),(8,12),(9,11)] => 3
[(1,2),(3,5),(4,6),(7,11),(8,9),(10,12)] => 4
[(1,2),(3,5),(4,6),(7,11),(8,10),(9,12)] => 3
[(1,2),(3,5),(4,6),(7,11),(8,12),(9,10)] => 4
[(1,2),(3,5),(4,6),(7,12),(8,9),(10,11)] => 5
[(1,2),(3,5),(4,6),(7,12),(8,10),(9,11)] => 4
[(1,2),(3,5),(4,6),(7,12),(8,11),(9,10)] => 5
[(1,2),(3,5),(4,7),(6,8),(9,12),(10,11)] => 4
[(1,2),(3,5),(4,7),(6,9),(8,12),(10,11)] => 3
[(1,2),(3,5),(4,7),(6,10),(8,9),(11,12)] => 4
[(1,2),(3,5),(4,7),(6,10),(8,12),(9,11)] => 2
[(1,2),(3,5),(4,7),(6,11),(8,9),(10,12)] => 3
[(1,2),(3,5),(4,7),(6,11),(8,10),(9,12)] => 2
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Generating function
click to show known generating functions
Search the OEIS for these generating functions
Search the Online Encyclopedia of Integer
Sequences for the coefficients of a few of the
first generating functions, in the case at hand:
1,2 4,6,5 27,36,28,14 248,310,225,120,42
$F_{2} = q$
$F_{4} = q + 2\ q^{2}$
$F_{6} = 4\ q + 6\ q^{2} + 5\ q^{3}$
$F_{8} = 27\ q + 36\ q^{2} + 28\ q^{3} + 14\ q^{4}$
$F_{10} = 248\ q + 310\ q^{2} + 225\ q^{3} + 120\ q^{4} + 42\ q^{5}$
Description
The number of topologically connected components of a perfect matching.
For example, the perfect matching $\{\{1,4\},\{2,3\}\}$ has the two connected components $\{1,4\}$ and $\{2,3\}$.
The number of perfect matchings with only one block is oeis:A000699.
For example, the perfect matching $\{\{1,4\},\{2,3\}\}$ has the two connected components $\{1,4\}$ and $\{2,3\}$.
The number of perfect matchings with only one block is oeis:A000699.
References
[1] Gil, J. B., McNamara, P. R. W., Tirrell, J. O., Weiner, M. D. From Dyck paths to standard Young tableaux arXiv:1708.00513
Code
def statistic(M):
"""The number of topologically connected components of the arc
diagram of a perfect matching."""
C = dict()
for a, b in M:
if a > b:
a,b = b,a
C[a] = frozenset([a,b])
C[b] = C[a]
for (i,j), (k,l) in M.crossings():
if C[i] != C[k]:
C[i] = C[i].union(C[k])
for a in C[i]:
C[a] = C[i]
return len(set(c for c in C.values()))
Created
Aug 03, 2017 at 09:34 by Martin Rubey
Updated
Aug 03, 2017 at 15:08 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!