Identifier
Values
[1,0,1,0] => [[1,0],[0,1]] => [[0,1],[1,0]] => 1
[1,1,0,0] => [[0,1],[1,0]] => [[1,0],[0,1]] => 2
[1,0,1,0,1,0] => [[1,0,0],[0,1,0],[0,0,1]] => [[0,0,1],[0,1,0],[1,0,0]] => 1
[1,0,1,1,0,0] => [[1,0,0],[0,0,1],[0,1,0]] => [[0,1,0],[0,0,1],[1,0,0]] => 2
[1,1,0,0,1,0] => [[0,1,0],[1,0,0],[0,0,1]] => [[0,0,1],[1,0,0],[0,1,0]] => 2
[1,1,0,1,0,0] => [[0,1,0],[1,-1,1],[0,1,0]] => [[0,1,0],[1,-1,1],[0,1,0]] => 2
[1,1,1,0,0,0] => [[0,0,1],[1,0,0],[0,1,0]] => [[1,0,0],[0,0,1],[0,1,0]] => 1
[1,0,1,0,1,0,1,0] => [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]] => [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]] => 1
[1,0,1,0,1,1,0,0] => [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]] => [[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]] => 2
[1,0,1,1,0,0,1,0] => [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]] => [[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]] => 2
[1,0,1,1,0,1,0,0] => [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]] => [[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]] => 2
[1,0,1,1,1,0,0,0] => [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]] => [[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]] => 1
[1,1,0,0,1,0,1,0] => [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]] => [[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]] => 2
[1,1,0,0,1,1,0,0] => [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]] => [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]] => 2
[1,1,0,1,0,0,1,0] => [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]] => [[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]] => 2
[1,1,0,1,0,1,0,0] => [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]] => [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]] => 2
[1,1,0,1,1,0,0,0] => [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]] => [[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]] => 2
[1,1,1,0,0,0,1,0] => [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]] => [[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]] => 1
[1,1,1,0,0,1,0,0] => [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]] => [[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]] => 2
[1,1,1,0,1,0,0,0] => [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]] => [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]] => 1
[1,1,1,1,0,0,0,0] => [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]] => [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]] => 2
[1,0,1,0,1,0,1,0,1,0] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]] => [[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0]] => 1
[1,0,1,0,1,0,1,1,0,0] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]] => [[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0]] => 2
[1,0,1,0,1,1,0,0,1,0] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]] => [[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0]] => 2
[1,0,1,0,1,1,0,1,0,0] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]] => [[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0]] => 2
[1,0,1,0,1,1,1,0,0,0] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]] => [[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0]] => 1
[1,0,1,1,0,0,1,0,1,0] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]] => [[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0]] => 2
[1,0,1,1,0,0,1,1,0,0] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]] => [[0,0,0,1,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0]] => 2
[1,0,1,1,0,1,0,0,1,0] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]] => [[0,0,0,0,1],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[1,0,0,0,0]] => 2
[1,0,1,1,0,1,0,1,0,0] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]] => [[0,0,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0],[1,0,0,0,0]] => 2
[1,0,1,1,0,1,1,0,0,0] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]] => [[0,0,1,0,0],[0,0,0,0,1],[0,1,-1,1,0],[0,0,1,0,0],[1,0,0,0,0]] => 2
[1,0,1,1,1,0,0,0,1,0] => [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]] => [[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0]] => 1
[1,0,1,1,1,0,0,1,0,0] => [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]] => [[0,0,0,1,0],[0,1,0,-1,1],[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0]] => 2
[1,0,1,1,1,0,1,0,0,0] => [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]] => [[0,0,1,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0]] => 1
[1,0,1,1,1,1,0,0,0,0] => [[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]] => [[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0]] => 2
[1,1,0,0,1,0,1,0,1,0] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]] => [[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0]] => 2
[1,1,0,0,1,0,1,1,0,0] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]] => [[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0]] => 2
[1,1,0,0,1,1,0,0,1,0] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]] => [[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0]] => 2
[1,1,0,0,1,1,0,1,0,0] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]] => [[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0]] => 2
[1,1,0,0,1,1,1,0,0,0] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]] => [[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0]] => 2
[1,1,0,1,0,0,1,0,1,0] => [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]] => [[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0]] => 2
[1,1,0,1,0,0,1,1,0,0] => [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]] => [[0,0,0,1,0],[0,0,0,0,1],[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0]] => 2
[1,1,0,1,0,1,0,0,1,0] => [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]] => [[0,0,0,0,1],[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0]] => 2
[1,1,0,1,0,1,0,1,0,0] => [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]] => [[0,0,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0]] => 2
[1,1,0,1,0,1,1,0,0,0] => [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]] => [[0,0,1,0,0],[0,0,0,0,1],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0]] => 2
[1,1,0,1,1,0,0,0,1,0] => [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]] => [[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0],[1,-1,1,0,0],[0,1,0,0,0]] => 2
[1,1,0,1,1,0,0,1,0,0] => [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]] => [[0,0,0,1,0],[0,1,0,-1,1],[0,0,0,1,0],[1,-1,1,0,0],[0,1,0,0,0]] => 2
[1,1,0,1,1,0,1,0,0,0] => [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]] => [[0,0,1,0,0],[0,1,-1,0,1],[0,0,0,1,0],[1,-1,1,0,0],[0,1,0,0,0]] => 2
[1,1,0,1,1,1,0,0,0,0] => [[0,1,0,0,0],[1,-1,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]] => [[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[1,-1,1,0,0],[0,1,0,0,0]] => 2
[1,1,1,0,0,0,1,0,1,0] => [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]] => [[0,0,0,0,1],[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0]] => 1
[1,1,1,0,0,0,1,1,0,0] => [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]] => [[0,0,0,1,0],[0,0,0,0,1],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0]] => 2
[1,1,1,0,0,1,0,0,1,0] => [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]] => [[0,0,0,0,1],[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,1,0,0,0]] => 2
[1,1,1,0,0,1,0,1,0,0] => [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]] => [[0,0,0,1,0],[0,0,1,-1,1],[1,0,-1,1,0],[0,0,1,0,0],[0,1,0,0,0]] => 2
[1,1,1,0,0,1,1,0,0,0] => [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]] => [[0,0,1,0,0],[0,0,0,0,1],[1,0,-1,1,0],[0,0,1,0,0],[0,1,0,0,0]] => 1
[1,1,1,0,1,0,0,0,1,0] => [[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]] => [[0,0,0,0,1],[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0]] => 1
[1,1,1,0,1,0,0,1,0,0] => [[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]] => [[0,0,0,1,0],[0,1,0,-1,1],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0]] => 2
[1,1,1,0,1,0,1,0,0,0] => [[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]] => [[0,0,1,0,0],[0,1,-1,0,1],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0]] => 1
[1,1,1,0,1,1,0,0,0,0] => [[0,0,1,0,0],[1,0,-1,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]] => [[0,1,0,0,0],[0,0,0,0,1],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0]] => 2
[1,1,1,1,0,0,0,0,1,0] => [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]] => [[0,0,0,0,1],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]] => 2
[1,1,1,1,0,0,0,1,0,0] => [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]] => [[0,0,0,1,0],[1,0,0,-1,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]] => 2
[1,1,1,1,0,0,1,0,0,0] => [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]] => [[0,0,1,0,0],[1,0,-1,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]] => 2
[1,1,1,1,0,1,0,0,0,0] => [[0,0,0,1,0],[1,0,0,-1,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]] => [[0,1,0,0,0],[1,-1,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]] => 2
[1,1,1,1,1,0,0,0,0,0] => [[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]] => [[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]] => 1
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The maximal sum of entries on a diagonal of an alternating sign matrix.
For example, the sums of the diagonals of the matrix $$\left(\begin{array}{rrrr} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & -1 & 1 \\ 0 & 0 & 1 & 0 \end{array}\right)$$
are $(0,1,1,0,1,1,0)$, so the statistic is $1$.
This is a natural extension of St000887The maximal number of nonzero entries on a diagonal of a permutation matrix. to alternating sign matrices.
Map
rotate counterclockwise
Description
Return the counterclockwise quarter turn rotation of an alternating sign matrix.
Map
to alternating sign matrix
Description
Return the Dyck path as an alternating sign matrix.
This is an inclusion map from Dyck words of length $2n$ to certain
$n \times n$ alternating sign matrices.