Identifier
Values
[1] => [1,0,1,0] => [1,0,1,0] => [3,1,2] => 2
[2] => [1,1,0,0,1,0] => [1,1,0,0,1,0] => [2,4,1,3] => 2
[1,1] => [1,0,1,1,0,0] => [1,1,0,1,0,0] => [4,3,1,2] => 2
[3] => [1,1,1,0,0,0,1,0] => [1,1,1,0,0,0,1,0] => [2,3,5,1,4] => 2
[2,1] => [1,0,1,0,1,0] => [1,0,1,0,1,0] => [4,1,2,3] => 2
[1,1,1] => [1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,0,0] => [5,3,4,1,2] => 2
[4] => [1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,0,0,0,0,1,0] => [2,3,4,6,1,5] => 2
[3,1] => [1,1,0,1,0,0,1,0] => [1,0,1,1,0,0,1,0] => [3,1,5,2,4] => 2
[2,2] => [1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,0,0] => [2,5,4,1,3] => 2
[2,1,1] => [1,0,1,1,0,1,0,0] => [1,0,1,1,0,1,0,0] => [5,1,4,2,3] => 2
[1,1,1,1] => [1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [6,3,4,5,1,2] => 2
[5] => [1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => [2,3,4,5,7,1,6] => 2
[4,1] => [1,1,1,0,1,0,0,0,1,0] => [1,1,0,1,1,0,0,0,1,0] => [4,3,1,6,2,5] => 2
[3,2] => [1,1,0,0,1,0,1,0] => [1,1,0,0,1,0,1,0] => [2,5,1,3,4] => 2
[3,1,1] => [1,0,1,1,0,0,1,0] => [1,1,0,1,0,0,1,0] => [5,3,1,2,4] => 2
[2,2,1] => [1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,0] => [5,4,1,2,3] => 2
[2,1,1,1] => [1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,1,0,1,0,0,0] => [6,4,1,5,2,3] => 3
[6] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => [2,3,4,5,6,8,1,7] => 2
[4,2] => [1,1,1,0,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,0] => [2,4,1,6,3,5] => 2
[4,1,1] => [1,1,0,1,1,0,0,0,1,0] => [1,0,1,1,1,0,0,0,1,0] => [3,1,4,6,2,5] => 2
[3,3] => [1,1,1,0,0,0,1,1,0,0] => [1,1,1,1,0,0,0,1,0,0] => [2,3,6,5,1,4] => 2
[3,2,1] => [1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0] => [5,1,2,3,4] => 2
[3,1,1,1] => [1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,1,0,0] => [6,3,1,5,2,4] => 3
[2,2,2] => [1,1,0,0,1,1,1,0,0,0] => [1,1,1,1,0,0,1,0,0,0] => [2,6,4,5,1,3] => 2
[2,2,1,1] => [1,0,1,1,0,1,1,0,0,0] => [1,0,1,1,1,0,1,0,0,0] => [6,1,4,5,2,3] => 3
[7] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0] => [2,3,4,5,6,7,9,1,8] => 2
[4,3] => [1,1,1,0,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0,1,0] => [2,3,6,1,4,5] => 2
[4,2,1] => [1,1,0,1,0,1,0,0,1,0] => [1,0,1,0,1,1,0,0,1,0] => [4,1,2,6,3,5] => 2
[4,1,1,1] => [1,0,1,1,1,0,0,0,1,0] => [1,1,1,0,1,0,0,0,1,0] => [6,3,4,1,2,5] => 2
[3,3,1] => [1,1,0,1,0,0,1,1,0,0] => [1,0,1,1,1,0,0,1,0,0] => [3,1,6,5,2,4] => 3
[3,2,2] => [1,1,0,0,1,1,0,1,0,0] => [1,1,0,0,1,1,0,1,0,0] => [2,6,1,5,3,4] => 2
[3,2,1,1] => [1,0,1,1,0,1,0,1,0,0] => [1,0,1,0,1,1,0,1,0,0] => [6,1,2,5,3,4] => 2
[2,2,2,1] => [1,0,1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,1,0,0,0] => [6,5,4,1,2,3] => 2
[4,3,1] => [1,1,0,1,0,0,1,0,1,0] => [1,0,1,1,0,0,1,0,1,0] => [3,1,6,2,4,5] => 2
[4,2,2] => [1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,0,1,0] => [2,6,4,1,3,5] => 2
[4,2,1,1] => [1,0,1,1,0,1,0,0,1,0] => [1,0,1,1,0,1,0,0,1,0] => [6,1,4,2,3,5] => 2
[3,3,2] => [1,1,0,0,1,0,1,1,0,0] => [1,1,1,0,0,1,0,1,0,0] => [2,6,5,1,3,4] => 2
[3,3,1,1] => [1,0,1,1,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,0,0] => [6,3,5,1,2,4] => 3
[3,2,2,1] => [1,0,1,0,1,1,0,1,0,0] => [1,0,1,1,0,1,0,1,0,0] => [6,1,5,2,3,4] => 2
[3,1,1,1,1,1] => [1,0,1,1,1,1,1,0,0,1,0,0,0,0] => [1,1,1,1,0,1,1,0,0,1,0,0,0,0] => [8,3,6,5,1,7,2,4] => 3
[5,4] => [1,1,1,1,0,0,0,0,1,0,1,0] => [1,1,1,1,0,0,0,0,1,0,1,0] => [2,3,4,7,1,5,6] => 2
[4,3,2] => [1,1,0,0,1,0,1,0,1,0] => [1,1,0,0,1,0,1,0,1,0] => [2,6,1,3,4,5] => 2
[4,3,1,1] => [1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,0,1,0,1,0] => [6,3,1,2,4,5] => 2
[4,2,2,1] => [1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,0,1,0] => [6,4,1,2,3,5] => 2
[3,3,2,1] => [1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,0,0] => [5,6,1,2,3,4] => 2
[2,2,2,2,1] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => [7,6,4,5,1,2,3] => 3
[4,3,2,1] => [1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [6,1,2,3,4,5] => 2
[5,3,2,1] => [1,1,0,1,0,1,0,1,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [5,1,2,3,7,4,6] => 2
[4,3,1,1,1,1] => [1,0,1,1,1,1,0,0,1,0,1,0,0,0] => [1,1,1,0,1,0,0,1,1,0,1,0,0,0] => [6,3,8,1,2,7,4,5] => 3
[2,2,2,2,2,1] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,1,0,1,0,0,0,0,0] => [8,7,4,5,6,1,2,3] => 3
[5,4,1,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,1,0,1,0,0,0,1,0,1,0] => [7,3,4,1,2,5,6] => 2
[4,4,1,1,1,1] => [1,0,1,1,1,1,0,0,0,1,1,0,0,0] => [1,1,1,0,1,1,1,0,0,0,1,0,0,0] => [8,3,4,1,6,7,2,5] => 3
[4,4,3,2] => [1,1,0,0,1,0,1,0,1,1,0,0] => [1,1,1,0,0,1,0,1,0,1,0,0] => [2,6,7,1,3,4,5] => 2
[4,2,2,2,2,1] => [1,0,1,0,1,1,1,1,0,0,1,0,0,0] => [1,1,1,0,1,1,0,1,0,0,1,0,0,0] => [7,8,4,1,6,2,3,5] => 3
[5,4,3,2] => [1,1,0,0,1,0,1,0,1,0,1,0] => [1,1,0,0,1,0,1,0,1,0,1,0] => [2,7,1,3,4,5,6] => 2
[5,4,3,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,1,0,0,1,0,1,0,1,0] => [7,3,1,2,4,5,6] => 2
[5,4,2,2,1] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,1,0,0,1,0,1,0] => [7,4,1,2,3,5,6] => 2
[4,4,3,2,1] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => [7,6,1,2,3,4,5] => 2
[6,3,3,1,1,1] => [1,0,1,1,1,0,0,1,1,0,0,0,1,0] => [1,1,0,1,1,1,0,0,1,0,0,0,1,0] => [8,3,1,5,6,2,4,7] => 3
[5,4,3,2,1] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [7,1,2,3,4,5,6] => 2
[5,4,3,1,1,1] => [1,0,1,1,1,0,0,1,0,1,0,1,0,0] => [1,1,0,1,0,0,1,0,1,1,0,1,0,0] => [8,3,1,2,4,7,5,6] => 3
[6,4,2,2,1,1] => [1,0,1,1,0,1,1,0,0,1,0,0,1,0] => [1,0,1,1,0,1,1,0,0,1,0,0,1,0] => [8,1,4,2,6,3,5,7] => 3
[4,4,3,2,2,1] => [1,0,1,0,1,1,0,1,0,1,1,0,0,0] => [1,0,1,0,1,1,1,0,1,0,1,0,0,0] => [8,1,2,7,6,3,4,5] => 2
[] => [] => [] => [1] => 1
[6,5,4,3,2,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [8,1,2,3,4,5,6,7] => 2
[5,5,4,3,2,1] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,0] => [8,7,1,2,3,4,5,6] => 2
[4,4,4,3,2,1] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,1,0,1,0,1,0,0,0] => [6,7,8,1,2,3,4,5] => 2
[6,4,3,3,2,1] => [1,0,1,0,1,0,1,1,0,1,0,0,1,0] => [1,0,1,1,0,1,0,1,0,1,0,0,1,0] => [6,1,8,2,3,4,5,7] => 2
[6,5,4,2,2,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,0,1,0,1,0,1,0] => [8,4,1,2,3,5,6,7] => 2
[6,5,4,3,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,0,1,0,1,0,1,0,1,0] => [8,3,1,2,4,5,6,7] => 2
[6,5,4,3,2] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0] => [2,8,1,3,4,5,6,7] => 2
[7,6,5,4,3,2,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [9,1,2,3,4,5,6,7,8] => 2
[6,6,5,4,3,2,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0] => [8,9,1,2,3,4,5,6,7] => 2
[5,5,5,4,3,2,1] => [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0] => [9,7,8,1,2,3,4,5,6] => 3
[7,6,5,4,3,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0] => [9,3,1,2,4,5,6,7,8] => 2
[7,6,5,4,3,2] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0] => [2,9,1,3,4,5,6,7,8] => 2
[8,7,6,5,4,3,2,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [10,1,2,3,4,5,6,7,8,9] => 2
[7,7,6,5,4,3,2,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0] => [10,9,1,2,3,4,5,6,7,8] => 2
[9,8,7,6,5,4,3,2,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [11,1,2,3,4,5,6,7,8,9,10] => 2
[6,6,6,5,4,3,2,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0] => [10,9,8,1,2,3,4,5,6,7] => 2
[8,7,6,5,4,3,2] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [2,10,1,3,4,5,6,7,8,9] => 2
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The number of parts of the shifted shape of a permutation.
The diagram of a strict partition $\lambda_1 < \lambda_2 < \dots < \lambda_\ell$ of $n$ is a tableau with $\ell$ rows, the $i$-th row being indented by $i$ cells. A shifted standard Young tableau is a filling of such a diagram, where entries in rows and columns are strictly increasing.
The shifted Robinson-Schensted algorithm [1] associates to a permutation a pair $(P, Q)$ of standard shifted Young tableaux of the same shape, where off-diagonal entries in $Q$ may be circled.
This statistic records the number of parts of the shifted shape.
Map
Ringel
Description
The Ringel permutation of the LNakayama algebra corresponding to a Dyck path.
Map
to Dyck path
Description
Sends a partition to the shortest Dyck path tracing the shape of its Ferrers diagram.
Map
Adin-Bagno-Roichman transformation
Description
The Adin-Bagno-Roichman transformation of a Dyck path.
This is a bijection preserving the number of up steps before each peak and sending the number of returns to the number of up steps after the last double up step.