Identifier
Values
[2] => [1,0,1,0] => [1,1,0,0] => [[0,1],[1,0]] => 2
[1,1] => [1,1,0,0] => [1,0,1,0] => [[1,0],[0,1]] => 2
[3] => [1,0,1,0,1,0] => [1,1,0,0,1,0] => [[0,1,0],[1,0,0],[0,0,1]] => 2
[2,1] => [1,0,1,1,0,0] => [1,1,0,1,0,0] => [[0,1,0],[1,-1,1],[0,1,0]] => 3
[1,1,1] => [1,1,0,1,0,0] => [1,0,1,1,0,0] => [[1,0,0],[0,0,1],[0,1,0]] => 2
[4] => [1,0,1,0,1,0,1,0] => [1,1,0,0,1,1,0,0] => [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]] => 2
[3,1] => [1,0,1,0,1,1,0,0] => [1,1,0,1,1,0,0,0] => [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]] => 4
[2,2] => [1,1,1,0,0,0] => [1,0,1,0,1,0] => [[1,0,0],[0,1,0],[0,0,1]] => 2
[2,1,1] => [1,0,1,1,0,1,0,0] => [1,1,0,1,0,0,1,0] => [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]] => 2
[1,1,1,1] => [1,1,0,1,0,1,0,0] => [1,0,1,1,0,0,1,0] => [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]] => 3
[5] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,0,1,1,0,0,1,0] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]] => 3
[4,1] => [1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,1,0,0,0,1,0] => [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]] => 3
[3,2] => [1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,0] => [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]] => 3
[3,1,1] => [1,0,1,0,1,1,0,1,0,0] => [1,1,0,1,1,0,0,1,0,0] => [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]] => 5
[2,2,1] => [1,1,1,0,0,1,0,0] => [1,0,1,1,1,0,0,0] => [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]] => 3
[2,1,1,1] => [1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,0,0,1,1,0,0] => [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]] => 3
[1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]] => 3
[6] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]] => 2
[5,1] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,1,0,0,0,1,1,0,0] => [[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]] => 5
[4,2] => [1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => [[0,1,0,0,0],[1,-1,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]] => 4
[3,3] => [1,1,1,0,1,0,0,0] => [1,0,1,0,1,1,0,0] => [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]] => 3
[3,2,1] => [1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,0,0,1,0,1,0] => [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]] => 3
[3,1,1,1] => [1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,1,0,0,1,0,0,1,0] => [[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,0,0,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]] => 5
[2,2,2] => [1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0] => [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]] => 2
[2,2,1,1] => [1,1,1,0,0,1,0,1,0,0] => [1,0,1,1,1,0,0,1,0,0] => [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]] => 3
[2,1,1,1,1] => [1,0,1,1,0,1,0,1,0,1,0,0] => [1,1,0,1,0,0,1,1,0,0,1,0] => [[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]] => 2
[1,1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]] => 2
[4,3] => [1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,0,1,0,0,1,0] => [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]] => 3
[4,2,1] => [1,0,1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,1,0,1,0,0] => [[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,0,0,0,0],[0,0,1,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]] => 5
[3,3,1] => [1,1,1,0,1,0,0,1,0,0] => [1,0,1,1,1,0,0,0,1,0] => [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]] => 3
[3,2,2] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,0,1,0,1,0,0] => [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]] => 3
[2,2,2,1] => [1,1,1,1,0,0,0,1,0,0] => [1,0,1,1,1,0,1,0,0,0] => [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]] => 5
[2,2,1,1,1] => [1,1,1,0,0,1,0,1,0,1,0,0] => [1,0,1,1,1,0,0,1,0,0,1,0] => [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]] => 3
[5,3] => [1,0,1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,1,1,0,0,0,1,0,0] => [[0,1,0,0,0,0],[1,-1,0,0,1,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]] => 5
[4,4] => [1,1,1,0,1,0,1,0,0,0] => [1,0,1,0,1,1,0,0,1,0] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]] => 3
[4,3,1] => [1,0,1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,0,0,1,0,1,1,0,0] => [[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]] => 2
[3,3,2] => [1,1,1,0,1,1,0,0,0,0] => [1,0,1,0,1,1,0,1,0,0] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]] => 3
[3,2,2,1] => [1,0,1,1,1,1,0,0,0,1,0,0] => [1,1,0,1,0,0,1,0,1,0,1,0] => [[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]] => 2
[2,2,2,2] => [1,1,1,1,0,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]] => 3
[5,4] => [1,0,1,1,1,0,1,0,1,0,0,0] => [1,1,0,1,0,1,0,0,1,1,0,0] => [[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]] => 3
[4,4,1] => [1,1,1,0,1,0,1,0,0,1,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0] => [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]] => 3
[3,3,3] => [1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]] => 2
[3,3,2,1] => [1,1,1,0,1,1,0,0,0,1,0,0] => [1,0,1,1,1,0,0,0,1,0,1,0] => [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]] => 4
[3,2,2,2] => [1,0,1,1,1,1,0,1,0,0,0,0] => [1,1,0,1,0,1,0,1,0,0,1,0] => [[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]] => 3
[2,2,2,2,1] => [1,1,1,1,0,1,0,0,0,1,0,0] => [1,0,1,1,1,0,1,0,0,0,1,0] => [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,-1,1,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1]] => 4
[5,5] => [1,1,1,0,1,0,1,0,1,0,0,0] => [1,0,1,0,1,1,0,0,1,1,0,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]] => 2
[4,3,3] => [1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => [[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]] => 3
[3,3,2,2] => [1,1,1,0,1,1,0,1,0,0,0,0] => [1,0,1,0,1,1,0,1,0,0,1,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]] => 2
[2,2,2,2,2] => [1,1,1,1,0,1,0,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]] => 3
[4,4,3] => [1,1,1,0,1,1,1,0,0,0,0,0] => [1,0,1,0,1,1,0,1,0,1,0,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]] => 2
[4,4,4] => [1,1,1,1,1,0,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]] => 3
[3,3,3,3] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]] => 2
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of distinct diagonal sums of an alternating sign matrix.
For example, the sums of the diagonals of the matrix $$\left(\begin{array}{rrrr} 0 & 1 & 0 & 0\\ 1 & -1 & 1 & 0\\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right)$$
are $(0,0,2,0,2,0,0)$, so the statistic is $2$.
Map
to alternating sign matrix
Description
Return the Dyck path as an alternating sign matrix.
This is an inclusion map from Dyck words of length $2n$ to certain
$n \times n$ alternating sign matrices.
Map
Elizalde-Deutsch bijection
Description
The Elizalde-Deutsch bijection on Dyck paths.
.Let $n$ be the length of the Dyck path. Consider the steps $1,n,2,n-1,\dots$ of $D$. When considering the $i$-th step its corresponding matching step has not yet been read, let the $i$-th step of the image of $D$ be an up step, otherwise let it be a down step.
Map
parallelogram polyomino
Description
Return the Dyck path corresponding to the partition interpreted as a parallogram polyomino.
The Ferrers diagram of an integer partition can be interpreted as a parallogram polyomino, such that each part corresponds to a column.
This map returns the corresponding Dyck path.