*****************************************************************************
*       www.FindStat.org - The Combinatorial Statistic Finder               *
*                                                                           *
*       Copyright (C) 2019 The FindStatCrew <info@findstat.org>             *
*                                                                           *
*    This information is distributed in the hope that it will be useful,    *
*    but WITHOUT ANY WARRANTY; without even the implied warranty of         *
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                   *
*****************************************************************************

-----------------------------------------------------------------------------
Statistic identifier: St000870

-----------------------------------------------------------------------------
Collection: Integer partitions

-----------------------------------------------------------------------------
Description: The product of the hook lengths of the diagonal cells in an integer partition.

For a cell in the Ferrers diagram of a partition, the hook length is given by the number of boxes to its right plus the number of boxes below + 1. This statistic is the product of the hook lengths of the diagonal cells $(i,i)$ of a partition.

-----------------------------------------------------------------------------
References: 

-----------------------------------------------------------------------------
Code:
def statistic(L):
    return prod( L.hook_length(*c) for c in L.cells() if c[0] == c[1] )


-----------------------------------------------------------------------------
Statistic values:

[1]                       => 1
[2]                       => 2
[1,1]                     => 2
[3]                       => 3
[2,1]                     => 3
[1,1,1]                   => 3
[4]                       => 4
[3,1]                     => 4
[2,2]                     => 3
[2,1,1]                   => 4
[1,1,1,1]                 => 4
[5]                       => 5
[4,1]                     => 5
[3,2]                     => 4
[3,1,1]                   => 5
[2,2,1]                   => 4
[2,1,1,1]                 => 5
[1,1,1,1,1]               => 5
[6]                       => 6
[5,1]                     => 6
[4,2]                     => 5
[4,1,1]                   => 6
[3,3]                     => 8
[3,2,1]                   => 5
[3,1,1,1]                 => 6
[2,2,2]                   => 8
[2,2,1,1]                 => 5
[2,1,1,1,1]               => 6
[1,1,1,1,1,1]             => 6
[7]                       => 7
[6,1]                     => 7
[5,2]                     => 6
[5,1,1]                   => 7
[4,3]                     => 10
[4,2,1]                   => 6
[4,1,1,1]                 => 7
[3,3,1]                   => 10
[3,2,2]                   => 10
[3,2,1,1]                 => 6
[3,1,1,1,1]               => 7
[2,2,2,1]                 => 10
[2,2,1,1,1]               => 6
[2,1,1,1,1,1]             => 7
[1,1,1,1,1,1,1]           => 7
[8]                       => 8
[7,1]                     => 8
[6,2]                     => 7
[6,1,1]                   => 8
[5,3]                     => 12
[5,2,1]                   => 7
[5,1,1,1]                 => 8
[4,4]                     => 15
[4,3,1]                   => 12
[4,2,2]                   => 12
[4,2,1,1]                 => 7
[4,1,1,1,1]               => 8
[3,3,2]                   => 15
[3,3,1,1]                 => 12
[3,2,2,1]                 => 12
[3,2,1,1,1]               => 7
[3,1,1,1,1,1]             => 8
[2,2,2,2]                 => 15
[2,2,2,1,1]               => 12
[2,2,1,1,1,1]             => 7
[2,1,1,1,1,1,1]           => 8
[1,1,1,1,1,1,1,1]         => 8
[9]                       => 9
[8,1]                     => 9
[7,2]                     => 8
[7,1,1]                   => 9
[6,3]                     => 14
[6,2,1]                   => 8
[6,1,1,1]                 => 9
[5,4]                     => 18
[5,3,1]                   => 14
[5,2,2]                   => 14
[5,2,1,1]                 => 8
[5,1,1,1,1]               => 9
[4,4,1]                   => 18
[4,3,2]                   => 18
[4,3,1,1]                 => 14
[4,2,2,1]                 => 14
[4,2,1,1,1]               => 8
[4,1,1,1,1,1]             => 9
[3,3,3]                   => 15
[3,3,2,1]                 => 18
[3,3,1,1,1]               => 14
[3,2,2,2]                 => 18
[3,2,2,1,1]               => 14
[3,2,1,1,1,1]             => 8
[3,1,1,1,1,1,1]           => 9
[2,2,2,2,1]               => 18
[2,2,2,1,1,1]             => 14
[2,2,1,1,1,1,1]           => 8
[2,1,1,1,1,1,1,1]         => 9
[1,1,1,1,1,1,1,1,1]       => 9
[10]                      => 10
[9,1]                     => 10
[8,2]                     => 9
[8,1,1]                   => 10
[7,3]                     => 16
[7,2,1]                   => 9
[7,1,1,1]                 => 10
[6,4]                     => 21
[6,3,1]                   => 16
[6,2,2]                   => 16
[6,2,1,1]                 => 9
[6,1,1,1,1]               => 10
[5,5]                     => 24
[5,4,1]                   => 21
[5,3,2]                   => 21
[5,3,1,1]                 => 16
[5,2,2,1]                 => 16
[5,2,1,1,1]               => 9
[5,1,1,1,1,1]             => 10
[4,4,2]                   => 24
[4,4,1,1]                 => 21
[4,3,3]                   => 18
[4,3,2,1]                 => 21
[4,3,1,1,1]               => 16
[4,2,2,2]                 => 21
[4,2,2,1,1]               => 16
[4,2,1,1,1,1]             => 9
[4,1,1,1,1,1,1]           => 10
[3,3,3,1]                 => 18
[3,3,2,2]                 => 24
[3,3,2,1,1]               => 21
[3,3,1,1,1,1]             => 16
[3,2,2,2,1]               => 21
[3,2,2,1,1,1]             => 16
[3,2,1,1,1,1,1]           => 9
[3,1,1,1,1,1,1,1]         => 10
[2,2,2,2,2]               => 24
[2,2,2,2,1,1]             => 21
[2,2,2,1,1,1,1]           => 16
[2,2,1,1,1,1,1,1]         => 9
[2,1,1,1,1,1,1,1,1]       => 10
[1,1,1,1,1,1,1,1,1,1]     => 10
[11]                      => 11
[10,1]                    => 11
[9,2]                     => 10
[9,1,1]                   => 11
[8,3]                     => 18
[8,2,1]                   => 10
[8,1,1,1]                 => 11
[7,4]                     => 24
[7,3,1]                   => 18
[7,2,2]                   => 18
[7,2,1,1]                 => 10
[7,1,1,1,1]               => 11
[6,5]                     => 28
[6,4,1]                   => 24
[6,3,2]                   => 24
[6,3,1,1]                 => 18
[6,2,2,1]                 => 18
[6,2,1,1,1]               => 10
[6,1,1,1,1,1]             => 11
[5,5,1]                   => 28
[5,4,2]                   => 28
[5,4,1,1]                 => 24
[5,3,3]                   => 21
[5,3,2,1]                 => 24
[5,3,1,1,1]               => 18
[5,2,2,2]                 => 24
[5,2,2,1,1]               => 18
[5,2,1,1,1,1]             => 10
[5,1,1,1,1,1,1]           => 11
[4,4,3]                   => 24
[4,4,2,1]                 => 28
[4,4,1,1,1]               => 24
[4,3,3,1]                 => 21
[4,3,2,2]                 => 28
[4,3,2,1,1]               => 24
[4,3,1,1,1,1]             => 18
[4,2,2,2,1]               => 24
[4,2,2,1,1,1]             => 18
[4,2,1,1,1,1,1]           => 10
[4,1,1,1,1,1,1,1]         => 11
[3,3,3,2]                 => 24
[3,3,3,1,1]               => 21
[3,3,2,2,1]               => 28
[3,3,2,1,1,1]             => 24
[3,3,1,1,1,1,1]           => 18
[3,2,2,2,2]               => 28
[3,2,2,2,1,1]             => 24
[3,2,2,1,1,1,1]           => 18
[3,2,1,1,1,1,1,1]         => 10
[3,1,1,1,1,1,1,1,1]       => 11
[2,2,2,2,2,1]             => 28
[2,2,2,2,1,1,1]           => 24
[2,2,2,1,1,1,1,1]         => 18
[2,2,1,1,1,1,1,1,1]       => 10
[2,1,1,1,1,1,1,1,1,1]     => 11
[1,1,1,1,1,1,1,1,1,1,1]   => 11
[12]                      => 12
[11,1]                    => 12
[10,2]                    => 11
[10,1,1]                  => 12
[9,3]                     => 20
[9,2,1]                   => 11
[9,1,1,1]                 => 12
[8,4]                     => 27
[8,3,1]                   => 20
[8,2,2]                   => 20
[8,2,1,1]                 => 11
[8,1,1,1,1]               => 12
[7,5]                     => 32
[7,4,1]                   => 27
[7,3,2]                   => 27
[7,3,1,1]                 => 20
[7,2,2,1]                 => 20
[7,2,1,1,1]               => 11
[7,1,1,1,1,1]             => 12
[6,6]                     => 35
[6,5,1]                   => 32
[6,4,2]                   => 32
[6,4,1,1]                 => 27
[6,3,3]                   => 24
[6,3,2,1]                 => 27
[6,3,1,1,1]               => 20
[6,2,2,2]                 => 27
[6,2,2,1,1]               => 20
[6,2,1,1,1,1]             => 11
[6,1,1,1,1,1,1]           => 12
[5,5,2]                   => 35
[5,5,1,1]                 => 32
[5,4,3]                   => 28
[5,4,2,1]                 => 32
[5,4,1,1,1]               => 27
[5,3,3,1]                 => 24
[5,3,2,2]                 => 32
[5,3,2,1,1]               => 27
[5,3,1,1,1,1]             => 20
[5,2,2,2,1]               => 27
[5,2,2,1,1,1]             => 20
[5,2,1,1,1,1,1]           => 11
[5,1,1,1,1,1,1,1]         => 12
[4,4,4]                   => 48
[4,4,3,1]                 => 28
[4,4,2,2]                 => 35
[4,4,2,1,1]               => 32
[4,4,1,1,1,1]             => 27
[4,3,3,2]                 => 28
[4,3,3,1,1]               => 24
[4,3,2,2,1]               => 32
[4,3,2,1,1,1]             => 27
[4,3,1,1,1,1,1]           => 20
[4,2,2,2,2]               => 32
[4,2,2,2,1,1]             => 27
[4,2,2,1,1,1,1]           => 20
[4,2,1,1,1,1,1,1]         => 11
[4,1,1,1,1,1,1,1,1]       => 12
[3,3,3,3]                 => 48
[3,3,3,2,1]               => 28
[3,3,3,1,1,1]             => 24
[3,3,2,2,2]               => 35
[3,3,2,2,1,1]             => 32
[3,3,2,1,1,1,1]           => 27
[3,3,1,1,1,1,1,1]         => 20
[3,2,2,2,2,1]             => 32
[3,2,2,2,1,1,1]           => 27
[3,2,2,1,1,1,1,1]         => 20
[3,2,1,1,1,1,1,1,1]       => 11
[3,1,1,1,1,1,1,1,1,1]     => 12
[2,2,2,2,2,2]             => 35
[2,2,2,2,2,1,1]           => 32
[2,2,2,2,1,1,1,1]         => 27
[2,2,2,1,1,1,1,1,1]       => 20
[2,2,1,1,1,1,1,1,1,1]     => 11
[2,1,1,1,1,1,1,1,1,1,1]   => 12
[1,1,1,1,1,1,1,1,1,1,1,1] => 12

-----------------------------------------------------------------------------
Created: Jun 27, 2017 at 09:05 by Christian Stump

-----------------------------------------------------------------------------
Last Updated: Jul 06, 2021 at 07:55 by Martin Rubey