Identifier
Values
[(1,2)] => [2,1] => [2,1] => 2
[(1,2),(3,4)] => [2,1,4,3] => [2,1,4,3] => 2
[(1,3),(2,4)] => [3,4,1,2] => [2,4,1,3] => 2
[(1,4),(2,3)] => [4,3,2,1] => [4,3,2,1] => 2
[(1,2),(3,4),(5,6)] => [2,1,4,3,6,5] => [2,1,4,3,6,5] => 2
[(1,3),(2,4),(5,6)] => [3,4,1,2,6,5] => [2,4,1,3,6,5] => 3
[(1,4),(2,3),(5,6)] => [4,3,2,1,6,5] => [4,3,2,1,6,5] => 3
[(1,5),(2,3),(4,6)] => [5,3,2,6,1,4] => [4,6,1,5,3,2] => 3
[(1,6),(2,3),(4,5)] => [6,3,2,5,4,1] => [5,4,1,6,3,2] => 3
[(1,6),(2,4),(3,5)] => [6,4,5,2,3,1] => [3,1,5,2,6,4] => 3
[(1,5),(2,4),(3,6)] => [5,4,6,2,1,3] => [3,6,2,1,5,4] => 2
[(1,4),(2,5),(3,6)] => [4,5,6,1,2,3] => [2,3,6,1,4,5] => 3
[(1,3),(2,5),(4,6)] => [3,5,1,6,2,4] => [4,6,2,5,1,3] => 2
[(1,2),(3,5),(4,6)] => [2,1,5,6,3,4] => [2,1,4,6,3,5] => 3
[(1,2),(3,6),(4,5)] => [2,1,6,5,4,3] => [2,1,6,5,4,3] => 3
[(1,3),(2,6),(4,5)] => [3,6,1,5,4,2] => [5,4,2,6,1,3] => 3
[(1,4),(2,6),(3,5)] => [4,6,5,1,3,2] => [3,2,6,5,1,4] => 2
[(1,5),(2,6),(3,4)] => [5,6,4,3,1,2] => [2,6,4,3,1,5] => 3
[(1,6),(2,5),(3,4)] => [6,5,4,3,2,1] => [6,5,4,3,2,1] => 2
[(1,2),(3,4),(5,6),(7,8)] => [2,1,4,3,6,5,8,7] => [2,1,4,3,6,5,8,7] => 2
[(1,4),(2,3),(5,6),(7,8)] => [4,3,2,1,6,5,8,7] => [4,3,2,1,6,5,8,7] => 3
[(1,6),(2,4),(3,5),(7,8)] => [6,4,5,2,3,1,8,7] => [3,1,5,2,6,4,8,7] => 2
[(1,2),(3,6),(4,5),(7,8)] => [2,1,6,5,4,3,8,7] => [2,1,6,5,4,3,8,7] => 3
[(1,6),(2,5),(3,4),(7,8)] => [6,5,4,3,2,1,8,7] => [6,5,4,3,2,1,8,7] => 3
[(1,2),(3,8),(4,6),(5,7)] => [2,1,8,6,7,4,5,3] => [2,1,5,3,7,4,8,6] => 2
[(1,2),(3,4),(5,8),(6,7)] => [2,1,4,3,8,7,6,5] => [2,1,4,3,8,7,6,5] => 3
[(1,4),(2,3),(5,8),(6,7)] => [4,3,2,1,8,7,6,5] => [4,3,2,1,8,7,6,5] => 2
[(1,2),(3,8),(4,7),(5,6)] => [2,1,8,7,6,5,4,3] => [2,1,8,7,6,5,4,3] => 3
[(1,4),(2,8),(3,7),(5,6)] => [4,8,7,1,6,5,3,2] => [6,5,3,2,8,7,1,4] => 3
[(1,8),(2,7),(3,6),(4,5)] => [8,7,6,5,4,3,2,1] => [8,7,6,5,4,3,2,1] => 2
[(1,2),(3,4),(5,6),(7,8),(9,10)] => [2,1,4,3,6,5,8,7,10,9] => [2,1,4,3,6,5,8,7,10,9] => 2
[(1,4),(2,3),(5,6),(7,8),(9,10)] => [4,3,2,1,6,5,8,7,10,9] => [4,3,2,1,6,5,8,7,10,9] => 3
[(1,2),(3,6),(4,5),(7,8),(9,10)] => [2,1,6,5,4,3,8,7,10,9] => [2,1,6,5,4,3,8,7,10,9] => 3
[(1,6),(2,5),(3,4),(7,8),(9,10)] => [6,5,4,3,2,1,8,7,10,9] => [6,5,4,3,2,1,8,7,10,9] => 3
[(1,2),(3,4),(5,8),(6,7),(9,10)] => [2,1,4,3,8,7,6,5,10,9] => [2,1,4,3,8,7,6,5,10,9] => 3
[(1,4),(2,3),(5,8),(6,7),(9,10)] => [4,3,2,1,8,7,6,5,10,9] => [4,3,2,1,8,7,6,5,10,9] => 3
[(1,2),(3,8),(4,7),(5,6),(9,10)] => [2,1,8,7,6,5,4,3,10,9] => [2,1,8,7,6,5,4,3,10,9] => 3
[(1,8),(2,7),(3,6),(4,5),(9,10)] => [8,7,6,5,4,3,2,1,10,9] => [8,7,6,5,4,3,2,1,10,9] => 3
[(1,2),(3,4),(5,6),(7,10),(8,9)] => [2,1,4,3,6,5,10,9,8,7] => [2,1,4,3,6,5,10,9,8,7] => 3
[(1,4),(2,3),(5,6),(7,10),(8,9)] => [4,3,2,1,6,5,10,9,8,7] => [4,3,2,1,6,5,10,9,8,7] => 3
[(1,2),(3,6),(4,5),(7,10),(8,9)] => [2,1,6,5,4,3,10,9,8,7] => [2,1,6,5,4,3,10,9,8,7] => 3
[(1,6),(2,5),(3,4),(7,10),(8,9)] => [6,5,4,3,2,1,10,9,8,7] => [6,5,4,3,2,1,10,9,8,7] => 3
[(1,2),(3,4),(5,10),(6,9),(7,8)] => [2,1,4,3,10,9,8,7,6,5] => [2,1,4,3,10,9,8,7,6,5] => 3
[(1,4),(2,3),(5,10),(6,9),(7,8)] => [4,3,2,1,10,9,8,7,6,5] => [4,3,2,1,10,9,8,7,6,5] => 3
[(1,2),(3,10),(4,9),(5,8),(6,7)] => [2,1,10,9,8,7,6,5,4,3] => [2,1,10,9,8,7,6,5,4,3] => 3
[(1,10),(2,9),(3,8),(4,7),(5,6)] => [10,9,8,7,6,5,4,3,2,1] => [10,9,8,7,6,5,4,3,2,1] => 2
[(1,12),(2,11),(3,10),(4,9),(5,8),(6,7)] => [12,11,10,9,8,7,6,5,4,3,2,1] => [12,11,10,9,8,7,6,5,4,3,2,1] => 2
[(1,2),(3,10),(4,9),(5,8),(6,7),(11,12)] => [2,1,10,9,8,7,6,5,4,3,12,11] => [2,1,10,9,8,7,6,5,4,3,12,11] => 3
[(1,2),(3,4),(5,8),(6,7),(9,10),(11,12)] => [2,1,4,3,8,7,6,5,10,9,12,11] => [2,1,4,3,8,7,6,5,10,9,12,11] => 3
[(1,4),(2,3),(5,8),(6,7),(9,10),(11,12)] => [4,3,2,1,8,7,6,5,10,9,12,11] => [4,3,2,1,8,7,6,5,10,9,12,11] => 3
[(1,2),(3,4),(5,8),(6,7),(9,12),(10,11)] => [2,1,4,3,8,7,6,5,12,11,10,9] => [2,1,4,3,8,7,6,5,12,11,10,9] => 3
[(1,4),(2,3),(5,8),(6,7),(9,12),(10,11)] => [4,3,2,1,8,7,6,5,12,11,10,9] => [4,3,2,1,8,7,6,5,12,11,10,9] => 2
[(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)] => [2,1,4,3,6,5,8,7,10,9,12,11] => [2,1,4,3,6,5,8,7,10,9,12,11] => 2
[(1,4),(2,3),(5,6),(7,8),(9,10),(11,12)] => [4,3,2,1,6,5,8,7,10,9,12,11] => [4,3,2,1,6,5,8,7,10,9,12,11] => 3
[(1,2),(3,4),(5,6),(7,8),(9,12),(10,11)] => [2,1,4,3,6,5,8,7,12,11,10,9] => [2,1,4,3,6,5,8,7,12,11,10,9] => 3
[(1,4),(2,3),(5,6),(7,8),(9,12),(10,11)] => [4,3,2,1,6,5,8,7,12,11,10,9] => [4,3,2,1,6,5,8,7,12,11,10,9] => 3
[(1,2),(3,4),(5,10),(6,9),(7,8),(11,12)] => [2,1,4,3,10,9,8,7,6,5,12,11] => [2,1,4,3,10,9,8,7,6,5,12,11] => 3
[(1,4),(2,3),(5,10),(6,9),(7,8),(11,12)] => [4,3,2,1,10,9,8,7,6,5,12,11] => [4,3,2,1,10,9,8,7,6,5,12,11] => 4
[(1,2),(3,6),(4,5),(7,8),(9,10),(11,12)] => [2,1,6,5,4,3,8,7,10,9,12,11] => [2,1,6,5,4,3,8,7,10,9,12,11] => 3
[(1,2),(3,6),(4,5),(7,8),(9,12),(10,11)] => [2,1,6,5,4,3,8,7,12,11,10,9] => [2,1,6,5,4,3,8,7,12,11,10,9] => 3
[(1,6),(2,5),(3,4),(7,8),(9,10),(11,12)] => [6,5,4,3,2,1,8,7,10,9,12,11] => [6,5,4,3,2,1,8,7,10,9,12,11] => 3
[(1,6),(2,5),(3,4),(7,8),(9,12),(10,11)] => [6,5,4,3,2,1,8,7,12,11,10,9] => [6,5,4,3,2,1,8,7,12,11,10,9] => 4
[(1,2),(3,4),(5,6),(7,10),(8,9),(11,12)] => [2,1,4,3,6,5,10,9,8,7,12,11] => [2,1,4,3,6,5,10,9,8,7,12,11] => 3
[(1,4),(2,3),(5,6),(7,10),(8,9),(11,12)] => [4,3,2,1,6,5,10,9,8,7,12,11] => [4,3,2,1,6,5,10,9,8,7,12,11] => 3
[(1,2),(3,8),(4,7),(5,6),(9,10),(11,12)] => [2,1,8,7,6,5,4,3,10,9,12,11] => [2,1,8,7,6,5,4,3,10,9,12,11] => 3
[(1,2),(3,8),(4,7),(5,6),(9,12),(10,11)] => [2,1,8,7,6,5,4,3,12,11,10,9] => [2,1,8,7,6,5,4,3,12,11,10,9] => 4
[(1,2),(3,4),(5,6),(7,12),(8,11),(9,10)] => [2,1,4,3,6,5,12,11,10,9,8,7] => [2,1,4,3,6,5,12,11,10,9,8,7] => 3
[(1,4),(2,3),(5,6),(7,12),(8,11),(9,10)] => [4,3,2,1,6,5,12,11,10,9,8,7] => [4,3,2,1,6,5,12,11,10,9,8,7] => 4
[(1,2),(3,6),(4,5),(7,10),(8,9),(11,12)] => [2,1,6,5,4,3,10,9,8,7,12,11] => [2,1,6,5,4,3,10,9,8,7,12,11] => 3
[(1,2),(3,4),(5,12),(6,11),(7,10),(8,9)] => [2,1,4,3,12,11,10,9,8,7,6,5] => [2,1,4,3,12,11,10,9,8,7,6,5] => 3
[(1,6),(2,5),(3,4),(7,10),(8,9),(11,12)] => [6,5,4,3,2,1,10,9,8,7,12,11] => [6,5,4,3,2,1,10,9,8,7,12,11] => 4
[(1,4),(2,3),(5,12),(6,11),(7,10),(8,9)] => [4,3,2,1,12,11,10,9,8,7,6,5] => [4,3,2,1,12,11,10,9,8,7,6,5] => 3
[(1,2),(3,6),(4,5),(7,12),(8,11),(9,10)] => [2,1,6,5,4,3,12,11,10,9,8,7] => [2,1,6,5,4,3,12,11,10,9,8,7] => 4
[(1,8),(2,7),(3,6),(4,5),(9,10),(11,12)] => [8,7,6,5,4,3,2,1,10,9,12,11] => [8,7,6,5,4,3,2,1,10,9,12,11] => 3
[(1,8),(2,7),(3,6),(4,5),(9,12),(10,11)] => [8,7,6,5,4,3,2,1,12,11,10,9] => [8,7,6,5,4,3,2,1,12,11,10,9] => 3
[(1,6),(2,5),(3,4),(7,12),(8,11),(9,10)] => [6,5,4,3,2,1,12,11,10,9,8,7] => [6,5,4,3,2,1,12,11,10,9,8,7] => 2
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The number of distinct diagonal sums of a permutation matrix.
For example, the sums of the diagonals of the matrix $$\left(\begin{array}{rrrr} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{array}\right)$$
are $(1,0,1,0,2,0)$, so the statistic is $3$.
Map
invert Laguerre heap
Description
The permutation obtained by inverting the corresponding Laguerre heap, according to Viennot.
Let $\pi$ be a permutation. Following Viennot [1], we associate to $\pi$ a heap of pieces, by considering each decreasing run $(\pi_i, \pi_{i+1}, \dots, \pi_j)$ of $\pi$ as one piece, beginning with the left most run. Two pieces commute if and only if the minimal element of one piece is larger than the maximal element of the other piece.
This map yields the permutation corresponding to the heap obtained by reversing the reading direction of the heap.
Equivalently, this is the permutation obtained by flipping the noncrossing arc diagram of Reading [2] vertically.
By definition, this map preserves the set of decreasing runs.
Map
to permutation
Description
Returns the fixed point free involution whose transpositions are the pairs in the perfect matching.