Identifier
-
Mp00042:
Integer partitions
—initial tableau⟶
Standard tableaux
Mp00207: Standard tableaux —horizontal strip sizes⟶ Integer compositions
St000905: Integer compositions ⟶ ℤ
Values
[1] => [[1]] => [1] => 1
[2] => [[1,2]] => [2] => 1
[1,1] => [[1],[2]] => [1,1] => 1
[3] => [[1,2,3]] => [3] => 1
[2,1] => [[1,2],[3]] => [2,1] => 1
[1,1,1] => [[1],[2],[3]] => [1,1,1] => 1
[4] => [[1,2,3,4]] => [4] => 1
[3,1] => [[1,2,3],[4]] => [3,1] => 1
[2,2] => [[1,2],[3,4]] => [2,2] => 1
[2,1,1] => [[1,2],[3],[4]] => [2,1,1] => 2
[1,1,1,1] => [[1],[2],[3],[4]] => [1,1,1,1] => 1
[5] => [[1,2,3,4,5]] => [5] => 1
[4,1] => [[1,2,3,4],[5]] => [4,1] => 1
[3,2] => [[1,2,3],[4,5]] => [3,2] => 1
[3,1,1] => [[1,2,3],[4],[5]] => [3,1,1] => 2
[2,2,1] => [[1,2],[3,4],[5]] => [2,2,1] => 2
[2,1,1,1] => [[1,2],[3],[4],[5]] => [2,1,1,1] => 2
[1,1,1,1,1] => [[1],[2],[3],[4],[5]] => [1,1,1,1,1] => 1
[6] => [[1,2,3,4,5,6]] => [6] => 1
[5,1] => [[1,2,3,4,5],[6]] => [5,1] => 1
[4,2] => [[1,2,3,4],[5,6]] => [4,2] => 1
[4,1,1] => [[1,2,3,4],[5],[6]] => [4,1,1] => 2
[3,3] => [[1,2,3],[4,5,6]] => [3,3] => 1
[3,2,1] => [[1,2,3],[4,5],[6]] => [3,2,1] => 1
[3,1,1,1] => [[1,2,3],[4],[5],[6]] => [3,1,1,1] => 2
[2,2,2] => [[1,2],[3,4],[5,6]] => [2,2,2] => 1
[2,2,1,1] => [[1,2],[3,4],[5],[6]] => [2,2,1,1] => 1
[2,1,1,1,1] => [[1,2],[3],[4],[5],[6]] => [2,1,1,1,1] => 2
[1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6]] => [1,1,1,1,1,1] => 1
[7] => [[1,2,3,4,5,6,7]] => [7] => 1
[6,1] => [[1,2,3,4,5,6],[7]] => [6,1] => 1
[5,2] => [[1,2,3,4,5],[6,7]] => [5,2] => 1
[5,1,1] => [[1,2,3,4,5],[6],[7]] => [5,1,1] => 2
[4,3] => [[1,2,3,4],[5,6,7]] => [4,3] => 1
[4,2,1] => [[1,2,3,4],[5,6],[7]] => [4,2,1] => 1
[4,1,1,1] => [[1,2,3,4],[5],[6],[7]] => [4,1,1,1] => 2
[3,3,1] => [[1,2,3],[4,5,6],[7]] => [3,3,1] => 2
[3,2,2] => [[1,2,3],[4,5],[6,7]] => [3,2,2] => 2
[3,2,1,1] => [[1,2,3],[4,5],[6],[7]] => [3,2,1,1] => 2
[3,1,1,1,1] => [[1,2,3],[4],[5],[6],[7]] => [3,1,1,1,1] => 2
[2,2,2,1] => [[1,2],[3,4],[5,6],[7]] => [2,2,2,1] => 2
[2,2,1,1,1] => [[1,2],[3,4],[5],[6],[7]] => [2,2,1,1,1] => 2
[2,1,1,1,1,1] => [[1,2],[3],[4],[5],[6],[7]] => [2,1,1,1,1,1] => 2
[1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7]] => [1,1,1,1,1,1,1] => 1
[8] => [[1,2,3,4,5,6,7,8]] => [8] => 1
[7,1] => [[1,2,3,4,5,6,7],[8]] => [7,1] => 1
[6,2] => [[1,2,3,4,5,6],[7,8]] => [6,2] => 1
[6,1,1] => [[1,2,3,4,5,6],[7],[8]] => [6,1,1] => 2
[5,3] => [[1,2,3,4,5],[6,7,8]] => [5,3] => 1
[5,2,1] => [[1,2,3,4,5],[6,7],[8]] => [5,2,1] => 1
[5,1,1,1] => [[1,2,3,4,5],[6],[7],[8]] => [5,1,1,1] => 2
[4,4] => [[1,2,3,4],[5,6,7,8]] => [4,4] => 1
[4,3,1] => [[1,2,3,4],[5,6,7],[8]] => [4,3,1] => 1
[4,2,2] => [[1,2,3,4],[5,6],[7,8]] => [4,2,2] => 2
[4,2,1,1] => [[1,2,3,4],[5,6],[7],[8]] => [4,2,1,1] => 2
[4,1,1,1,1] => [[1,2,3,4],[5],[6],[7],[8]] => [4,1,1,1,1] => 2
[3,3,2] => [[1,2,3],[4,5,6],[7,8]] => [3,3,2] => 2
[3,3,1,1] => [[1,2,3],[4,5,6],[7],[8]] => [3,3,1,1] => 1
[3,2,2,1] => [[1,2,3],[4,5],[6,7],[8]] => [3,2,2,1] => 2
[3,2,1,1,1] => [[1,2,3],[4,5],[6],[7],[8]] => [3,2,1,1,1] => 2
[3,1,1,1,1,1] => [[1,2,3],[4],[5],[6],[7],[8]] => [3,1,1,1,1,1] => 2
[2,2,2,2] => [[1,2],[3,4],[5,6],[7,8]] => [2,2,2,2] => 1
[2,2,2,1,1] => [[1,2],[3,4],[5,6],[7],[8]] => [2,2,2,1,1] => 2
[2,2,1,1,1,1] => [[1,2],[3,4],[5],[6],[7],[8]] => [2,2,1,1,1,1] => 2
[2,1,1,1,1,1,1] => [[1,2],[3],[4],[5],[6],[7],[8]] => [2,1,1,1,1,1,1] => 2
[1,1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7],[8]] => [1,1,1,1,1,1,1,1] => 1
[9] => [[1,2,3,4,5,6,7,8,9]] => [9] => 1
[8,1] => [[1,2,3,4,5,6,7,8],[9]] => [8,1] => 1
[7,2] => [[1,2,3,4,5,6,7],[8,9]] => [7,2] => 1
[7,1,1] => [[1,2,3,4,5,6,7],[8],[9]] => [7,1,1] => 2
[6,3] => [[1,2,3,4,5,6],[7,8,9]] => [6,3] => 1
[6,2,1] => [[1,2,3,4,5,6],[7,8],[9]] => [6,2,1] => 1
[6,1,1,1] => [[1,2,3,4,5,6],[7],[8],[9]] => [6,1,1,1] => 2
[5,4] => [[1,2,3,4,5],[6,7,8,9]] => [5,4] => 1
[5,3,1] => [[1,2,3,4,5],[6,7,8],[9]] => [5,3,1] => 1
[5,2,2] => [[1,2,3,4,5],[6,7],[8,9]] => [5,2,2] => 2
[5,2,1,1] => [[1,2,3,4,5],[6,7],[8],[9]] => [5,2,1,1] => 2
[5,1,1,1,1] => [[1,2,3,4,5],[6],[7],[8],[9]] => [5,1,1,1,1] => 2
[4,4,1] => [[1,2,3,4],[5,6,7,8],[9]] => [4,4,1] => 2
[4,3,2] => [[1,2,3,4],[5,6,7],[8,9]] => [4,3,2] => 1
[4,3,1,1] => [[1,2,3,4],[5,6,7],[8],[9]] => [4,3,1,1] => 2
[4,2,2,1] => [[1,2,3,4],[5,6],[7,8],[9]] => [4,2,2,1] => 2
[4,2,1,1,1] => [[1,2,3,4],[5,6],[7],[8],[9]] => [4,2,1,1,1] => 2
[4,1,1,1,1,1] => [[1,2,3,4],[5],[6],[7],[8],[9]] => [4,1,1,1,1,1] => 2
[3,3,3] => [[1,2,3],[4,5,6],[7,8,9]] => [3,3,3] => 1
[3,3,2,1] => [[1,2,3],[4,5,6],[7,8],[9]] => [3,3,2,1] => 2
[3,3,1,1,1] => [[1,2,3],[4,5,6],[7],[8],[9]] => [3,3,1,1,1] => 2
[3,2,2,2] => [[1,2,3],[4,5],[6,7],[8,9]] => [3,2,2,2] => 2
[3,2,2,1,1] => [[1,2,3],[4,5],[6,7],[8],[9]] => [3,2,2,1,1] => 2
[3,2,1,1,1,1] => [[1,2,3],[4,5],[6],[7],[8],[9]] => [3,2,1,1,1,1] => 2
[3,1,1,1,1,1,1] => [[1,2,3],[4],[5],[6],[7],[8],[9]] => [3,1,1,1,1,1,1] => 2
[2,2,2,2,1] => [[1,2],[3,4],[5,6],[7,8],[9]] => [2,2,2,2,1] => 2
[2,2,2,1,1,1] => [[1,2],[3,4],[5,6],[7],[8],[9]] => [2,2,2,1,1,1] => 1
[2,2,1,1,1,1,1] => [[1,2],[3,4],[5],[6],[7],[8],[9]] => [2,2,1,1,1,1,1] => 2
[2,1,1,1,1,1,1,1] => [[1,2],[3],[4],[5],[6],[7],[8],[9]] => [2,1,1,1,1,1,1,1] => 2
[1,1,1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7],[8],[9]] => [1,1,1,1,1,1,1,1,1] => 1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of different multiplicities of parts of an integer composition.
Map
horizontal strip sizes
Description
The composition of horizontal strip sizes.
We associate to a standard Young tableau $T$ the composition $(c_1,\dots,c_k)$, such that $k$ is minimal and the numbers $c_1+\dots+c_i + 1,\dots,c_1+\dots+c_{i+1}$ form a horizontal strip in $T$ for all $i$.
We associate to a standard Young tableau $T$ the composition $(c_1,\dots,c_k)$, such that $k$ is minimal and the numbers $c_1+\dots+c_i + 1,\dots,c_1+\dots+c_{i+1}$ form a horizontal strip in $T$ for all $i$.
Map
initial tableau
Description
Sends an integer partition to the standard tableau obtained by filling the numbers $1$ through $n$ row by row.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!