Values
[1] => [[1],[]] => [1] => [] => 0
[1,1] => [[1,1],[]] => [1,1] => [1] => 1
[2] => [[2],[]] => [2] => [] => 0
[1,1,1] => [[1,1,1],[]] => [1,1,1] => [1,1] => 2
[1,2] => [[2,1],[]] => [2,1] => [1] => 1
[2,1] => [[2,2],[1]] => [2,2] => [2] => 3
[3] => [[3],[]] => [3] => [] => 0
[1,1,1,1] => [[1,1,1,1],[]] => [1,1,1,1] => [1,1,1] => 3
[1,1,2] => [[2,1,1],[]] => [2,1,1] => [1,1] => 2
[1,2,1] => [[2,2,1],[1]] => [2,2,1] => [2,1] => 4
[1,3] => [[3,1],[]] => [3,1] => [1] => 1
[2,1,1] => [[2,2,2],[1,1]] => [2,2,2] => [2,2] => 5
[2,2] => [[3,2],[1]] => [3,2] => [2] => 3
[3,1] => [[3,3],[2]] => [3,3] => [3] => 6
[4] => [[4],[]] => [4] => [] => 0
[1,1,1,1,1] => [[1,1,1,1,1],[]] => [1,1,1,1,1] => [1,1,1,1] => 4
[1,1,1,2] => [[2,1,1,1],[]] => [2,1,1,1] => [1,1,1] => 3
[1,1,2,1] => [[2,2,1,1],[1]] => [2,2,1,1] => [2,1,1] => 5
[1,1,3] => [[3,1,1],[]] => [3,1,1] => [1,1] => 2
[1,2,1,1] => [[2,2,2,1],[1,1]] => [2,2,2,1] => [2,2,1] => 6
[1,2,2] => [[3,2,1],[1]] => [3,2,1] => [2,1] => 4
[1,3,1] => [[3,3,1],[2]] => [3,3,1] => [3,1] => 7
[1,4] => [[4,1],[]] => [4,1] => [1] => 1
[2,1,1,1] => [[2,2,2,2],[1,1,1]] => [2,2,2,2] => [2,2,2] => 7
[2,1,2] => [[3,2,2],[1,1]] => [3,2,2] => [2,2] => 5
[2,2,1] => [[3,3,2],[2,1]] => [3,3,2] => [3,2] => 8
[2,3] => [[4,2],[1]] => [4,2] => [2] => 3
[3,1,1] => [[3,3,3],[2,2]] => [3,3,3] => [3,3] => 9
[3,2] => [[4,3],[2]] => [4,3] => [3] => 6
[4,1] => [[4,4],[3]] => [4,4] => [4] => 10
[5] => [[5],[]] => [5] => [] => 0
[1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => [1,1,1,1,1,1] => [1,1,1,1,1] => 5
[1,1,1,1,2] => [[2,1,1,1,1],[]] => [2,1,1,1,1] => [1,1,1,1] => 4
[1,1,1,2,1] => [[2,2,1,1,1],[1]] => [2,2,1,1,1] => [2,1,1,1] => 6
[1,1,1,3] => [[3,1,1,1],[]] => [3,1,1,1] => [1,1,1] => 3
[1,1,2,1,1] => [[2,2,2,1,1],[1,1]] => [2,2,2,1,1] => [2,2,1,1] => 7
[1,1,2,2] => [[3,2,1,1],[1]] => [3,2,1,1] => [2,1,1] => 5
[1,1,3,1] => [[3,3,1,1],[2]] => [3,3,1,1] => [3,1,1] => 8
[1,1,4] => [[4,1,1],[]] => [4,1,1] => [1,1] => 2
[1,2,1,1,1] => [[2,2,2,2,1],[1,1,1]] => [2,2,2,2,1] => [2,2,2,1] => 8
[1,2,1,2] => [[3,2,2,1],[1,1]] => [3,2,2,1] => [2,2,1] => 6
[1,2,2,1] => [[3,3,2,1],[2,1]] => [3,3,2,1] => [3,2,1] => 9
[1,2,3] => [[4,2,1],[1]] => [4,2,1] => [2,1] => 4
[1,3,1,1] => [[3,3,3,1],[2,2]] => [3,3,3,1] => [3,3,1] => 10
[1,3,2] => [[4,3,1],[2]] => [4,3,1] => [3,1] => 7
[1,4,1] => [[4,4,1],[3]] => [4,4,1] => [4,1] => 11
[1,5] => [[5,1],[]] => [5,1] => [1] => 1
[2,1,1,1,1] => [[2,2,2,2,2],[1,1,1,1]] => [2,2,2,2,2] => [2,2,2,2] => 9
[2,1,1,2] => [[3,2,2,2],[1,1,1]] => [3,2,2,2] => [2,2,2] => 7
[2,1,2,1] => [[3,3,2,2],[2,1,1]] => [3,3,2,2] => [3,2,2] => 10
[2,1,3] => [[4,2,2],[1,1]] => [4,2,2] => [2,2] => 5
[2,2,1,1] => [[3,3,3,2],[2,2,1]] => [3,3,3,2] => [3,3,2] => 11
[2,2,2] => [[4,3,2],[2,1]] => [4,3,2] => [3,2] => 8
[2,3,1] => [[4,4,2],[3,1]] => [4,4,2] => [4,2] => 12
[2,4] => [[5,2],[1]] => [5,2] => [2] => 3
[3,1,1,1] => [[3,3,3,3],[2,2,2]] => [3,3,3,3] => [3,3,3] => 12
[3,1,2] => [[4,3,3],[2,2]] => [4,3,3] => [3,3] => 9
[3,2,1] => [[4,4,3],[3,2]] => [4,4,3] => [4,3] => 13
[3,3] => [[5,3],[2]] => [5,3] => [3] => 6
[4,1,1] => [[4,4,4],[3,3]] => [4,4,4] => [4,4] => 14
[4,2] => [[5,4],[3]] => [5,4] => [4] => 10
[5,1] => [[5,5],[4]] => [5,5] => [5] => 15
[6] => [[6],[]] => [6] => [] => 0
[1,1,1,1,1,1,1] => [[1,1,1,1,1,1,1],[]] => [1,1,1,1,1,1,1] => [1,1,1,1,1,1] => 6
[1,1,1,1,1,2] => [[2,1,1,1,1,1],[]] => [2,1,1,1,1,1] => [1,1,1,1,1] => 5
[1,1,1,1,2,1] => [[2,2,1,1,1,1],[1]] => [2,2,1,1,1,1] => [2,1,1,1,1] => 7
[1,1,1,1,3] => [[3,1,1,1,1],[]] => [3,1,1,1,1] => [1,1,1,1] => 4
[1,1,1,2,1,1] => [[2,2,2,1,1,1],[1,1]] => [2,2,2,1,1,1] => [2,2,1,1,1] => 8
[1,1,1,2,2] => [[3,2,1,1,1],[1]] => [3,2,1,1,1] => [2,1,1,1] => 6
[1,1,1,3,1] => [[3,3,1,1,1],[2]] => [3,3,1,1,1] => [3,1,1,1] => 9
[1,1,1,4] => [[4,1,1,1],[]] => [4,1,1,1] => [1,1,1] => 3
[1,1,2,1,1,1] => [[2,2,2,2,1,1],[1,1,1]] => [2,2,2,2,1,1] => [2,2,2,1,1] => 9
[1,1,2,1,2] => [[3,2,2,1,1],[1,1]] => [3,2,2,1,1] => [2,2,1,1] => 7
[1,1,2,2,1] => [[3,3,2,1,1],[2,1]] => [3,3,2,1,1] => [3,2,1,1] => 10
[1,1,2,3] => [[4,2,1,1],[1]] => [4,2,1,1] => [2,1,1] => 5
[1,1,3,1,1] => [[3,3,3,1,1],[2,2]] => [3,3,3,1,1] => [3,3,1,1] => 11
[1,1,3,2] => [[4,3,1,1],[2]] => [4,3,1,1] => [3,1,1] => 8
[1,1,4,1] => [[4,4,1,1],[3]] => [4,4,1,1] => [4,1,1] => 12
[1,1,5] => [[5,1,1],[]] => [5,1,1] => [1,1] => 2
[1,2,1,1,1,1] => [[2,2,2,2,2,1],[1,1,1,1]] => [2,2,2,2,2,1] => [2,2,2,2,1] => 10
[1,2,1,1,2] => [[3,2,2,2,1],[1,1,1]] => [3,2,2,2,1] => [2,2,2,1] => 8
[1,2,1,2,1] => [[3,3,2,2,1],[2,1,1]] => [3,3,2,2,1] => [3,2,2,1] => 11
[1,2,1,3] => [[4,2,2,1],[1,1]] => [4,2,2,1] => [2,2,1] => 6
[1,2,2,1,1] => [[3,3,3,2,1],[2,2,1]] => [3,3,3,2,1] => [3,3,2,1] => 12
[1,2,2,2] => [[4,3,2,1],[2,1]] => [4,3,2,1] => [3,2,1] => 9
[1,2,3,1] => [[4,4,2,1],[3,1]] => [4,4,2,1] => [4,2,1] => 13
[1,2,4] => [[5,2,1],[1]] => [5,2,1] => [2,1] => 4
[1,3,1,1,1] => [[3,3,3,3,1],[2,2,2]] => [3,3,3,3,1] => [3,3,3,1] => 13
[1,3,1,2] => [[4,3,3,1],[2,2]] => [4,3,3,1] => [3,3,1] => 10
[1,3,2,1] => [[4,4,3,1],[3,2]] => [4,4,3,1] => [4,3,1] => 14
[1,3,3] => [[5,3,1],[2]] => [5,3,1] => [3,1] => 7
[1,4,1,1] => [[4,4,4,1],[3,3]] => [4,4,4,1] => [4,4,1] => 15
[1,4,2] => [[5,4,1],[3]] => [5,4,1] => [4,1] => 11
[1,5,1] => [[5,5,1],[4]] => [5,5,1] => [5,1] => 16
[1,6] => [[6,1],[]] => [6,1] => [1] => 1
[2,1,1,1,1,1] => [[2,2,2,2,2,2],[1,1,1,1,1]] => [2,2,2,2,2,2] => [2,2,2,2,2] => 11
[2,1,1,1,2] => [[3,2,2,2,2],[1,1,1,1]] => [3,2,2,2,2] => [2,2,2,2] => 9
[2,1,1,2,1] => [[3,3,2,2,2],[2,1,1,1]] => [3,3,2,2,2] => [3,2,2,2] => 12
[2,1,1,3] => [[4,2,2,2],[1,1,1]] => [4,2,2,2] => [2,2,2] => 7
[2,1,2,1,1] => [[3,3,3,2,2],[2,2,1,1]] => [3,3,3,2,2] => [3,3,2,2] => 13
[2,1,2,2] => [[4,3,2,2],[2,1,1]] => [4,3,2,2] => [3,2,2] => 10
>>> Load all 230 entries. <<<
[2,1,3,1] => [[4,4,2,2],[3,1,1]] => [4,4,2,2] => [4,2,2] => 14
[2,1,4] => [[5,2,2],[1,1]] => [5,2,2] => [2,2] => 5
[2,2,1,1,1] => [[3,3,3,3,2],[2,2,2,1]] => [3,3,3,3,2] => [3,3,3,2] => 14
[2,2,1,2] => [[4,3,3,2],[2,2,1]] => [4,3,3,2] => [3,3,2] => 11
[2,2,2,1] => [[4,4,3,2],[3,2,1]] => [4,4,3,2] => [4,3,2] => 15
[2,2,3] => [[5,3,2],[2,1]] => [5,3,2] => [3,2] => 8
[2,3,1,1] => [[4,4,4,2],[3,3,1]] => [4,4,4,2] => [4,4,2] => 16
[2,3,2] => [[5,4,2],[3,1]] => [5,4,2] => [4,2] => 12
[2,4,1] => [[5,5,2],[4,1]] => [5,5,2] => [5,2] => 17
[2,5] => [[6,2],[1]] => [6,2] => [2] => 3
[3,1,1,1,1] => [[3,3,3,3,3],[2,2,2,2]] => [3,3,3,3,3] => [3,3,3,3] => 15
[3,1,1,2] => [[4,3,3,3],[2,2,2]] => [4,3,3,3] => [3,3,3] => 12
[3,1,2,1] => [[4,4,3,3],[3,2,2]] => [4,4,3,3] => [4,3,3] => 16
[3,1,3] => [[5,3,3],[2,2]] => [5,3,3] => [3,3] => 9
[3,2,1,1] => [[4,4,4,3],[3,3,2]] => [4,4,4,3] => [4,4,3] => 17
[3,2,2] => [[5,4,3],[3,2]] => [5,4,3] => [4,3] => 13
[3,3,1] => [[5,5,3],[4,2]] => [5,5,3] => [5,3] => 18
[3,4] => [[6,3],[2]] => [6,3] => [3] => 6
[4,1,1,1] => [[4,4,4,4],[3,3,3]] => [4,4,4,4] => [4,4,4] => 18
[4,1,2] => [[5,4,4],[3,3]] => [5,4,4] => [4,4] => 14
[4,2,1] => [[5,5,4],[4,3]] => [5,5,4] => [5,4] => 19
[4,3] => [[6,4],[3]] => [6,4] => [4] => 10
[5,1,1] => [[5,5,5],[4,4]] => [5,5,5] => [5,5] => 20
[5,2] => [[6,5],[4]] => [6,5] => [5] => 15
[6,1] => [[6,6],[5]] => [6,6] => [6] => 21
[7] => [[7],[]] => [7] => [] => 0
[1,1,1,1,1,1,1,1] => [[1,1,1,1,1,1,1,1],[]] => [1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1] => 7
[1,1,1,1,1,1,2] => [[2,1,1,1,1,1,1],[]] => [2,1,1,1,1,1,1] => [1,1,1,1,1,1] => 6
[1,1,1,1,1,2,1] => [[2,2,1,1,1,1,1],[1]] => [2,2,1,1,1,1,1] => [2,1,1,1,1,1] => 8
[1,1,1,1,1,3] => [[3,1,1,1,1,1],[]] => [3,1,1,1,1,1] => [1,1,1,1,1] => 5
[1,1,1,1,2,1,1] => [[2,2,2,1,1,1,1],[1,1]] => [2,2,2,1,1,1,1] => [2,2,1,1,1,1] => 9
[1,1,1,1,2,2] => [[3,2,1,1,1,1],[1]] => [3,2,1,1,1,1] => [2,1,1,1,1] => 7
[1,1,1,1,4] => [[4,1,1,1,1],[]] => [4,1,1,1,1] => [1,1,1,1] => 4
[1,1,1,2,1,1,1] => [[2,2,2,2,1,1,1],[1,1,1]] => [2,2,2,2,1,1,1] => [2,2,2,1,1,1] => 10
[1,1,1,2,1,2] => [[3,2,2,1,1,1],[1,1]] => [3,2,2,1,1,1] => [2,2,1,1,1] => 8
[1,1,1,2,2,1] => [[3,3,2,1,1,1],[2,1]] => [3,3,2,1,1,1] => [3,2,1,1,1] => 11
[1,1,1,3,2] => [[4,3,1,1,1],[2]] => [4,3,1,1,1] => [3,1,1,1] => 9
[1,1,1,5] => [[5,1,1,1],[]] => [5,1,1,1] => [1,1,1] => 3
[1,1,2,1,1,1,1] => [[2,2,2,2,2,1,1],[1,1,1,1]] => [2,2,2,2,2,1,1] => [2,2,2,2,1,1] => 11
[1,1,2,1,1,2] => [[3,2,2,2,1,1],[1,1,1]] => [3,2,2,2,1,1] => [2,2,2,1,1] => 9
[1,1,2,1,2,1] => [[3,3,2,2,1,1],[2,1,1]] => [3,3,2,2,1,1] => [3,2,2,1,1] => 12
[1,1,2,2,1,1] => [[3,3,3,2,1,1],[2,2,1]] => [3,3,3,2,1,1] => [3,3,2,1,1] => 13
[1,1,2,2,2] => [[4,3,2,1,1],[2,1]] => [4,3,2,1,1] => [3,2,1,1] => 10
[1,1,2,3,1] => [[4,4,2,1,1],[3,1]] => [4,4,2,1,1] => [4,2,1,1] => 14
[1,1,3,1,2] => [[4,3,3,1,1],[2,2]] => [4,3,3,1,1] => [3,3,1,1] => 11
[1,1,3,2,1] => [[4,4,3,1,1],[3,2]] => [4,4,3,1,1] => [4,3,1,1] => 15
[1,1,3,3] => [[5,3,1,1],[2]] => [5,3,1,1] => [3,1,1] => 8
[1,1,6] => [[6,1,1],[]] => [6,1,1] => [1,1] => 2
[1,2,1,1,1,1,1] => [[2,2,2,2,2,2,1],[1,1,1,1,1]] => [2,2,2,2,2,2,1] => [2,2,2,2,2,1] => 12
[1,2,1,1,1,2] => [[3,2,2,2,2,1],[1,1,1,1]] => [3,2,2,2,2,1] => [2,2,2,2,1] => 10
[1,2,1,1,2,1] => [[3,3,2,2,2,1],[2,1,1,1]] => [3,3,2,2,2,1] => [3,2,2,2,1] => 13
[1,2,1,2,1,1] => [[3,3,3,2,2,1],[2,2,1,1]] => [3,3,3,2,2,1] => [3,3,2,2,1] => 14
[1,2,1,2,2] => [[4,3,2,2,1],[2,1,1]] => [4,3,2,2,1] => [3,2,2,1] => 11
[1,2,1,3,1] => [[4,4,2,2,1],[3,1,1]] => [4,4,2,2,1] => [4,2,2,1] => 15
[1,2,2,1,1,1] => [[3,3,3,3,2,1],[2,2,2,1]] => [3,3,3,3,2,1] => [3,3,3,2,1] => 15
[1,2,2,1,2] => [[4,3,3,2,1],[2,2,1]] => [4,3,3,2,1] => [3,3,2,1] => 12
[1,2,2,2,1] => [[4,4,3,2,1],[3,2,1]] => [4,4,3,2,1] => [4,3,2,1] => 16
[1,2,2,3] => [[5,3,2,1],[2,1]] => [5,3,2,1] => [3,2,1] => 9
[1,2,3,1,1] => [[4,4,4,2,1],[3,3,1]] => [4,4,4,2,1] => [4,4,2,1] => 17
[1,2,3,2] => [[5,4,2,1],[3,1]] => [5,4,2,1] => [4,2,1] => 13
[1,3,1,1,2] => [[4,3,3,3,1],[2,2,2]] => [4,3,3,3,1] => [3,3,3,1] => 13
[1,3,1,2,1] => [[4,4,3,3,1],[3,2,2]] => [4,4,3,3,1] => [4,3,3,1] => 17
[1,3,1,3] => [[5,3,3,1],[2,2]] => [5,3,3,1] => [3,3,1] => 10
[1,3,2,1,1] => [[4,4,4,3,1],[3,3,2]] => [4,4,4,3,1] => [4,4,3,1] => 18
[1,3,2,2] => [[5,4,3,1],[3,2]] => [5,4,3,1] => [4,3,1] => 14
[1,3,3,1] => [[5,5,3,1],[4,2]] => [5,5,3,1] => [5,3,1] => 19
[1,4,1,2] => [[5,4,4,1],[3,3]] => [5,4,4,1] => [4,4,1] => 15
[1,4,2,1] => [[5,5,4,1],[4,3]] => [5,5,4,1] => [5,4,1] => 20
[1,4,3] => [[6,4,1],[3]] => [6,4,1] => [4,1] => 11
[1,7] => [[7,1],[]] => [7,1] => [1] => 1
[2,1,1,1,1,1,1] => [[2,2,2,2,2,2,2],[1,1,1,1,1,1]] => [2,2,2,2,2,2,2] => [2,2,2,2,2,2] => 13
[2,1,1,1,1,2] => [[3,2,2,2,2,2],[1,1,1,1,1]] => [3,2,2,2,2,2] => [2,2,2,2,2] => 11
[2,1,1,1,2,1] => [[3,3,2,2,2,2],[2,1,1,1,1]] => [3,3,2,2,2,2] => [3,2,2,2,2] => 14
[2,1,1,2,1,1] => [[3,3,3,2,2,2],[2,2,1,1,1]] => [3,3,3,2,2,2] => [3,3,2,2,2] => 15
[2,1,1,2,2] => [[4,3,2,2,2],[2,1,1,1]] => [4,3,2,2,2] => [3,2,2,2] => 12
[2,1,1,3,1] => [[4,4,2,2,2],[3,1,1,1]] => [4,4,2,2,2] => [4,2,2,2] => 16
[2,1,2,1,2] => [[4,3,3,2,2],[2,2,1,1]] => [4,3,3,2,2] => [3,3,2,2] => 13
[2,1,2,2,1] => [[4,4,3,2,2],[3,2,1,1]] => [4,4,3,2,2] => [4,3,2,2] => 17
[2,1,2,3] => [[5,3,2,2],[2,1,1]] => [5,3,2,2] => [3,2,2] => 10
[2,1,3,1,1] => [[4,4,4,2,2],[3,3,1,1]] => [4,4,4,2,2] => [4,4,2,2] => 18
[2,1,3,2] => [[5,4,2,2],[3,1,1]] => [5,4,2,2] => [4,2,2] => 14
[2,2,1,1,2] => [[4,3,3,3,2],[2,2,2,1]] => [4,3,3,3,2] => [3,3,3,2] => 14
[2,2,1,2,1] => [[4,4,3,3,2],[3,2,2,1]] => [4,4,3,3,2] => [4,3,3,2] => 18
[2,2,1,3] => [[5,3,3,2],[2,2,1]] => [5,3,3,2] => [3,3,2] => 11
[2,2,2,1,1] => [[4,4,4,3,2],[3,3,2,1]] => [4,4,4,3,2] => [4,4,3,2] => 19
[2,2,2,2] => [[5,4,3,2],[3,2,1]] => [5,4,3,2] => [4,3,2] => 15
[2,2,3,1] => [[5,5,3,2],[4,2,1]] => [5,5,3,2] => [5,3,2] => 20
[2,3,1,2] => [[5,4,4,2],[3,3,1]] => [5,4,4,2] => [4,4,2] => 16
[2,3,2,1] => [[5,5,4,2],[4,3,1]] => [5,5,4,2] => [5,4,2] => 21
[2,3,3] => [[6,4,2],[3,1]] => [6,4,2] => [4,2] => 12
[2,4,1,1] => [[5,5,5,2],[4,4,1]] => [5,5,5,2] => [5,5,2] => 22
[2,4,2] => [[6,5,2],[4,1]] => [6,5,2] => [5,2] => 17
[3,1,1,3] => [[5,3,3,3],[2,2,2]] => [5,3,3,3] => [3,3,3] => 12
[3,1,2,2] => [[5,4,3,3],[3,2,2]] => [5,4,3,3] => [4,3,3] => 16
[3,1,3,1] => [[5,5,3,3],[4,2,2]] => [5,5,3,3] => [5,3,3] => 21
[3,2,1,2] => [[5,4,4,3],[3,3,2]] => [5,4,4,3] => [4,4,3] => 17
[3,2,2,1] => [[5,5,4,3],[4,3,2]] => [5,5,4,3] => [5,4,3] => 22
[3,2,3] => [[6,4,3],[3,2]] => [6,4,3] => [4,3] => 13
[3,3,2] => [[6,5,3],[4,2]] => [6,5,3] => [5,3] => 18
[3,4,1] => [[6,6,3],[5,2]] => [6,6,3] => [6,3] => 24
[4,1,1,2] => [[5,4,4,4],[3,3,3]] => [5,4,4,4] => [4,4,4] => 18
[4,1,3] => [[6,4,4],[3,3]] => [6,4,4] => [4,4] => 14
[4,2,2] => [[6,5,4],[4,3]] => [6,5,4] => [5,4] => 19
[4,3,1] => [[6,6,4],[5,3]] => [6,6,4] => [6,4] => 25
[4,4] => [[7,4],[3]] => [7,4] => [4] => 10
[6,1,1] => [[6,6,6],[5,5]] => [6,6,6] => [6,6] => 27
[7,1] => [[7,7],[6]] => [7,7] => [7] => 28
[8] => [[8],[]] => [8] => [] => 0
[1,1,1,1,1,1,1,1,1] => [[1,1,1,1,1,1,1,1,1],[]] => [1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1] => 8
[1,1,1,1,1,1,1,2] => [[2,1,1,1,1,1,1,1],[]] => [2,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1] => 7
[1,1,1,1,1,1,3] => [[3,1,1,1,1,1,1],[]] => [3,1,1,1,1,1,1] => [1,1,1,1,1,1] => 6
[1,1,1,1,1,4] => [[4,1,1,1,1,1],[]] => [4,1,1,1,1,1] => [1,1,1,1,1] => 5
[1,1,1,1,5] => [[5,1,1,1,1],[]] => [5,1,1,1,1] => [1,1,1,1] => 4
[1,1,1,6] => [[6,1,1,1],[]] => [6,1,1,1] => [1,1,1] => 3
[1,1,7] => [[7,1,1],[]] => [7,1,1] => [1,1] => 2
[1,8] => [[8,1],[]] => [8,1] => [1] => 1
[8,1] => [[8,8],[7]] => [8,8] => [8] => 36
[9] => [[9],[]] => [9] => [] => 0
[1,1,1,1,1,1,1,1,1,1] => [[1,1,1,1,1,1,1,1,1,1],[]] => [1,1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1] => 9
[1,1,1,1,1,1,1,1,2] => [[2,1,1,1,1,1,1,1,1],[]] => [2,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1] => 8
[1,1,1,1,1,1,1,3] => [[3,1,1,1,1,1,1,1],[]] => [3,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1] => 7
[1,1,1,1,1,1,4] => [[4,1,1,1,1,1,1],[]] => [4,1,1,1,1,1,1] => [1,1,1,1,1,1] => 6
[1,1,1,1,1,5] => [[5,1,1,1,1,1],[]] => [5,1,1,1,1,1] => [1,1,1,1,1] => 5
[1,1,1,1,6] => [[6,1,1,1,1],[]] => [6,1,1,1,1] => [1,1,1,1] => 4
[1,1,1,7] => [[7,1,1,1],[]] => [7,1,1,1] => [1,1,1] => 3
[1,1,8] => [[8,1,1],[]] => [8,1,1] => [1,1] => 2
[1,9] => [[9,1],[]] => [9,1] => [1] => 1
[9,1] => [[9,9],[8]] => [9,9] => [9] => 45
[10] => [[10],[]] => [10] => [] => 0
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The sum of the hook lengths in the first row of an integer partition.
For a cell in the Ferrers diagram of a partition, the hook length is given by the number of boxes to its right plus the number of boxes below plus one. This statistic is the sum of the hook lengths of the first row of a partition.
Put differently, for a partition of size $n$ with first parth $\lambda_1$, this is $\binom{\lambda_1}{2} + n$.
Map
outer shape
Description
The outer shape of the skew partition.
Map
to ribbon
Description
The ribbon shape corresponding to an integer composition.
For an integer composition $(a_1, \dots, a_n)$, this is the ribbon shape whose $i$th row from the bottom has $a_i$ cells.
Map
first row removal
Description
Removes the first entry of an integer partition