*****************************************************************************
*       www.FindStat.org - The Combinatorial Statistic Finder               *
*                                                                           *
*       Copyright (C) 2019 The FindStatCrew <info@findstat.org>             *
*                                                                           *
*    This information is distributed in the hope that it will be useful,    *
*    but WITHOUT ANY WARRANTY; without even the implied warranty of         *
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                   *
*****************************************************************************

-----------------------------------------------------------------------------
Statistic identifier: St000913

-----------------------------------------------------------------------------
Collection: Integer partitions

-----------------------------------------------------------------------------
Description: The number of ways to refine the partition into singletons.

For example there is only one way to refine $[2,2]$: $[2,2] > [2,1,1] > [1,1,1,1]$.  However, there are two ways to refine $[3,2]$: $[3,2] > [2,2,1] > [2,1,1,1] > [1,1,1,1,1$ and $[3,2] > [3,1,1] > [2,1,1,1] > [1,1,1,1,1]$.

In other words, this is the number of saturated chains in the refinement order from the bottom element to the given partition.

The sequence of values on the partitions with only one part is [[A002846]].

-----------------------------------------------------------------------------
References: 

-----------------------------------------------------------------------------
Code:
def statistic(la):
    P = posets.IntegerPartitions(la.size())
    H = P.hasse_diagram()
    e = H.vertices()[0]
    f = tuple(la)
    return len(H.all_simple_paths([f], [e], trivial=True))


-----------------------------------------------------------------------------
Statistic values:

[]                        => 1
[1]                       => 1
[2]                       => 1
[1,1]                     => 1
[3]                       => 1
[2,1]                     => 1
[1,1,1]                   => 1
[4]                       => 2
[3,1]                     => 1
[2,2]                     => 1
[2,1,1]                   => 1
[1,1,1,1]                 => 1
[5]                       => 4
[4,1]                     => 2
[3,2]                     => 2
[3,1,1]                   => 1
[2,2,1]                   => 1
[2,1,1,1]                 => 1
[1,1,1,1,1]               => 1
[6]                       => 11
[5,1]                     => 4
[4,2]                     => 5
[4,1,1]                   => 2
[3,3]                     => 2
[3,2,1]                   => 2
[3,1,1,1]                 => 1
[2,2,2]                   => 1
[2,2,1,1]                 => 1
[2,1,1,1,1]               => 1
[1,1,1,1,1,1]             => 1
[7]                       => 33
[6,1]                     => 11
[5,2]                     => 12
[5,1,1]                   => 4
[4,3]                     => 10
[4,2,1]                   => 5
[4,1,1,1]                 => 2
[3,3,1]                   => 2
[3,2,2]                   => 3
[3,2,1,1]                 => 2
[3,1,1,1,1]               => 1
[2,2,2,1]                 => 1
[2,2,1,1,1]               => 1
[2,1,1,1,1,1]             => 1
[1,1,1,1,1,1,1]           => 1
[8]                       => 116
[7,1]                     => 33
[6,2]                     => 37
[6,1,1]                   => 11
[5,3]                     => 27
[5,2,1]                   => 12
[5,1,1,1]                 => 4
[4,4]                     => 19
[4,3,1]                   => 10
[4,2,2]                   => 9
[4,2,1,1]                 => 5
[4,1,1,1,1]               => 2
[3,3,2]                   => 5
[3,3,1,1]                 => 2
[3,2,2,1]                 => 3
[3,2,1,1,1]               => 2
[3,1,1,1,1,1]             => 1
[2,2,2,2]                 => 1
[2,2,2,1,1]               => 1
[2,2,1,1,1,1]             => 1
[2,1,1,1,1,1,1]           => 1
[1,1,1,1,1,1,1,1]         => 1
[9]                       => 435
[8,1]                     => 116
[7,2]                     => 123
[7,1,1]                   => 33
[6,3]                     => 97
[6,2,1]                   => 37
[6,1,1,1]                 => 11
[5,4]                     => 99
[5,3,1]                   => 27
[5,2,2]                   => 25
[5,2,1,1]                 => 12
[5,1,1,1,1]               => 4
[4,4,1]                   => 19
[4,3,2]                   => 28
[4,3,1,1]                 => 10
[4,2,2,1]                 => 9
[4,2,1,1,1]               => 5
[4,1,1,1,1,1]             => 2
[3,3,3]                   => 5
[3,3,2,1]                 => 5
[3,3,1,1,1]               => 2
[3,2,2,2]                 => 4
[3,2,2,1,1]               => 3
[3,2,1,1,1,1]             => 2
[3,1,1,1,1,1,1]           => 1
[2,2,2,2,1]               => 1
[2,2,2,1,1,1]             => 1
[2,2,1,1,1,1,1]           => 1
[2,1,1,1,1,1,1,1]         => 1
[1,1,1,1,1,1,1,1,1]       => 1
[10]                      => 1832
[9,1]                     => 435
[8,2]                     => 474
[8,1,1]                   => 116
[7,3]                     => 351
[7,2,1]                   => 123
[7,1,1,1]                 => 33
[6,4]                     => 384
[6,3,1]                   => 97
[6,2,2]                   => 85
[6,2,1,1]                 => 37
[6,1,1,1,1]               => 11
[5,5]                     => 188
[5,4,1]                   => 99
[5,3,2]                   => 89
[5,3,1,1]                 => 27
[5,2,2,1]                 => 25
[5,2,1,1,1]               => 12
[5,1,1,1,1,1]             => 4
[4,4,2]                   => 61
[4,4,1,1]                 => 19
[4,3,3]                   => 42
[4,3,2,1]                 => 28
[4,3,1,1,1]               => 10
[4,2,2,2]                 => 14
[4,2,2,1,1]               => 9
[4,2,1,1,1,1]             => 5
[4,1,1,1,1,1,1]           => 2
[3,3,3,1]                 => 5
[3,3,2,2]                 => 9
[3,3,2,1,1]               => 5
[3,3,1,1,1,1]             => 2
[3,2,2,2,1]               => 4
[3,2,2,1,1,1]             => 3
[3,2,1,1,1,1,1]           => 2
[3,1,1,1,1,1,1,1]         => 1
[2,2,2,2,2]               => 1
[2,2,2,2,1,1]             => 1
[2,2,2,1,1,1,1]           => 1
[2,2,1,1,1,1,1,1]         => 1
[2,1,1,1,1,1,1,1,1]       => 1
[1,1,1,1,1,1,1,1,1,1]     => 1
[11]                      => 8167
[10,1]                    => 1832
[9,2]                     => 1907
[9,1,1]                   => 435
[8,3]                     => 1470
[8,2,1]                   => 474
[8,1,1,1]                 => 116
[7,4]                     => 1551
[7,3,1]                   => 351
[7,2,2]                   => 308
[7,2,1,1]                 => 123
[7,1,1,1,1]               => 33
[6,5]                     => 1407
[6,4,1]                   => 384
[6,3,2]                   => 341
[6,3,1,1]                 => 97
[6,2,2,1]                 => 85
[6,2,1,1,1]               => 37
[6,1,1,1,1,1]             => 11
[5,5,1]                   => 188
[5,4,2]                   => 349
[5,4,1,1]                 => 99
[5,3,3]                   => 145
[5,3,2,1]                 => 89
[5,3,1,1,1]               => 27
[5,2,2,2]                 => 44
[5,2,2,1,1]               => 25
[5,2,1,1,1,1]             => 12
[5,1,1,1,1,1,1]           => 4
[4,4,3]                   => 159
[4,4,2,1]                 => 61
[4,4,1,1,1]               => 19
[4,3,3,1]                 => 42
[4,3,2,2]                 => 56
[4,3,2,1,1]               => 28
[4,3,1,1,1,1]             => 10
[4,2,2,2,1]               => 14
[4,2,2,1,1,1]             => 9
[4,2,1,1,1,1,1]           => 5
[4,1,1,1,1,1,1,1]         => 2
[3,3,3,2]                 => 14
[3,3,3,1,1]               => 5
[3,3,2,2,1]               => 9
[3,3,2,1,1,1]             => 5
[3,3,1,1,1,1,1]           => 2
[3,2,2,2,2]               => 5
[3,2,2,2,1,1]             => 4
[3,2,2,1,1,1,1]           => 3
[3,2,1,1,1,1,1,1]         => 2
[3,1,1,1,1,1,1,1,1]       => 1
[2,2,2,2,2,1]             => 1
[2,2,2,2,1,1,1]           => 1
[2,2,2,1,1,1,1,1]         => 1
[2,2,1,1,1,1,1,1,1]       => 1
[2,1,1,1,1,1,1,1,1,1]     => 1
[1,1,1,1,1,1,1,1,1,1,1]   => 1
[12]                      => 39700
[11,1]                    => 8167
[10,2]                    => 8593
[10,1,1]                  => 1832
[9,3]                     => 6314
[9,2,1]                   => 1907
[9,1,1,1]                 => 435
[8,4]                     => 7084
[8,3,1]                   => 1470
[8,2,2]                   => 1285
[8,2,1,1]                 => 474
[8,1,1,1,1]               => 116
[7,5]                     => 6009
[7,4,1]                   => 1551
[7,3,2]                   => 1329
[7,3,1,1]                 => 351
[7,2,2,1]                 => 308
[7,2,1,1,1]               => 123
[7,1,1,1,1,1]             => 33
[6,6]                     => 3533
[6,5,1]                   => 1407
[6,4,2]                   => 1500
[6,4,1,1]                 => 384
[6,3,3]                   => 626
[6,3,2,1]                 => 341
[6,3,1,1,1]               => 97
[6,2,2,2]                 => 163
[6,2,2,1,1]               => 85
[6,2,1,1,1,1]             => 37
[6,1,1,1,1,1,1]           => 11
[5,5,2]                   => 740
[5,5,1,1]                 => 188
[5,4,3]                   => 982
[5,4,2,1]                 => 349
[5,4,1,1,1]               => 99
[5,3,3,1]                 => 145
[5,3,2,2]                 => 203
[5,3,2,1,1]               => 89
[5,3,1,1,1,1]             => 27
[5,2,2,2,1]               => 44
[5,2,2,1,1,1]             => 25
[5,2,1,1,1,1,1]           => 12
[5,1,1,1,1,1,1,1]         => 4
[4,4,4]                   => 296
[4,4,3,1]                 => 159
[4,4,2,2]                 => 137
[4,4,2,1,1]               => 61
[4,4,1,1,1,1]             => 19
[4,3,3,2]                 => 126
[4,3,3,1,1]               => 42
[4,3,2,2,1]               => 56
[4,3,2,1,1,1]             => 28
[4,3,1,1,1,1,1]           => 10
[4,2,2,2,2]               => 20
[4,2,2,2,1,1]             => 14
[4,2,2,1,1,1,1]           => 9
[4,2,1,1,1,1,1,1]         => 5
[4,1,1,1,1,1,1,1,1]       => 2
[3,3,3,3]                 => 14
[3,3,3,2,1]               => 14
[3,3,3,1,1,1]             => 5
[3,3,2,2,2]               => 14
[3,3,2,2,1,1]             => 9
[3,3,2,1,1,1,1]           => 5
[3,3,1,1,1,1,1,1]         => 2
[3,2,2,2,2,1]             => 5
[3,2,2,2,1,1,1]           => 4
[3,2,2,1,1,1,1,1]         => 3
[3,2,1,1,1,1,1,1,1]       => 2
[3,1,1,1,1,1,1,1,1,1]     => 1
[2,2,2,2,2,2]             => 1
[2,2,2,2,2,1,1]           => 1
[2,2,2,2,1,1,1,1]         => 1
[2,2,2,1,1,1,1,1,1]       => 1
[2,2,1,1,1,1,1,1,1,1]     => 1
[2,1,1,1,1,1,1,1,1,1,1]   => 1
[1,1,1,1,1,1,1,1,1,1,1,1] => 1
[5,4,3,1]                 => 982
[5,4,2,2]                 => 855
[5,4,2,1,1]               => 349
[5,3,3,2]                 => 502
[5,3,3,1,1]               => 145
[5,3,2,2,1]               => 203
[4,4,3,2]                 => 518
[4,4,3,1,1]               => 159
[4,4,2,2,1]               => 137
[4,3,3,2,1]               => 126
[5,4,3,2]                 => 3516
[5,4,3,1,1]               => 982
[5,4,2,2,1]               => 855
[5,3,3,2,1]               => 502
[4,4,3,2,1]               => 518
[5,4,3,2,1]               => 3516

-----------------------------------------------------------------------------
Created: Jul 19, 2017 at 15:58 by Martin Rubey

-----------------------------------------------------------------------------
Last Updated: Jan 17, 2018 at 23:29 by Martin Rubey