*****************************************************************************
*       www.FindStat.org - The Combinatorial Statistic Finder               *
*                                                                           *
*       Copyright (C) 2019 The FindStatCrew <info@findstat.org>             *
*                                                                           *
*    This information is distributed in the hope that it will be useful,    *
*    but WITHOUT ANY WARRANTY; without even the implied warranty of         *
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                   *
*****************************************************************************

-----------------------------------------------------------------------------
Statistic identifier: St000843

-----------------------------------------------------------------------------
Collection: Perfect matchings

-----------------------------------------------------------------------------
Description: The decomposition number of a perfect matching.

This is the number of integers $i$ such that all elements in $\{1,\dots,i\}$ are matched among themselves.

Visually, it is the number of components of the arc diagram of the matching, where a component is a matching of a set of consecutive numbers $\{a,a+1,\dots,b\}$ such that there is no arc matching a number smaller than $a$ with a number larger than $b$.

E.g., $\{(1,6),(2,4),(3,5)\}$ is a hairpin under a single edge - crossing nested by a single arc.  Thus, this matching has one component.  However, $\{(1,2),(3,6),(4,5)\}$ is a single edge to the left of a ladder (a pair of nested edges), so it has two components.

-----------------------------------------------------------------------------
References: 

-----------------------------------------------------------------------------
Code:
def statistic(pi):
    blocks = sorted(sorted(b) for b in pi)
    k = 0
    u = []
    for b in blocks:
        u.extend(b)
        if sorted(u)[-1] == len(u):
            k += 1
    return k


-----------------------------------------------------------------------------
Statistic values:

[(1,2)]                                                                          => 1
[(1,2),(3,4)]                                                                    => 2
[(1,3),(2,4)]                                                                    => 1
[(1,4),(2,3)]                                                                    => 1
[(1,2),(3,4),(5,6)]                                                              => 3
[(1,3),(2,4),(5,6)]                                                              => 2
[(1,4),(2,3),(5,6)]                                                              => 2
[(1,5),(2,3),(4,6)]                                                              => 1
[(1,6),(2,3),(4,5)]                                                              => 1
[(1,6),(2,4),(3,5)]                                                              => 1
[(1,5),(2,4),(3,6)]                                                              => 1
[(1,4),(2,5),(3,6)]                                                              => 1
[(1,3),(2,5),(4,6)]                                                              => 1
[(1,2),(3,5),(4,6)]                                                              => 2
[(1,2),(3,6),(4,5)]                                                              => 2
[(1,3),(2,6),(4,5)]                                                              => 1
[(1,4),(2,6),(3,5)]                                                              => 1
[(1,5),(2,6),(3,4)]                                                              => 1
[(1,6),(2,5),(3,4)]                                                              => 1
[(1,2),(3,4),(5,6),(7,8)]                                                        => 4
[(1,3),(2,4),(5,6),(7,8)]                                                        => 3
[(1,4),(2,3),(5,6),(7,8)]                                                        => 3
[(1,5),(2,3),(4,6),(7,8)]                                                        => 2
[(1,6),(2,3),(4,5),(7,8)]                                                        => 2
[(1,7),(2,3),(4,5),(6,8)]                                                        => 1
[(1,8),(2,3),(4,5),(6,7)]                                                        => 1
[(1,8),(2,4),(3,5),(6,7)]                                                        => 1
[(1,7),(2,4),(3,5),(6,8)]                                                        => 1
[(1,6),(2,4),(3,5),(7,8)]                                                        => 2
[(1,5),(2,4),(3,6),(7,8)]                                                        => 2
[(1,4),(2,5),(3,6),(7,8)]                                                        => 2
[(1,3),(2,5),(4,6),(7,8)]                                                        => 2
[(1,2),(3,5),(4,6),(7,8)]                                                        => 3
[(1,2),(3,6),(4,5),(7,8)]                                                        => 3
[(1,3),(2,6),(4,5),(7,8)]                                                        => 2
[(1,4),(2,6),(3,5),(7,8)]                                                        => 2
[(1,5),(2,6),(3,4),(7,8)]                                                        => 2
[(1,6),(2,5),(3,4),(7,8)]                                                        => 2
[(1,7),(2,5),(3,4),(6,8)]                                                        => 1
[(1,8),(2,5),(3,4),(6,7)]                                                        => 1
[(1,8),(2,6),(3,4),(5,7)]                                                        => 1
[(1,7),(2,6),(3,4),(5,8)]                                                        => 1
[(1,6),(2,7),(3,4),(5,8)]                                                        => 1
[(1,5),(2,7),(3,4),(6,8)]                                                        => 1
[(1,4),(2,7),(3,5),(6,8)]                                                        => 1
[(1,3),(2,7),(4,5),(6,8)]                                                        => 1
[(1,2),(3,7),(4,5),(6,8)]                                                        => 2
[(1,2),(3,8),(4,5),(6,7)]                                                        => 2
[(1,3),(2,8),(4,5),(6,7)]                                                        => 1
[(1,4),(2,8),(3,5),(6,7)]                                                        => 1
[(1,5),(2,8),(3,4),(6,7)]                                                        => 1
[(1,6),(2,8),(3,4),(5,7)]                                                        => 1
[(1,7),(2,8),(3,4),(5,6)]                                                        => 1
[(1,8),(2,7),(3,4),(5,6)]                                                        => 1
[(1,8),(2,7),(3,5),(4,6)]                                                        => 1
[(1,7),(2,8),(3,5),(4,6)]                                                        => 1
[(1,6),(2,8),(3,5),(4,7)]                                                        => 1
[(1,5),(2,8),(3,6),(4,7)]                                                        => 1
[(1,4),(2,8),(3,6),(5,7)]                                                        => 1
[(1,3),(2,8),(4,6),(5,7)]                                                        => 1
[(1,2),(3,8),(4,6),(5,7)]                                                        => 2
[(1,2),(3,7),(4,6),(5,8)]                                                        => 2
[(1,3),(2,7),(4,6),(5,8)]                                                        => 1
[(1,4),(2,7),(3,6),(5,8)]                                                        => 1
[(1,5),(2,7),(3,6),(4,8)]                                                        => 1
[(1,6),(2,7),(3,5),(4,8)]                                                        => 1
[(1,7),(2,6),(3,5),(4,8)]                                                        => 1
[(1,8),(2,6),(3,5),(4,7)]                                                        => 1
[(1,8),(2,5),(3,6),(4,7)]                                                        => 1
[(1,7),(2,5),(3,6),(4,8)]                                                        => 1
[(1,6),(2,5),(3,7),(4,8)]                                                        => 1
[(1,5),(2,6),(3,7),(4,8)]                                                        => 1
[(1,4),(2,6),(3,7),(5,8)]                                                        => 1
[(1,3),(2,6),(4,7),(5,8)]                                                        => 1
[(1,2),(3,6),(4,7),(5,8)]                                                        => 2
[(1,2),(3,5),(4,7),(6,8)]                                                        => 2
[(1,3),(2,5),(4,7),(6,8)]                                                        => 1
[(1,4),(2,5),(3,7),(6,8)]                                                        => 1
[(1,5),(2,4),(3,7),(6,8)]                                                        => 1
[(1,6),(2,4),(3,7),(5,8)]                                                        => 1
[(1,7),(2,4),(3,6),(5,8)]                                                        => 1
[(1,8),(2,4),(3,6),(5,7)]                                                        => 1
[(1,8),(2,3),(4,6),(5,7)]                                                        => 1
[(1,7),(2,3),(4,6),(5,8)]                                                        => 1
[(1,6),(2,3),(4,7),(5,8)]                                                        => 1
[(1,5),(2,3),(4,7),(6,8)]                                                        => 1
[(1,4),(2,3),(5,7),(6,8)]                                                        => 2
[(1,3),(2,4),(5,7),(6,8)]                                                        => 2
[(1,2),(3,4),(5,7),(6,8)]                                                        => 3
[(1,2),(3,4),(5,8),(6,7)]                                                        => 3
[(1,3),(2,4),(5,8),(6,7)]                                                        => 2
[(1,4),(2,3),(5,8),(6,7)]                                                        => 2
[(1,5),(2,3),(4,8),(6,7)]                                                        => 1
[(1,6),(2,3),(4,8),(5,7)]                                                        => 1
[(1,7),(2,3),(4,8),(5,6)]                                                        => 1
[(1,8),(2,3),(4,7),(5,6)]                                                        => 1
[(1,8),(2,4),(3,7),(5,6)]                                                        => 1
[(1,7),(2,4),(3,8),(5,6)]                                                        => 1
[(1,6),(2,4),(3,8),(5,7)]                                                        => 1
[(1,5),(2,4),(3,8),(6,7)]                                                        => 1
[(1,4),(2,5),(3,8),(6,7)]                                                        => 1
[(1,3),(2,5),(4,8),(6,7)]                                                        => 1
[(1,2),(3,5),(4,8),(6,7)]                                                        => 2
[(1,2),(3,6),(4,8),(5,7)]                                                        => 2
[(1,3),(2,6),(4,8),(5,7)]                                                        => 1
[(1,4),(2,6),(3,8),(5,7)]                                                        => 1
[(1,5),(2,6),(3,8),(4,7)]                                                        => 1
[(1,6),(2,5),(3,8),(4,7)]                                                        => 1
[(1,7),(2,5),(3,8),(4,6)]                                                        => 1
[(1,8),(2,5),(3,7),(4,6)]                                                        => 1
[(1,8),(2,6),(3,7),(4,5)]                                                        => 1
[(1,7),(2,6),(3,8),(4,5)]                                                        => 1
[(1,6),(2,7),(3,8),(4,5)]                                                        => 1
[(1,5),(2,7),(3,8),(4,6)]                                                        => 1
[(1,4),(2,7),(3,8),(5,6)]                                                        => 1
[(1,3),(2,7),(4,8),(5,6)]                                                        => 1
[(1,2),(3,7),(4,8),(5,6)]                                                        => 2
[(1,2),(3,8),(4,7),(5,6)]                                                        => 2
[(1,3),(2,8),(4,7),(5,6)]                                                        => 1
[(1,4),(2,8),(3,7),(5,6)]                                                        => 1
[(1,5),(2,8),(3,7),(4,6)]                                                        => 1
[(1,6),(2,8),(3,7),(4,5)]                                                        => 1
[(1,7),(2,8),(3,6),(4,5)]                                                        => 1
[(1,8),(2,7),(3,6),(4,5)]                                                        => 1
[(1,2),(3,4),(5,6),(7,8),(9,10)]                                                 => 5
[(1,3),(2,4),(5,6),(7,8),(9,10)]                                                 => 4
[(1,4),(2,3),(5,6),(7,8),(9,10)]                                                 => 4
[(1,5),(2,3),(4,6),(7,8),(9,10)]                                                 => 3
[(1,6),(2,3),(4,5),(7,8),(9,10)]                                                 => 3
[(1,7),(2,3),(4,5),(6,8),(9,10)]                                                 => 2
[(1,8),(2,3),(4,5),(6,7),(9,10)]                                                 => 2
[(1,9),(2,3),(4,5),(6,7),(8,10)]                                                 => 1
[(1,10),(2,3),(4,5),(6,7),(8,9)]                                                 => 1
[(1,10),(2,4),(3,5),(6,7),(8,9)]                                                 => 1
[(1,9),(2,4),(3,5),(6,7),(8,10)]                                                 => 1
[(1,8),(2,4),(3,5),(6,7),(9,10)]                                                 => 2
[(1,7),(2,4),(3,5),(6,8),(9,10)]                                                 => 2
[(1,6),(2,4),(3,5),(7,8),(9,10)]                                                 => 3
[(1,5),(2,4),(3,6),(7,8),(9,10)]                                                 => 3
[(1,4),(2,5),(3,6),(7,8),(9,10)]                                                 => 3
[(1,3),(2,5),(4,6),(7,8),(9,10)]                                                 => 3
[(1,2),(3,5),(4,6),(7,8),(9,10)]                                                 => 4
[(1,2),(3,6),(4,5),(7,8),(9,10)]                                                 => 4
[(1,3),(2,6),(4,5),(7,8),(9,10)]                                                 => 3
[(1,4),(2,6),(3,5),(7,8),(9,10)]                                                 => 3
[(1,5),(2,6),(3,4),(7,8),(9,10)]                                                 => 3
[(1,6),(2,5),(3,4),(7,8),(9,10)]                                                 => 3
[(1,7),(2,5),(3,4),(6,8),(9,10)]                                                 => 2
[(1,8),(2,5),(3,4),(6,7),(9,10)]                                                 => 2
[(1,9),(2,5),(3,4),(6,7),(8,10)]                                                 => 1
[(1,10),(2,5),(3,4),(6,7),(8,9)]                                                 => 1
[(1,10),(2,6),(3,4),(5,7),(8,9)]                                                 => 1
[(1,9),(2,6),(3,4),(5,7),(8,10)]                                                 => 1
[(1,8),(2,6),(3,4),(5,7),(9,10)]                                                 => 2
[(1,7),(2,6),(3,4),(5,8),(9,10)]                                                 => 2
[(1,6),(2,7),(3,4),(5,8),(9,10)]                                                 => 2
[(1,5),(2,7),(3,4),(6,8),(9,10)]                                                 => 2
[(1,4),(2,7),(3,5),(6,8),(9,10)]                                                 => 2
[(1,3),(2,7),(4,5),(6,8),(9,10)]                                                 => 2
[(1,2),(3,7),(4,5),(6,8),(9,10)]                                                 => 3
[(1,2),(3,8),(4,5),(6,7),(9,10)]                                                 => 3
[(1,3),(2,8),(4,5),(6,7),(9,10)]                                                 => 2
[(1,4),(2,8),(3,5),(6,7),(9,10)]                                                 => 2
[(1,5),(2,8),(3,4),(6,7),(9,10)]                                                 => 2
[(1,6),(2,8),(3,4),(5,7),(9,10)]                                                 => 2
[(1,7),(2,8),(3,4),(5,6),(9,10)]                                                 => 2
[(1,8),(2,7),(3,4),(5,6),(9,10)]                                                 => 2
[(1,9),(2,7),(3,4),(5,6),(8,10)]                                                 => 1
[(1,10),(2,7),(3,4),(5,6),(8,9)]                                                 => 1
[(1,10),(2,8),(3,4),(5,6),(7,9)]                                                 => 1
[(1,9),(2,8),(3,4),(5,6),(7,10)]                                                 => 1
[(1,8),(2,9),(3,4),(5,6),(7,10)]                                                 => 1
[(1,7),(2,9),(3,4),(5,6),(8,10)]                                                 => 1
[(1,6),(2,9),(3,4),(5,7),(8,10)]                                                 => 1
[(1,5),(2,9),(3,4),(6,7),(8,10)]                                                 => 1
[(1,4),(2,9),(3,5),(6,7),(8,10)]                                                 => 1
[(1,3),(2,9),(4,5),(6,7),(8,10)]                                                 => 1
[(1,2),(3,9),(4,5),(6,7),(8,10)]                                                 => 2
[(1,2),(3,10),(4,5),(6,7),(8,9)]                                                 => 2
[(1,3),(2,10),(4,5),(6,7),(8,9)]                                                 => 1
[(1,4),(2,10),(3,5),(6,7),(8,9)]                                                 => 1
[(1,5),(2,10),(3,4),(6,7),(8,9)]                                                 => 1
[(1,6),(2,10),(3,4),(5,7),(8,9)]                                                 => 1
[(1,7),(2,10),(3,4),(5,6),(8,9)]                                                 => 1
[(1,8),(2,10),(3,4),(5,6),(7,9)]                                                 => 1
[(1,9),(2,10),(3,4),(5,6),(7,8)]                                                 => 1
[(1,10),(2,9),(3,4),(5,6),(7,8)]                                                 => 1
[(1,10),(2,9),(3,5),(4,6),(7,8)]                                                 => 1
[(1,9),(2,10),(3,5),(4,6),(7,8)]                                                 => 1
[(1,8),(2,10),(3,5),(4,6),(7,9)]                                                 => 1
[(1,7),(2,10),(3,5),(4,6),(8,9)]                                                 => 1
[(1,6),(2,10),(3,5),(4,7),(8,9)]                                                 => 1
[(1,5),(2,10),(3,6),(4,7),(8,9)]                                                 => 1
[(1,4),(2,10),(3,6),(5,7),(8,9)]                                                 => 1
[(1,3),(2,10),(4,6),(5,7),(8,9)]                                                 => 1
[(1,2),(3,10),(4,6),(5,7),(8,9)]                                                 => 2
[(1,2),(3,9),(4,6),(5,7),(8,10)]                                                 => 2
[(1,3),(2,9),(4,6),(5,7),(8,10)]                                                 => 1
[(1,4),(2,9),(3,6),(5,7),(8,10)]                                                 => 1
[(1,5),(2,9),(3,6),(4,7),(8,10)]                                                 => 1
[(1,6),(2,9),(3,5),(4,7),(8,10)]                                                 => 1
[(1,7),(2,9),(3,5),(4,6),(8,10)]                                                 => 1
[(1,8),(2,9),(3,5),(4,6),(7,10)]                                                 => 1
[(1,9),(2,8),(3,5),(4,6),(7,10)]                                                 => 1
[(1,10),(2,8),(3,5),(4,6),(7,9)]                                                 => 1
[(1,10),(2,7),(3,5),(4,6),(8,9)]                                                 => 1
[(1,9),(2,7),(3,5),(4,6),(8,10)]                                                 => 1
[(1,8),(2,7),(3,5),(4,6),(9,10)]                                                 => 2
[(1,7),(2,8),(3,5),(4,6),(9,10)]                                                 => 2
[(1,6),(2,8),(3,5),(4,7),(9,10)]                                                 => 2
[(1,5),(2,8),(3,6),(4,7),(9,10)]                                                 => 2
[(1,4),(2,8),(3,6),(5,7),(9,10)]                                                 => 2
[(1,3),(2,8),(4,6),(5,7),(9,10)]                                                 => 2
[(1,2),(3,8),(4,6),(5,7),(9,10)]                                                 => 3
[(1,2),(3,7),(4,6),(5,8),(9,10)]                                                 => 3
[(1,3),(2,7),(4,6),(5,8),(9,10)]                                                 => 2
[(1,4),(2,7),(3,6),(5,8),(9,10)]                                                 => 2
[(1,5),(2,7),(3,6),(4,8),(9,10)]                                                 => 2
[(1,6),(2,7),(3,5),(4,8),(9,10)]                                                 => 2
[(1,7),(2,6),(3,5),(4,8),(9,10)]                                                 => 2
[(1,8),(2,6),(3,5),(4,7),(9,10)]                                                 => 2
[(1,9),(2,6),(3,5),(4,7),(8,10)]                                                 => 1
[(1,10),(2,6),(3,5),(4,7),(8,9)]                                                 => 1
[(1,10),(2,5),(3,6),(4,7),(8,9)]                                                 => 1
[(1,9),(2,5),(3,6),(4,7),(8,10)]                                                 => 1
[(1,8),(2,5),(3,6),(4,7),(9,10)]                                                 => 2
[(1,7),(2,5),(3,6),(4,8),(9,10)]                                                 => 2
[(1,6),(2,5),(3,7),(4,8),(9,10)]                                                 => 2
[(1,5),(2,6),(3,7),(4,8),(9,10)]                                                 => 2
[(1,4),(2,6),(3,7),(5,8),(9,10)]                                                 => 2
[(1,3),(2,6),(4,7),(5,8),(9,10)]                                                 => 2
[(1,2),(3,6),(4,7),(5,8),(9,10)]                                                 => 3
[(1,2),(3,5),(4,7),(6,8),(9,10)]                                                 => 3
[(1,3),(2,5),(4,7),(6,8),(9,10)]                                                 => 2
[(1,4),(2,5),(3,7),(6,8),(9,10)]                                                 => 2
[(1,5),(2,4),(3,7),(6,8),(9,10)]                                                 => 2
[(1,6),(2,4),(3,7),(5,8),(9,10)]                                                 => 2
[(1,7),(2,4),(3,6),(5,8),(9,10)]                                                 => 2
[(1,8),(2,4),(3,6),(5,7),(9,10)]                                                 => 2
[(1,9),(2,4),(3,6),(5,7),(8,10)]                                                 => 1
[(1,10),(2,4),(3,6),(5,7),(8,9)]                                                 => 1
[(1,10),(2,3),(4,6),(5,7),(8,9)]                                                 => 1
[(1,9),(2,3),(4,6),(5,7),(8,10)]                                                 => 1
[(1,8),(2,3),(4,6),(5,7),(9,10)]                                                 => 2
[(1,7),(2,3),(4,6),(5,8),(9,10)]                                                 => 2
[(1,6),(2,3),(4,7),(5,8),(9,10)]                                                 => 2
[(1,5),(2,3),(4,7),(6,8),(9,10)]                                                 => 2
[(1,4),(2,3),(5,7),(6,8),(9,10)]                                                 => 3
[(1,3),(2,4),(5,7),(6,8),(9,10)]                                                 => 3
[(1,2),(3,4),(5,7),(6,8),(9,10)]                                                 => 4
[(1,2),(3,4),(5,8),(6,7),(9,10)]                                                 => 4
[(1,3),(2,4),(5,8),(6,7),(9,10)]                                                 => 3
[(1,4),(2,3),(5,8),(6,7),(9,10)]                                                 => 3
[(1,5),(2,3),(4,8),(6,7),(9,10)]                                                 => 2
[(1,6),(2,3),(4,8),(5,7),(9,10)]                                                 => 2
[(1,7),(2,3),(4,8),(5,6),(9,10)]                                                 => 2
[(1,8),(2,3),(4,7),(5,6),(9,10)]                                                 => 2
[(1,9),(2,3),(4,7),(5,6),(8,10)]                                                 => 1
[(1,10),(2,3),(4,7),(5,6),(8,9)]                                                 => 1
[(1,10),(2,4),(3,7),(5,6),(8,9)]                                                 => 1
[(1,9),(2,4),(3,7),(5,6),(8,10)]                                                 => 1
[(1,8),(2,4),(3,7),(5,6),(9,10)]                                                 => 2
[(1,7),(2,4),(3,8),(5,6),(9,10)]                                                 => 2
[(1,6),(2,4),(3,8),(5,7),(9,10)]                                                 => 2
[(1,5),(2,4),(3,8),(6,7),(9,10)]                                                 => 2
[(1,4),(2,5),(3,8),(6,7),(9,10)]                                                 => 2
[(1,3),(2,5),(4,8),(6,7),(9,10)]                                                 => 2
[(1,2),(3,5),(4,8),(6,7),(9,10)]                                                 => 3
[(1,2),(3,6),(4,8),(5,7),(9,10)]                                                 => 3
[(1,3),(2,6),(4,8),(5,7),(9,10)]                                                 => 2
[(1,4),(2,6),(3,8),(5,7),(9,10)]                                                 => 2
[(1,5),(2,6),(3,8),(4,7),(9,10)]                                                 => 2
[(1,6),(2,5),(3,8),(4,7),(9,10)]                                                 => 2
[(1,7),(2,5),(3,8),(4,6),(9,10)]                                                 => 2
[(1,8),(2,5),(3,7),(4,6),(9,10)]                                                 => 2
[(1,9),(2,5),(3,7),(4,6),(8,10)]                                                 => 1
[(1,10),(2,5),(3,7),(4,6),(8,9)]                                                 => 1
[(1,10),(2,6),(3,7),(4,5),(8,9)]                                                 => 1
[(1,9),(2,6),(3,7),(4,5),(8,10)]                                                 => 1
[(1,8),(2,6),(3,7),(4,5),(9,10)]                                                 => 2
[(1,7),(2,6),(3,8),(4,5),(9,10)]                                                 => 2
[(1,6),(2,7),(3,8),(4,5),(9,10)]                                                 => 2
[(1,5),(2,7),(3,8),(4,6),(9,10)]                                                 => 2
[(1,4),(2,7),(3,8),(5,6),(9,10)]                                                 => 2
[(1,3),(2,7),(4,8),(5,6),(9,10)]                                                 => 2
[(1,2),(3,7),(4,8),(5,6),(9,10)]                                                 => 3
[(1,2),(3,8),(4,7),(5,6),(9,10)]                                                 => 3
[(1,3),(2,8),(4,7),(5,6),(9,10)]                                                 => 2
[(1,4),(2,8),(3,7),(5,6),(9,10)]                                                 => 2
[(1,5),(2,8),(3,7),(4,6),(9,10)]                                                 => 2
[(1,6),(2,8),(3,7),(4,5),(9,10)]                                                 => 2
[(1,7),(2,8),(3,6),(4,5),(9,10)]                                                 => 2
[(1,8),(2,7),(3,6),(4,5),(9,10)]                                                 => 2
[(1,9),(2,7),(3,6),(4,5),(8,10)]                                                 => 1
[(1,10),(2,7),(3,6),(4,5),(8,9)]                                                 => 1
[(1,10),(2,8),(3,6),(4,5),(7,9)]                                                 => 1
[(1,9),(2,8),(3,6),(4,5),(7,10)]                                                 => 1
[(1,8),(2,9),(3,6),(4,5),(7,10)]                                                 => 1
[(1,7),(2,9),(3,6),(4,5),(8,10)]                                                 => 1
[(1,6),(2,9),(3,7),(4,5),(8,10)]                                                 => 1
[(1,5),(2,9),(3,7),(4,6),(8,10)]                                                 => 1
[(1,4),(2,9),(3,7),(5,6),(8,10)]                                                 => 1
[(1,3),(2,9),(4,7),(5,6),(8,10)]                                                 => 1
[(1,2),(3,9),(4,7),(5,6),(8,10)]                                                 => 2
[(1,2),(3,10),(4,7),(5,6),(8,9)]                                                 => 2
[(1,3),(2,10),(4,7),(5,6),(8,9)]                                                 => 1
[(1,4),(2,10),(3,7),(5,6),(8,9)]                                                 => 1
[(1,5),(2,10),(3,7),(4,6),(8,9)]                                                 => 1
[(1,6),(2,10),(3,7),(4,5),(8,9)]                                                 => 1
[(1,7),(2,10),(3,6),(4,5),(8,9)]                                                 => 1
[(1,8),(2,10),(3,6),(4,5),(7,9)]                                                 => 1
[(1,9),(2,10),(3,6),(4,5),(7,8)]                                                 => 1
[(1,10),(2,9),(3,6),(4,5),(7,8)]                                                 => 1
[(1,10),(2,9),(3,7),(4,5),(6,8)]                                                 => 1
[(1,9),(2,10),(3,7),(4,5),(6,8)]                                                 => 1
[(1,8),(2,10),(3,7),(4,5),(6,9)]                                                 => 1
[(1,7),(2,10),(3,8),(4,5),(6,9)]                                                 => 1
[(1,6),(2,10),(3,8),(4,5),(7,9)]                                                 => 1
[(1,5),(2,10),(3,8),(4,6),(7,9)]                                                 => 1
[(1,4),(2,10),(3,8),(5,6),(7,9)]                                                 => 1
[(1,3),(2,10),(4,8),(5,6),(7,9)]                                                 => 1
[(1,2),(3,10),(4,8),(5,6),(7,9)]                                                 => 2
[(1,2),(3,9),(4,8),(5,6),(7,10)]                                                 => 2
[(1,3),(2,9),(4,8),(5,6),(7,10)]                                                 => 1
[(1,4),(2,9),(3,8),(5,6),(7,10)]                                                 => 1
[(1,5),(2,9),(3,8),(4,6),(7,10)]                                                 => 1
[(1,6),(2,9),(3,8),(4,5),(7,10)]                                                 => 1
[(1,7),(2,9),(3,8),(4,5),(6,10)]                                                 => 1
[(1,8),(2,9),(3,7),(4,5),(6,10)]                                                 => 1
[(1,9),(2,8),(3,7),(4,5),(6,10)]                                                 => 1
[(1,10),(2,8),(3,7),(4,5),(6,9)]                                                 => 1
[(1,10),(2,7),(3,8),(4,5),(6,9)]                                                 => 1
[(1,9),(2,7),(3,8),(4,5),(6,10)]                                                 => 1
[(1,8),(2,7),(3,9),(4,5),(6,10)]                                                 => 1
[(1,7),(2,8),(3,9),(4,5),(6,10)]                                                 => 1
[(1,6),(2,8),(3,9),(4,5),(7,10)]                                                 => 1
[(1,5),(2,8),(3,9),(4,6),(7,10)]                                                 => 1
[(1,4),(2,8),(3,9),(5,6),(7,10)]                                                 => 1
[(1,3),(2,8),(4,9),(5,6),(7,10)]                                                 => 1
[(1,2),(3,8),(4,9),(5,6),(7,10)]                                                 => 2
[(1,2),(3,7),(4,9),(5,6),(8,10)]                                                 => 2
[(1,3),(2,7),(4,9),(5,6),(8,10)]                                                 => 1
[(1,4),(2,7),(3,9),(5,6),(8,10)]                                                 => 1
[(1,5),(2,7),(3,9),(4,6),(8,10)]                                                 => 1
[(1,6),(2,7),(3,9),(4,5),(8,10)]                                                 => 1
[(1,7),(2,6),(3,9),(4,5),(8,10)]                                                 => 1
[(1,8),(2,6),(3,9),(4,5),(7,10)]                                                 => 1
[(1,9),(2,6),(3,8),(4,5),(7,10)]                                                 => 1
[(1,10),(2,6),(3,8),(4,5),(7,9)]                                                 => 1
[(1,10),(2,5),(3,8),(4,6),(7,9)]                                                 => 1
[(1,9),(2,5),(3,8),(4,6),(7,10)]                                                 => 1
[(1,8),(2,5),(3,9),(4,6),(7,10)]                                                 => 1
[(1,7),(2,5),(3,9),(4,6),(8,10)]                                                 => 1
[(1,6),(2,5),(3,9),(4,7),(8,10)]                                                 => 1
[(1,5),(2,6),(3,9),(4,7),(8,10)]                                                 => 1
[(1,4),(2,6),(3,9),(5,7),(8,10)]                                                 => 1
[(1,3),(2,6),(4,9),(5,7),(8,10)]                                                 => 1
[(1,2),(3,6),(4,9),(5,7),(8,10)]                                                 => 2
[(1,2),(3,5),(4,9),(6,7),(8,10)]                                                 => 2
[(1,3),(2,5),(4,9),(6,7),(8,10)]                                                 => 1
[(1,4),(2,5),(3,9),(6,7),(8,10)]                                                 => 1
[(1,5),(2,4),(3,9),(6,7),(8,10)]                                                 => 1
[(1,6),(2,4),(3,9),(5,7),(8,10)]                                                 => 1
[(1,7),(2,4),(3,9),(5,6),(8,10)]                                                 => 1
[(1,8),(2,4),(3,9),(5,6),(7,10)]                                                 => 1
[(1,9),(2,4),(3,8),(5,6),(7,10)]                                                 => 1
[(1,10),(2,4),(3,8),(5,6),(7,9)]                                                 => 1
[(1,10),(2,3),(4,8),(5,6),(7,9)]                                                 => 1
[(1,9),(2,3),(4,8),(5,6),(7,10)]                                                 => 1
[(1,8),(2,3),(4,9),(5,6),(7,10)]                                                 => 1
[(1,7),(2,3),(4,9),(5,6),(8,10)]                                                 => 1
[(1,6),(2,3),(4,9),(5,7),(8,10)]                                                 => 1
[(1,5),(2,3),(4,9),(6,7),(8,10)]                                                 => 1
[(1,4),(2,3),(5,9),(6,7),(8,10)]                                                 => 2
[(1,3),(2,4),(5,9),(6,7),(8,10)]                                                 => 2
[(1,2),(3,4),(5,9),(6,7),(8,10)]                                                 => 3
[(1,2),(3,4),(5,10),(6,7),(8,9)]                                                 => 3
[(1,3),(2,4),(5,10),(6,7),(8,9)]                                                 => 2
[(1,4),(2,3),(5,10),(6,7),(8,9)]                                                 => 2
[(1,5),(2,3),(4,10),(6,7),(8,9)]                                                 => 1
[(1,6),(2,3),(4,10),(5,7),(8,9)]                                                 => 1
[(1,7),(2,3),(4,10),(5,6),(8,9)]                                                 => 1
[(1,8),(2,3),(4,10),(5,6),(7,9)]                                                 => 1
[(1,9),(2,3),(4,10),(5,6),(7,8)]                                                 => 1
[(1,10),(2,3),(4,9),(5,6),(7,8)]                                                 => 1
[(1,10),(2,4),(3,9),(5,6),(7,8)]                                                 => 1
[(1,9),(2,4),(3,10),(5,6),(7,8)]                                                 => 1
[(1,8),(2,4),(3,10),(5,6),(7,9)]                                                 => 1
[(1,7),(2,4),(3,10),(5,6),(8,9)]                                                 => 1
[(1,6),(2,4),(3,10),(5,7),(8,9)]                                                 => 1
[(1,5),(2,4),(3,10),(6,7),(8,9)]                                                 => 1
[(1,4),(2,5),(3,10),(6,7),(8,9)]                                                 => 1
[(1,3),(2,5),(4,10),(6,7),(8,9)]                                                 => 1
[(1,2),(3,5),(4,10),(6,7),(8,9)]                                                 => 2
[(1,2),(3,6),(4,10),(5,7),(8,9)]                                                 => 2
[(1,3),(2,6),(4,10),(5,7),(8,9)]                                                 => 1
[(1,4),(2,6),(3,10),(5,7),(8,9)]                                                 => 1
[(1,5),(2,6),(3,10),(4,7),(8,9)]                                                 => 1
[(1,6),(2,5),(3,10),(4,7),(8,9)]                                                 => 1
[(1,7),(2,5),(3,10),(4,6),(8,9)]                                                 => 1
[(1,8),(2,5),(3,10),(4,6),(7,9)]                                                 => 1
[(1,9),(2,5),(3,10),(4,6),(7,8)]                                                 => 1
[(1,10),(2,5),(3,9),(4,6),(7,8)]                                                 => 1
[(1,10),(2,6),(3,9),(4,5),(7,8)]                                                 => 1
[(1,9),(2,6),(3,10),(4,5),(7,8)]                                                 => 1
[(1,8),(2,6),(3,10),(4,5),(7,9)]                                                 => 1
[(1,7),(2,6),(3,10),(4,5),(8,9)]                                                 => 1
[(1,6),(2,7),(3,10),(4,5),(8,9)]                                                 => 1
[(1,5),(2,7),(3,10),(4,6),(8,9)]                                                 => 1
[(1,4),(2,7),(3,10),(5,6),(8,9)]                                                 => 1
[(1,3),(2,7),(4,10),(5,6),(8,9)]                                                 => 1
[(1,2),(3,7),(4,10),(5,6),(8,9)]                                                 => 2
[(1,2),(3,8),(4,10),(5,6),(7,9)]                                                 => 2
[(1,3),(2,8),(4,10),(5,6),(7,9)]                                                 => 1
[(1,4),(2,8),(3,10),(5,6),(7,9)]                                                 => 1
[(1,5),(2,8),(3,10),(4,6),(7,9)]                                                 => 1
[(1,6),(2,8),(3,10),(4,5),(7,9)]                                                 => 1
[(1,7),(2,8),(3,10),(4,5),(6,9)]                                                 => 1
[(1,8),(2,7),(3,10),(4,5),(6,9)]                                                 => 1
[(1,9),(2,7),(3,10),(4,5),(6,8)]                                                 => 1
[(1,10),(2,7),(3,9),(4,5),(6,8)]                                                 => 1
[(1,10),(2,8),(3,9),(4,5),(6,7)]                                                 => 1
[(1,9),(2,8),(3,10),(4,5),(6,7)]                                                 => 1
[(1,8),(2,9),(3,10),(4,5),(6,7)]                                                 => 1
[(1,7),(2,9),(3,10),(4,5),(6,8)]                                                 => 1
[(1,6),(2,9),(3,10),(4,5),(7,8)]                                                 => 1
[(1,5),(2,9),(3,10),(4,6),(7,8)]                                                 => 1
[(1,4),(2,9),(3,10),(5,6),(7,8)]                                                 => 1
[(1,3),(2,9),(4,10),(5,6),(7,8)]                                                 => 1
[(1,2),(3,9),(4,10),(5,6),(7,8)]                                                 => 2
[(1,2),(3,10),(4,9),(5,6),(7,8)]                                                 => 2
[(1,3),(2,10),(4,9),(5,6),(7,8)]                                                 => 1
[(1,4),(2,10),(3,9),(5,6),(7,8)]                                                 => 1
[(1,5),(2,10),(3,9),(4,6),(7,8)]                                                 => 1
[(1,6),(2,10),(3,9),(4,5),(7,8)]                                                 => 1
[(1,7),(2,10),(3,9),(4,5),(6,8)]                                                 => 1
[(1,8),(2,10),(3,9),(4,5),(6,7)]                                                 => 1
[(1,9),(2,10),(3,8),(4,5),(6,7)]                                                 => 1
[(1,10),(2,9),(3,8),(4,5),(6,7)]                                                 => 1
[(1,10),(2,9),(3,8),(4,6),(5,7)]                                                 => 1
[(1,9),(2,10),(3,8),(4,6),(5,7)]                                                 => 1
[(1,8),(2,10),(3,9),(4,6),(5,7)]                                                 => 1
[(1,7),(2,10),(3,9),(4,6),(5,8)]                                                 => 1
[(1,6),(2,10),(3,9),(4,7),(5,8)]                                                 => 1
[(1,5),(2,10),(3,9),(4,7),(6,8)]                                                 => 1
[(1,4),(2,10),(3,9),(5,7),(6,8)]                                                 => 1
[(1,3),(2,10),(4,9),(5,7),(6,8)]                                                 => 1
[(1,2),(3,10),(4,9),(5,7),(6,8)]                                                 => 2
[(1,2),(3,9),(4,10),(5,7),(6,8)]                                                 => 2
[(1,3),(2,9),(4,10),(5,7),(6,8)]                                                 => 1
[(1,4),(2,9),(3,10),(5,7),(6,8)]                                                 => 1
[(1,5),(2,9),(3,10),(4,7),(6,8)]                                                 => 1
[(1,6),(2,9),(3,10),(4,7),(5,8)]                                                 => 1
[(1,7),(2,9),(3,10),(4,6),(5,8)]                                                 => 1
[(1,8),(2,9),(3,10),(4,6),(5,7)]                                                 => 1
[(1,9),(2,8),(3,10),(4,6),(5,7)]                                                 => 1
[(1,10),(2,8),(3,9),(4,6),(5,7)]                                                 => 1
[(1,10),(2,7),(3,9),(4,6),(5,8)]                                                 => 1
[(1,9),(2,7),(3,10),(4,6),(5,8)]                                                 => 1
[(1,8),(2,7),(3,10),(4,6),(5,9)]                                                 => 1
[(1,7),(2,8),(3,10),(4,6),(5,9)]                                                 => 1
[(1,6),(2,8),(3,10),(4,7),(5,9)]                                                 => 1
[(1,5),(2,8),(3,10),(4,7),(6,9)]                                                 => 1
[(1,4),(2,8),(3,10),(5,7),(6,9)]                                                 => 1
[(1,3),(2,8),(4,10),(5,7),(6,9)]                                                 => 1
[(1,2),(3,8),(4,10),(5,7),(6,9)]                                                 => 2
[(1,2),(3,7),(4,10),(5,8),(6,9)]                                                 => 2
[(1,3),(2,7),(4,10),(5,8),(6,9)]                                                 => 1
[(1,4),(2,7),(3,10),(5,8),(6,9)]                                                 => 1
[(1,5),(2,7),(3,10),(4,8),(6,9)]                                                 => 1
[(1,6),(2,7),(3,10),(4,8),(5,9)]                                                 => 1
[(1,7),(2,6),(3,10),(4,8),(5,9)]                                                 => 1
[(1,8),(2,6),(3,10),(4,7),(5,9)]                                                 => 1
[(1,9),(2,6),(3,10),(4,7),(5,8)]                                                 => 1
[(1,10),(2,6),(3,9),(4,7),(5,8)]                                                 => 1
[(1,10),(2,5),(3,9),(4,7),(6,8)]                                                 => 1
[(1,9),(2,5),(3,10),(4,7),(6,8)]                                                 => 1
[(1,8),(2,5),(3,10),(4,7),(6,9)]                                                 => 1
[(1,7),(2,5),(3,10),(4,8),(6,9)]                                                 => 1
[(1,6),(2,5),(3,10),(4,8),(7,9)]                                                 => 1
[(1,5),(2,6),(3,10),(4,8),(7,9)]                                                 => 1
[(1,4),(2,6),(3,10),(5,8),(7,9)]                                                 => 1
[(1,3),(2,6),(4,10),(5,8),(7,9)]                                                 => 1
[(1,2),(3,6),(4,10),(5,8),(7,9)]                                                 => 2
[(1,2),(3,5),(4,10),(6,8),(7,9)]                                                 => 2
[(1,3),(2,5),(4,10),(6,8),(7,9)]                                                 => 1
[(1,4),(2,5),(3,10),(6,8),(7,9)]                                                 => 1
[(1,5),(2,4),(3,10),(6,8),(7,9)]                                                 => 1
[(1,6),(2,4),(3,10),(5,8),(7,9)]                                                 => 1
[(1,7),(2,4),(3,10),(5,8),(6,9)]                                                 => 1
[(1,8),(2,4),(3,10),(5,7),(6,9)]                                                 => 1
[(1,9),(2,4),(3,10),(5,7),(6,8)]                                                 => 1
[(1,10),(2,4),(3,9),(5,7),(6,8)]                                                 => 1
[(1,10),(2,3),(4,9),(5,7),(6,8)]                                                 => 1
[(1,9),(2,3),(4,10),(5,7),(6,8)]                                                 => 1
[(1,8),(2,3),(4,10),(5,7),(6,9)]                                                 => 1
[(1,7),(2,3),(4,10),(5,8),(6,9)]                                                 => 1
[(1,6),(2,3),(4,10),(5,8),(7,9)]                                                 => 1
[(1,5),(2,3),(4,10),(6,8),(7,9)]                                                 => 1
[(1,4),(2,3),(5,10),(6,8),(7,9)]                                                 => 2
[(1,3),(2,4),(5,10),(6,8),(7,9)]                                                 => 2
[(1,2),(3,4),(5,10),(6,8),(7,9)]                                                 => 3
[(1,2),(3,4),(5,9),(6,8),(7,10)]                                                 => 3
[(1,3),(2,4),(5,9),(6,8),(7,10)]                                                 => 2
[(1,4),(2,3),(5,9),(6,8),(7,10)]                                                 => 2
[(1,5),(2,3),(4,9),(6,8),(7,10)]                                                 => 1
[(1,6),(2,3),(4,9),(5,8),(7,10)]                                                 => 1
[(1,7),(2,3),(4,9),(5,8),(6,10)]                                                 => 1
[(1,8),(2,3),(4,9),(5,7),(6,10)]                                                 => 1
[(1,9),(2,3),(4,8),(5,7),(6,10)]                                                 => 1
[(1,10),(2,3),(4,8),(5,7),(6,9)]                                                 => 1
[(1,10),(2,4),(3,8),(5,7),(6,9)]                                                 => 1
[(1,9),(2,4),(3,8),(5,7),(6,10)]                                                 => 1
[(1,8),(2,4),(3,9),(5,7),(6,10)]                                                 => 1
[(1,7),(2,4),(3,9),(5,8),(6,10)]                                                 => 1
[(1,6),(2,4),(3,9),(5,8),(7,10)]                                                 => 1
[(1,5),(2,4),(3,9),(6,8),(7,10)]                                                 => 1
[(1,4),(2,5),(3,9),(6,8),(7,10)]                                                 => 1
[(1,3),(2,5),(4,9),(6,8),(7,10)]                                                 => 1
[(1,2),(3,5),(4,9),(6,8),(7,10)]                                                 => 2
[(1,2),(3,6),(4,9),(5,8),(7,10)]                                                 => 2
[(1,3),(2,6),(4,9),(5,8),(7,10)]                                                 => 1
[(1,4),(2,6),(3,9),(5,8),(7,10)]                                                 => 1
[(1,5),(2,6),(3,9),(4,8),(7,10)]                                                 => 1
[(1,6),(2,5),(3,9),(4,8),(7,10)]                                                 => 1
[(1,7),(2,5),(3,9),(4,8),(6,10)]                                                 => 1
[(1,8),(2,5),(3,9),(4,7),(6,10)]                                                 => 1
[(1,9),(2,5),(3,8),(4,7),(6,10)]                                                 => 1
[(1,10),(2,5),(3,8),(4,7),(6,9)]                                                 => 1
[(1,10),(2,6),(3,8),(4,7),(5,9)]                                                 => 1
[(1,9),(2,6),(3,8),(4,7),(5,10)]                                                 => 1
[(1,8),(2,6),(3,9),(4,7),(5,10)]                                                 => 1
[(1,7),(2,6),(3,9),(4,8),(5,10)]                                                 => 1
[(1,6),(2,7),(3,9),(4,8),(5,10)]                                                 => 1
[(1,5),(2,7),(3,9),(4,8),(6,10)]                                                 => 1
[(1,4),(2,7),(3,9),(5,8),(6,10)]                                                 => 1
[(1,3),(2,7),(4,9),(5,8),(6,10)]                                                 => 1
[(1,2),(3,7),(4,9),(5,8),(6,10)]                                                 => 2
[(1,2),(3,8),(4,9),(5,7),(6,10)]                                                 => 2
[(1,3),(2,8),(4,9),(5,7),(6,10)]                                                 => 1
[(1,4),(2,8),(3,9),(5,7),(6,10)]                                                 => 1
[(1,5),(2,8),(3,9),(4,7),(6,10)]                                                 => 1
[(1,6),(2,8),(3,9),(4,7),(5,10)]                                                 => 1
[(1,7),(2,8),(3,9),(4,6),(5,10)]                                                 => 1
[(1,8),(2,7),(3,9),(4,6),(5,10)]                                                 => 1
[(1,9),(2,7),(3,8),(4,6),(5,10)]                                                 => 1
[(1,10),(2,7),(3,8),(4,6),(5,9)]                                                 => 1
[(1,10),(2,8),(3,7),(4,6),(5,9)]                                                 => 1
[(1,9),(2,8),(3,7),(4,6),(5,10)]                                                 => 1
[(1,8),(2,9),(3,7),(4,6),(5,10)]                                                 => 1
[(1,7),(2,9),(3,8),(4,6),(5,10)]                                                 => 1
[(1,6),(2,9),(3,8),(4,7),(5,10)]                                                 => 1
[(1,5),(2,9),(3,8),(4,7),(6,10)]                                                 => 1
[(1,4),(2,9),(3,8),(5,7),(6,10)]                                                 => 1
[(1,3),(2,9),(4,8),(5,7),(6,10)]                                                 => 1
[(1,2),(3,9),(4,8),(5,7),(6,10)]                                                 => 2
[(1,2),(3,10),(4,8),(5,7),(6,9)]                                                 => 2
[(1,3),(2,10),(4,8),(5,7),(6,9)]                                                 => 1
[(1,4),(2,10),(3,8),(5,7),(6,9)]                                                 => 1
[(1,5),(2,10),(3,8),(4,7),(6,9)]                                                 => 1
[(1,6),(2,10),(3,8),(4,7),(5,9)]                                                 => 1
[(1,7),(2,10),(3,8),(4,6),(5,9)]                                                 => 1
[(1,8),(2,10),(3,7),(4,6),(5,9)]                                                 => 1
[(1,9),(2,10),(3,7),(4,6),(5,8)]                                                 => 1
[(1,10),(2,9),(3,7),(4,6),(5,8)]                                                 => 1
[(1,10),(2,9),(3,6),(4,7),(5,8)]                                                 => 1
[(1,9),(2,10),(3,6),(4,7),(5,8)]                                                 => 1
[(1,8),(2,10),(3,6),(4,7),(5,9)]                                                 => 1
[(1,7),(2,10),(3,6),(4,8),(5,9)]                                                 => 1
[(1,6),(2,10),(3,7),(4,8),(5,9)]                                                 => 1
[(1,5),(2,10),(3,7),(4,8),(6,9)]                                                 => 1
[(1,4),(2,10),(3,7),(5,8),(6,9)]                                                 => 1
[(1,3),(2,10),(4,7),(5,8),(6,9)]                                                 => 1
[(1,2),(3,10),(4,7),(5,8),(6,9)]                                                 => 2
[(1,2),(3,9),(4,7),(5,8),(6,10)]                                                 => 2
[(1,3),(2,9),(4,7),(5,8),(6,10)]                                                 => 1
[(1,4),(2,9),(3,7),(5,8),(6,10)]                                                 => 1
[(1,5),(2,9),(3,7),(4,8),(6,10)]                                                 => 1
[(1,6),(2,9),(3,7),(4,8),(5,10)]                                                 => 1
[(1,7),(2,9),(3,6),(4,8),(5,10)]                                                 => 1
[(1,8),(2,9),(3,6),(4,7),(5,10)]                                                 => 1
[(1,9),(2,8),(3,6),(4,7),(5,10)]                                                 => 1
[(1,10),(2,8),(3,6),(4,7),(5,9)]                                                 => 1
[(1,10),(2,7),(3,6),(4,8),(5,9)]                                                 => 1
[(1,9),(2,7),(3,6),(4,8),(5,10)]                                                 => 1
[(1,8),(2,7),(3,6),(4,9),(5,10)]                                                 => 1
[(1,7),(2,8),(3,6),(4,9),(5,10)]                                                 => 1
[(1,6),(2,8),(3,7),(4,9),(5,10)]                                                 => 1
[(1,5),(2,8),(3,7),(4,9),(6,10)]                                                 => 1
[(1,4),(2,8),(3,7),(5,9),(6,10)]                                                 => 1
[(1,3),(2,8),(4,7),(5,9),(6,10)]                                                 => 1
[(1,2),(3,8),(4,7),(5,9),(6,10)]                                                 => 2
[(1,2),(3,7),(4,8),(5,9),(6,10)]                                                 => 2
[(1,3),(2,7),(4,8),(5,9),(6,10)]                                                 => 1
[(1,4),(2,7),(3,8),(5,9),(6,10)]                                                 => 1
[(1,5),(2,7),(3,8),(4,9),(6,10)]                                                 => 1
[(1,6),(2,7),(3,8),(4,9),(5,10)]                                                 => 1
[(1,7),(2,6),(3,8),(4,9),(5,10)]                                                 => 1
[(1,8),(2,6),(3,7),(4,9),(5,10)]                                                 => 1
[(1,9),(2,6),(3,7),(4,8),(5,10)]                                                 => 1
[(1,10),(2,6),(3,7),(4,8),(5,9)]                                                 => 1
[(1,10),(2,5),(3,7),(4,8),(6,9)]                                                 => 1
[(1,9),(2,5),(3,7),(4,8),(6,10)]                                                 => 1
[(1,8),(2,5),(3,7),(4,9),(6,10)]                                                 => 1
[(1,7),(2,5),(3,8),(4,9),(6,10)]                                                 => 1
[(1,6),(2,5),(3,8),(4,9),(7,10)]                                                 => 1
[(1,5),(2,6),(3,8),(4,9),(7,10)]                                                 => 1
[(1,4),(2,6),(3,8),(5,9),(7,10)]                                                 => 1
[(1,3),(2,6),(4,8),(5,9),(7,10)]                                                 => 1
[(1,2),(3,6),(4,8),(5,9),(7,10)]                                                 => 2
[(1,2),(3,5),(4,8),(6,9),(7,10)]                                                 => 2
[(1,3),(2,5),(4,8),(6,9),(7,10)]                                                 => 1
[(1,4),(2,5),(3,8),(6,9),(7,10)]                                                 => 1
[(1,5),(2,4),(3,8),(6,9),(7,10)]                                                 => 1
[(1,6),(2,4),(3,8),(5,9),(7,10)]                                                 => 1
[(1,7),(2,4),(3,8),(5,9),(6,10)]                                                 => 1
[(1,8),(2,4),(3,7),(5,9),(6,10)]                                                 => 1
[(1,9),(2,4),(3,7),(5,8),(6,10)]                                                 => 1
[(1,10),(2,4),(3,7),(5,8),(6,9)]                                                 => 1
[(1,10),(2,3),(4,7),(5,8),(6,9)]                                                 => 1
[(1,9),(2,3),(4,7),(5,8),(6,10)]                                                 => 1
[(1,8),(2,3),(4,7),(5,9),(6,10)]                                                 => 1
[(1,7),(2,3),(4,8),(5,9),(6,10)]                                                 => 1
[(1,6),(2,3),(4,8),(5,9),(7,10)]                                                 => 1
[(1,5),(2,3),(4,8),(6,9),(7,10)]                                                 => 1
[(1,4),(2,3),(5,8),(6,9),(7,10)]                                                 => 2
[(1,3),(2,4),(5,8),(6,9),(7,10)]                                                 => 2
[(1,2),(3,4),(5,8),(6,9),(7,10)]                                                 => 3
[(1,2),(3,4),(5,7),(6,9),(8,10)]                                                 => 3
[(1,3),(2,4),(5,7),(6,9),(8,10)]                                                 => 2
[(1,4),(2,3),(5,7),(6,9),(8,10)]                                                 => 2
[(1,5),(2,3),(4,7),(6,9),(8,10)]                                                 => 1
[(1,6),(2,3),(4,7),(5,9),(8,10)]                                                 => 1
[(1,7),(2,3),(4,6),(5,9),(8,10)]                                                 => 1
[(1,8),(2,3),(4,6),(5,9),(7,10)]                                                 => 1
[(1,9),(2,3),(4,6),(5,8),(7,10)]                                                 => 1
[(1,10),(2,3),(4,6),(5,8),(7,9)]                                                 => 1
[(1,10),(2,4),(3,6),(5,8),(7,9)]                                                 => 1
[(1,9),(2,4),(3,6),(5,8),(7,10)]                                                 => 1
[(1,8),(2,4),(3,6),(5,9),(7,10)]                                                 => 1
[(1,7),(2,4),(3,6),(5,9),(8,10)]                                                 => 1
[(1,6),(2,4),(3,7),(5,9),(8,10)]                                                 => 1
[(1,5),(2,4),(3,7),(6,9),(8,10)]                                                 => 1
[(1,4),(2,5),(3,7),(6,9),(8,10)]                                                 => 1
[(1,3),(2,5),(4,7),(6,9),(8,10)]                                                 => 1
[(1,2),(3,5),(4,7),(6,9),(8,10)]                                                 => 2
[(1,2),(3,6),(4,7),(5,9),(8,10)]                                                 => 2
[(1,3),(2,6),(4,7),(5,9),(8,10)]                                                 => 1
[(1,4),(2,6),(3,7),(5,9),(8,10)]                                                 => 1
[(1,5),(2,6),(3,7),(4,9),(8,10)]                                                 => 1
[(1,6),(2,5),(3,7),(4,9),(8,10)]                                                 => 1
[(1,7),(2,5),(3,6),(4,9),(8,10)]                                                 => 1
[(1,8),(2,5),(3,6),(4,9),(7,10)]                                                 => 1
[(1,9),(2,5),(3,6),(4,8),(7,10)]                                                 => 1
[(1,10),(2,5),(3,6),(4,8),(7,9)]                                                 => 1
[(1,10),(2,6),(3,5),(4,8),(7,9)]                                                 => 1
[(1,9),(2,6),(3,5),(4,8),(7,10)]                                                 => 1
[(1,8),(2,6),(3,5),(4,9),(7,10)]                                                 => 1
[(1,7),(2,6),(3,5),(4,9),(8,10)]                                                 => 1
[(1,6),(2,7),(3,5),(4,9),(8,10)]                                                 => 1
[(1,5),(2,7),(3,6),(4,9),(8,10)]                                                 => 1
[(1,4),(2,7),(3,6),(5,9),(8,10)]                                                 => 1
[(1,3),(2,7),(4,6),(5,9),(8,10)]                                                 => 1
[(1,2),(3,7),(4,6),(5,9),(8,10)]                                                 => 2
[(1,2),(3,8),(4,6),(5,9),(7,10)]                                                 => 2
[(1,3),(2,8),(4,6),(5,9),(7,10)]                                                 => 1
[(1,4),(2,8),(3,6),(5,9),(7,10)]                                                 => 1
[(1,5),(2,8),(3,6),(4,9),(7,10)]                                                 => 1
[(1,6),(2,8),(3,5),(4,9),(7,10)]                                                 => 1
[(1,7),(2,8),(3,5),(4,9),(6,10)]                                                 => 1
[(1,8),(2,7),(3,5),(4,9),(6,10)]                                                 => 1
[(1,9),(2,7),(3,5),(4,8),(6,10)]                                                 => 1
[(1,10),(2,7),(3,5),(4,8),(6,9)]                                                 => 1
[(1,10),(2,8),(3,5),(4,7),(6,9)]                                                 => 1
[(1,9),(2,8),(3,5),(4,7),(6,10)]                                                 => 1
[(1,8),(2,9),(3,5),(4,7),(6,10)]                                                 => 1
[(1,7),(2,9),(3,5),(4,8),(6,10)]                                                 => 1
[(1,6),(2,9),(3,5),(4,8),(7,10)]                                                 => 1
[(1,5),(2,9),(3,6),(4,8),(7,10)]                                                 => 1
[(1,4),(2,9),(3,6),(5,8),(7,10)]                                                 => 1
[(1,3),(2,9),(4,6),(5,8),(7,10)]                                                 => 1
[(1,2),(3,9),(4,6),(5,8),(7,10)]                                                 => 2
[(1,2),(3,10),(4,6),(5,8),(7,9)]                                                 => 2
[(1,3),(2,10),(4,6),(5,8),(7,9)]                                                 => 1
[(1,4),(2,10),(3,6),(5,8),(7,9)]                                                 => 1
[(1,5),(2,10),(3,6),(4,8),(7,9)]                                                 => 1
[(1,6),(2,10),(3,5),(4,8),(7,9)]                                                 => 1
[(1,7),(2,10),(3,5),(4,8),(6,9)]                                                 => 1
[(1,8),(2,10),(3,5),(4,7),(6,9)]                                                 => 1
[(1,9),(2,10),(3,5),(4,7),(6,8)]                                                 => 1
[(1,10),(2,9),(3,5),(4,7),(6,8)]                                                 => 1
[(1,10),(2,9),(3,4),(5,7),(6,8)]                                                 => 1
[(1,9),(2,10),(3,4),(5,7),(6,8)]                                                 => 1
[(1,8),(2,10),(3,4),(5,7),(6,9)]                                                 => 1
[(1,7),(2,10),(3,4),(5,8),(6,9)]                                                 => 1
[(1,6),(2,10),(3,4),(5,8),(7,9)]                                                 => 1
[(1,5),(2,10),(3,4),(6,8),(7,9)]                                                 => 1
[(1,4),(2,10),(3,5),(6,8),(7,9)]                                                 => 1
[(1,3),(2,10),(4,5),(6,8),(7,9)]                                                 => 1
[(1,2),(3,10),(4,5),(6,8),(7,9)]                                                 => 2
[(1,2),(3,9),(4,5),(6,8),(7,10)]                                                 => 2
[(1,3),(2,9),(4,5),(6,8),(7,10)]                                                 => 1
[(1,4),(2,9),(3,5),(6,8),(7,10)]                                                 => 1
[(1,5),(2,9),(3,4),(6,8),(7,10)]                                                 => 1
[(1,6),(2,9),(3,4),(5,8),(7,10)]                                                 => 1
[(1,7),(2,9),(3,4),(5,8),(6,10)]                                                 => 1
[(1,8),(2,9),(3,4),(5,7),(6,10)]                                                 => 1
[(1,9),(2,8),(3,4),(5,7),(6,10)]                                                 => 1
[(1,10),(2,8),(3,4),(5,7),(6,9)]                                                 => 1
[(1,10),(2,7),(3,4),(5,8),(6,9)]                                                 => 1
[(1,9),(2,7),(3,4),(5,8),(6,10)]                                                 => 1
[(1,8),(2,7),(3,4),(5,9),(6,10)]                                                 => 1
[(1,7),(2,8),(3,4),(5,9),(6,10)]                                                 => 1
[(1,6),(2,8),(3,4),(5,9),(7,10)]                                                 => 1
[(1,5),(2,8),(3,4),(6,9),(7,10)]                                                 => 1
[(1,4),(2,8),(3,5),(6,9),(7,10)]                                                 => 1
[(1,3),(2,8),(4,5),(6,9),(7,10)]                                                 => 1
[(1,2),(3,8),(4,5),(6,9),(7,10)]                                                 => 2
[(1,2),(3,7),(4,5),(6,9),(8,10)]                                                 => 2
[(1,3),(2,7),(4,5),(6,9),(8,10)]                                                 => 1
[(1,4),(2,7),(3,5),(6,9),(8,10)]                                                 => 1
[(1,5),(2,7),(3,4),(6,9),(8,10)]                                                 => 1
[(1,6),(2,7),(3,4),(5,9),(8,10)]                                                 => 1
[(1,7),(2,6),(3,4),(5,9),(8,10)]                                                 => 1
[(1,8),(2,6),(3,4),(5,9),(7,10)]                                                 => 1
[(1,9),(2,6),(3,4),(5,8),(7,10)]                                                 => 1
[(1,10),(2,6),(3,4),(5,8),(7,9)]                                                 => 1
[(1,10),(2,5),(3,4),(6,8),(7,9)]                                                 => 1
[(1,9),(2,5),(3,4),(6,8),(7,10)]                                                 => 1
[(1,8),(2,5),(3,4),(6,9),(7,10)]                                                 => 1
[(1,7),(2,5),(3,4),(6,9),(8,10)]                                                 => 1
[(1,6),(2,5),(3,4),(7,9),(8,10)]                                                 => 2
[(1,5),(2,6),(3,4),(7,9),(8,10)]                                                 => 2
[(1,4),(2,6),(3,5),(7,9),(8,10)]                                                 => 2
[(1,3),(2,6),(4,5),(7,9),(8,10)]                                                 => 2
[(1,2),(3,6),(4,5),(7,9),(8,10)]                                                 => 3
[(1,2),(3,5),(4,6),(7,9),(8,10)]                                                 => 3
[(1,3),(2,5),(4,6),(7,9),(8,10)]                                                 => 2
[(1,4),(2,5),(3,6),(7,9),(8,10)]                                                 => 2
[(1,5),(2,4),(3,6),(7,9),(8,10)]                                                 => 2
[(1,6),(2,4),(3,5),(7,9),(8,10)]                                                 => 2
[(1,7),(2,4),(3,5),(6,9),(8,10)]                                                 => 1
[(1,8),(2,4),(3,5),(6,9),(7,10)]                                                 => 1
[(1,9),(2,4),(3,5),(6,8),(7,10)]                                                 => 1
[(1,10),(2,4),(3,5),(6,8),(7,9)]                                                 => 1
[(1,10),(2,3),(4,5),(6,8),(7,9)]                                                 => 1
[(1,9),(2,3),(4,5),(6,8),(7,10)]                                                 => 1
[(1,8),(2,3),(4,5),(6,9),(7,10)]                                                 => 1
[(1,7),(2,3),(4,5),(6,9),(8,10)]                                                 => 1
[(1,6),(2,3),(4,5),(7,9),(8,10)]                                                 => 2
[(1,5),(2,3),(4,6),(7,9),(8,10)]                                                 => 2
[(1,4),(2,3),(5,6),(7,9),(8,10)]                                                 => 3
[(1,3),(2,4),(5,6),(7,9),(8,10)]                                                 => 3
[(1,2),(3,4),(5,6),(7,9),(8,10)]                                                 => 4
[(1,2),(3,4),(5,6),(7,10),(8,9)]                                                 => 4
[(1,3),(2,4),(5,6),(7,10),(8,9)]                                                 => 3
[(1,4),(2,3),(5,6),(7,10),(8,9)]                                                 => 3
[(1,5),(2,3),(4,6),(7,10),(8,9)]                                                 => 2
[(1,6),(2,3),(4,5),(7,10),(8,9)]                                                 => 2
[(1,7),(2,3),(4,5),(6,10),(8,9)]                                                 => 1
[(1,8),(2,3),(4,5),(6,10),(7,9)]                                                 => 1
[(1,9),(2,3),(4,5),(6,10),(7,8)]                                                 => 1
[(1,10),(2,3),(4,5),(6,9),(7,8)]                                                 => 1
[(1,10),(2,4),(3,5),(6,9),(7,8)]                                                 => 1
[(1,9),(2,4),(3,5),(6,10),(7,8)]                                                 => 1
[(1,8),(2,4),(3,5),(6,10),(7,9)]                                                 => 1
[(1,7),(2,4),(3,5),(6,10),(8,9)]                                                 => 1
[(1,6),(2,4),(3,5),(7,10),(8,9)]                                                 => 2
[(1,5),(2,4),(3,6),(7,10),(8,9)]                                                 => 2
[(1,4),(2,5),(3,6),(7,10),(8,9)]                                                 => 2
[(1,3),(2,5),(4,6),(7,10),(8,9)]                                                 => 2
[(1,2),(3,5),(4,6),(7,10),(8,9)]                                                 => 3
[(1,2),(3,6),(4,5),(7,10),(8,9)]                                                 => 3
[(1,3),(2,6),(4,5),(7,10),(8,9)]                                                 => 2
[(1,4),(2,6),(3,5),(7,10),(8,9)]                                                 => 2
[(1,5),(2,6),(3,4),(7,10),(8,9)]                                                 => 2
[(1,6),(2,5),(3,4),(7,10),(8,9)]                                                 => 2
[(1,7),(2,5),(3,4),(6,10),(8,9)]                                                 => 1
[(1,8),(2,5),(3,4),(6,10),(7,9)]                                                 => 1
[(1,9),(2,5),(3,4),(6,10),(7,8)]                                                 => 1
[(1,10),(2,5),(3,4),(6,9),(7,8)]                                                 => 1
[(1,10),(2,6),(3,4),(5,9),(7,8)]                                                 => 1
[(1,9),(2,6),(3,4),(5,10),(7,8)]                                                 => 1
[(1,8),(2,6),(3,4),(5,10),(7,9)]                                                 => 1
[(1,7),(2,6),(3,4),(5,10),(8,9)]                                                 => 1
[(1,6),(2,7),(3,4),(5,10),(8,9)]                                                 => 1
[(1,5),(2,7),(3,4),(6,10),(8,9)]                                                 => 1
[(1,4),(2,7),(3,5),(6,10),(8,9)]                                                 => 1
[(1,3),(2,7),(4,5),(6,10),(8,9)]                                                 => 1
[(1,2),(3,7),(4,5),(6,10),(8,9)]                                                 => 2
[(1,2),(3,8),(4,5),(6,10),(7,9)]                                                 => 2
[(1,3),(2,8),(4,5),(6,10),(7,9)]                                                 => 1
[(1,4),(2,8),(3,5),(6,10),(7,9)]                                                 => 1
[(1,5),(2,8),(3,4),(6,10),(7,9)]                                                 => 1
[(1,6),(2,8),(3,4),(5,10),(7,9)]                                                 => 1
[(1,7),(2,8),(3,4),(5,10),(6,9)]                                                 => 1
[(1,8),(2,7),(3,4),(5,10),(6,9)]                                                 => 1
[(1,9),(2,7),(3,4),(5,10),(6,8)]                                                 => 1
[(1,10),(2,7),(3,4),(5,9),(6,8)]                                                 => 1
[(1,10),(2,8),(3,4),(5,9),(6,7)]                                                 => 1
[(1,9),(2,8),(3,4),(5,10),(6,7)]                                                 => 1
[(1,8),(2,9),(3,4),(5,10),(6,7)]                                                 => 1
[(1,7),(2,9),(3,4),(5,10),(6,8)]                                                 => 1
[(1,6),(2,9),(3,4),(5,10),(7,8)]                                                 => 1
[(1,5),(2,9),(3,4),(6,10),(7,8)]                                                 => 1
[(1,4),(2,9),(3,5),(6,10),(7,8)]                                                 => 1
[(1,3),(2,9),(4,5),(6,10),(7,8)]                                                 => 1
[(1,2),(3,9),(4,5),(6,10),(7,8)]                                                 => 2
[(1,2),(3,10),(4,5),(6,9),(7,8)]                                                 => 2
[(1,3),(2,10),(4,5),(6,9),(7,8)]                                                 => 1
[(1,4),(2,10),(3,5),(6,9),(7,8)]                                                 => 1
[(1,5),(2,10),(3,4),(6,9),(7,8)]                                                 => 1
[(1,6),(2,10),(3,4),(5,9),(7,8)]                                                 => 1
[(1,7),(2,10),(3,4),(5,9),(6,8)]                                                 => 1
[(1,8),(2,10),(3,4),(5,9),(6,7)]                                                 => 1
[(1,9),(2,10),(3,4),(5,8),(6,7)]                                                 => 1
[(1,10),(2,9),(3,4),(5,8),(6,7)]                                                 => 1
[(1,10),(2,9),(3,5),(4,8),(6,7)]                                                 => 1
[(1,9),(2,10),(3,5),(4,8),(6,7)]                                                 => 1
[(1,8),(2,10),(3,5),(4,9),(6,7)]                                                 => 1
[(1,7),(2,10),(3,5),(4,9),(6,8)]                                                 => 1
[(1,6),(2,10),(3,5),(4,9),(7,8)]                                                 => 1
[(1,5),(2,10),(3,6),(4,9),(7,8)]                                                 => 1
[(1,4),(2,10),(3,6),(5,9),(7,8)]                                                 => 1
[(1,3),(2,10),(4,6),(5,9),(7,8)]                                                 => 1
[(1,2),(3,10),(4,6),(5,9),(7,8)]                                                 => 2
[(1,2),(3,9),(4,6),(5,10),(7,8)]                                                 => 2
[(1,3),(2,9),(4,6),(5,10),(7,8)]                                                 => 1
[(1,4),(2,9),(3,6),(5,10),(7,8)]                                                 => 1
[(1,5),(2,9),(3,6),(4,10),(7,8)]                                                 => 1
[(1,6),(2,9),(3,5),(4,10),(7,8)]                                                 => 1
[(1,7),(2,9),(3,5),(4,10),(6,8)]                                                 => 1
[(1,8),(2,9),(3,5),(4,10),(6,7)]                                                 => 1
[(1,9),(2,8),(3,5),(4,10),(6,7)]                                                 => 1
[(1,10),(2,8),(3,5),(4,9),(6,7)]                                                 => 1
[(1,10),(2,7),(3,5),(4,9),(6,8)]                                                 => 1
[(1,9),(2,7),(3,5),(4,10),(6,8)]                                                 => 1
[(1,8),(2,7),(3,5),(4,10),(6,9)]                                                 => 1
[(1,7),(2,8),(3,5),(4,10),(6,9)]                                                 => 1
[(1,6),(2,8),(3,5),(4,10),(7,9)]                                                 => 1
[(1,5),(2,8),(3,6),(4,10),(7,9)]                                                 => 1
[(1,4),(2,8),(3,6),(5,10),(7,9)]                                                 => 1
[(1,3),(2,8),(4,6),(5,10),(7,9)]                                                 => 1
[(1,2),(3,8),(4,6),(5,10),(7,9)]                                                 => 2
[(1,2),(3,7),(4,6),(5,10),(8,9)]                                                 => 2
[(1,3),(2,7),(4,6),(5,10),(8,9)]                                                 => 1
[(1,4),(2,7),(3,6),(5,10),(8,9)]                                                 => 1
[(1,5),(2,7),(3,6),(4,10),(8,9)]                                                 => 1
[(1,6),(2,7),(3,5),(4,10),(8,9)]                                                 => 1
[(1,7),(2,6),(3,5),(4,10),(8,9)]                                                 => 1
[(1,8),(2,6),(3,5),(4,10),(7,9)]                                                 => 1
[(1,9),(2,6),(3,5),(4,10),(7,8)]                                                 => 1
[(1,10),(2,6),(3,5),(4,9),(7,8)]                                                 => 1
[(1,10),(2,5),(3,6),(4,9),(7,8)]                                                 => 1
[(1,9),(2,5),(3,6),(4,10),(7,8)]                                                 => 1
[(1,8),(2,5),(3,6),(4,10),(7,9)]                                                 => 1
[(1,7),(2,5),(3,6),(4,10),(8,9)]                                                 => 1
[(1,6),(2,5),(3,7),(4,10),(8,9)]                                                 => 1
[(1,5),(2,6),(3,7),(4,10),(8,9)]                                                 => 1
[(1,4),(2,6),(3,7),(5,10),(8,9)]                                                 => 1
[(1,3),(2,6),(4,7),(5,10),(8,9)]                                                 => 1
[(1,2),(3,6),(4,7),(5,10),(8,9)]                                                 => 2
[(1,2),(3,5),(4,7),(6,10),(8,9)]                                                 => 2
[(1,3),(2,5),(4,7),(6,10),(8,9)]                                                 => 1
[(1,4),(2,5),(3,7),(6,10),(8,9)]                                                 => 1
[(1,5),(2,4),(3,7),(6,10),(8,9)]                                                 => 1
[(1,6),(2,4),(3,7),(5,10),(8,9)]                                                 => 1
[(1,7),(2,4),(3,6),(5,10),(8,9)]                                                 => 1
[(1,8),(2,4),(3,6),(5,10),(7,9)]                                                 => 1
[(1,9),(2,4),(3,6),(5,10),(7,8)]                                                 => 1
[(1,10),(2,4),(3,6),(5,9),(7,8)]                                                 => 1
[(1,10),(2,3),(4,6),(5,9),(7,8)]                                                 => 1
[(1,9),(2,3),(4,6),(5,10),(7,8)]                                                 => 1
[(1,8),(2,3),(4,6),(5,10),(7,9)]                                                 => 1
[(1,7),(2,3),(4,6),(5,10),(8,9)]                                                 => 1
[(1,6),(2,3),(4,7),(5,10),(8,9)]                                                 => 1
[(1,5),(2,3),(4,7),(6,10),(8,9)]                                                 => 1
[(1,4),(2,3),(5,7),(6,10),(8,9)]                                                 => 2
[(1,3),(2,4),(5,7),(6,10),(8,9)]                                                 => 2
[(1,2),(3,4),(5,7),(6,10),(8,9)]                                                 => 3
[(1,2),(3,4),(5,8),(6,10),(7,9)]                                                 => 3
[(1,3),(2,4),(5,8),(6,10),(7,9)]                                                 => 2
[(1,4),(2,3),(5,8),(6,10),(7,9)]                                                 => 2
[(1,5),(2,3),(4,8),(6,10),(7,9)]                                                 => 1
[(1,6),(2,3),(4,8),(5,10),(7,9)]                                                 => 1
[(1,7),(2,3),(4,8),(5,10),(6,9)]                                                 => 1
[(1,8),(2,3),(4,7),(5,10),(6,9)]                                                 => 1
[(1,9),(2,3),(4,7),(5,10),(6,8)]                                                 => 1
[(1,10),(2,3),(4,7),(5,9),(6,8)]                                                 => 1
[(1,10),(2,4),(3,7),(5,9),(6,8)]                                                 => 1
[(1,9),(2,4),(3,7),(5,10),(6,8)]                                                 => 1
[(1,8),(2,4),(3,7),(5,10),(6,9)]                                                 => 1
[(1,7),(2,4),(3,8),(5,10),(6,9)]                                                 => 1
[(1,6),(2,4),(3,8),(5,10),(7,9)]                                                 => 1
[(1,5),(2,4),(3,8),(6,10),(7,9)]                                                 => 1
[(1,4),(2,5),(3,8),(6,10),(7,9)]                                                 => 1
[(1,3),(2,5),(4,8),(6,10),(7,9)]                                                 => 1
[(1,2),(3,5),(4,8),(6,10),(7,9)]                                                 => 2
[(1,2),(3,6),(4,8),(5,10),(7,9)]                                                 => 2
[(1,3),(2,6),(4,8),(5,10),(7,9)]                                                 => 1
[(1,4),(2,6),(3,8),(5,10),(7,9)]                                                 => 1
[(1,5),(2,6),(3,8),(4,10),(7,9)]                                                 => 1
[(1,6),(2,5),(3,8),(4,10),(7,9)]                                                 => 1
[(1,7),(2,5),(3,8),(4,10),(6,9)]                                                 => 1
[(1,8),(2,5),(3,7),(4,10),(6,9)]                                                 => 1
[(1,9),(2,5),(3,7),(4,10),(6,8)]                                                 => 1
[(1,10),(2,5),(3,7),(4,9),(6,8)]                                                 => 1
[(1,10),(2,6),(3,7),(4,9),(5,8)]                                                 => 1
[(1,9),(2,6),(3,7),(4,10),(5,8)]                                                 => 1
[(1,8),(2,6),(3,7),(4,10),(5,9)]                                                 => 1
[(1,7),(2,6),(3,8),(4,10),(5,9)]                                                 => 1
[(1,6),(2,7),(3,8),(4,10),(5,9)]                                                 => 1
[(1,5),(2,7),(3,8),(4,10),(6,9)]                                                 => 1
[(1,4),(2,7),(3,8),(5,10),(6,9)]                                                 => 1
[(1,3),(2,7),(4,8),(5,10),(6,9)]                                                 => 1
[(1,2),(3,7),(4,8),(5,10),(6,9)]                                                 => 2
[(1,2),(3,8),(4,7),(5,10),(6,9)]                                                 => 2
[(1,3),(2,8),(4,7),(5,10),(6,9)]                                                 => 1
[(1,4),(2,8),(3,7),(5,10),(6,9)]                                                 => 1
[(1,5),(2,8),(3,7),(4,10),(6,9)]                                                 => 1
[(1,6),(2,8),(3,7),(4,10),(5,9)]                                                 => 1
[(1,7),(2,8),(3,6),(4,10),(5,9)]                                                 => 1
[(1,8),(2,7),(3,6),(4,10),(5,9)]                                                 => 1
[(1,9),(2,7),(3,6),(4,10),(5,8)]                                                 => 1
[(1,10),(2,7),(3,6),(4,9),(5,8)]                                                 => 1
[(1,10),(2,8),(3,6),(4,9),(5,7)]                                                 => 1
[(1,9),(2,8),(3,6),(4,10),(5,7)]                                                 => 1
[(1,8),(2,9),(3,6),(4,10),(5,7)]                                                 => 1
[(1,7),(2,9),(3,6),(4,10),(5,8)]                                                 => 1
[(1,6),(2,9),(3,7),(4,10),(5,8)]                                                 => 1
[(1,5),(2,9),(3,7),(4,10),(6,8)]                                                 => 1
[(1,4),(2,9),(3,7),(5,10),(6,8)]                                                 => 1
[(1,3),(2,9),(4,7),(5,10),(6,8)]                                                 => 1
[(1,2),(3,9),(4,7),(5,10),(6,8)]                                                 => 2
[(1,2),(3,10),(4,7),(5,9),(6,8)]                                                 => 2
[(1,3),(2,10),(4,7),(5,9),(6,8)]                                                 => 1
[(1,4),(2,10),(3,7),(5,9),(6,8)]                                                 => 1
[(1,5),(2,10),(3,7),(4,9),(6,8)]                                                 => 1
[(1,6),(2,10),(3,7),(4,9),(5,8)]                                                 => 1
[(1,7),(2,10),(3,6),(4,9),(5,8)]                                                 => 1
[(1,8),(2,10),(3,6),(4,9),(5,7)]                                                 => 1
[(1,9),(2,10),(3,6),(4,8),(5,7)]                                                 => 1
[(1,10),(2,9),(3,6),(4,8),(5,7)]                                                 => 1
[(1,10),(2,9),(3,7),(4,8),(5,6)]                                                 => 1
[(1,9),(2,10),(3,7),(4,8),(5,6)]                                                 => 1
[(1,8),(2,10),(3,7),(4,9),(5,6)]                                                 => 1
[(1,7),(2,10),(3,8),(4,9),(5,6)]                                                 => 1
[(1,6),(2,10),(3,8),(4,9),(5,7)]                                                 => 1
[(1,5),(2,10),(3,8),(4,9),(6,7)]                                                 => 1
[(1,4),(2,10),(3,8),(5,9),(6,7)]                                                 => 1
[(1,3),(2,10),(4,8),(5,9),(6,7)]                                                 => 1
[(1,2),(3,10),(4,8),(5,9),(6,7)]                                                 => 2
[(1,2),(3,9),(4,8),(5,10),(6,7)]                                                 => 2
[(1,3),(2,9),(4,8),(5,10),(6,7)]                                                 => 1
[(1,4),(2,9),(3,8),(5,10),(6,7)]                                                 => 1
[(1,5),(2,9),(3,8),(4,10),(6,7)]                                                 => 1
[(1,6),(2,9),(3,8),(4,10),(5,7)]                                                 => 1
[(1,7),(2,9),(3,8),(4,10),(5,6)]                                                 => 1
[(1,8),(2,9),(3,7),(4,10),(5,6)]                                                 => 1
[(1,9),(2,8),(3,7),(4,10),(5,6)]                                                 => 1
[(1,10),(2,8),(3,7),(4,9),(5,6)]                                                 => 1
[(1,10),(2,7),(3,8),(4,9),(5,6)]                                                 => 1
[(1,9),(2,7),(3,8),(4,10),(5,6)]                                                 => 1
[(1,8),(2,7),(3,9),(4,10),(5,6)]                                                 => 1
[(1,7),(2,8),(3,9),(4,10),(5,6)]                                                 => 1
[(1,6),(2,8),(3,9),(4,10),(5,7)]                                                 => 1
[(1,5),(2,8),(3,9),(4,10),(6,7)]                                                 => 1
[(1,4),(2,8),(3,9),(5,10),(6,7)]                                                 => 1
[(1,3),(2,8),(4,9),(5,10),(6,7)]                                                 => 1
[(1,2),(3,8),(4,9),(5,10),(6,7)]                                                 => 2
[(1,2),(3,7),(4,9),(5,10),(6,8)]                                                 => 2
[(1,3),(2,7),(4,9),(5,10),(6,8)]                                                 => 1
[(1,4),(2,7),(3,9),(5,10),(6,8)]                                                 => 1
[(1,5),(2,7),(3,9),(4,10),(6,8)]                                                 => 1
[(1,6),(2,7),(3,9),(4,10),(5,8)]                                                 => 1
[(1,7),(2,6),(3,9),(4,10),(5,8)]                                                 => 1
[(1,8),(2,6),(3,9),(4,10),(5,7)]                                                 => 1
[(1,9),(2,6),(3,8),(4,10),(5,7)]                                                 => 1
[(1,10),(2,6),(3,8),(4,9),(5,7)]                                                 => 1
[(1,10),(2,5),(3,8),(4,9),(6,7)]                                                 => 1
[(1,9),(2,5),(3,8),(4,10),(6,7)]                                                 => 1
[(1,8),(2,5),(3,9),(4,10),(6,7)]                                                 => 1
[(1,7),(2,5),(3,9),(4,10),(6,8)]                                                 => 1
[(1,6),(2,5),(3,9),(4,10),(7,8)]                                                 => 1
[(1,5),(2,6),(3,9),(4,10),(7,8)]                                                 => 1
[(1,4),(2,6),(3,9),(5,10),(7,8)]                                                 => 1
[(1,3),(2,6),(4,9),(5,10),(7,8)]                                                 => 1
[(1,2),(3,6),(4,9),(5,10),(7,8)]                                                 => 2
[(1,2),(3,5),(4,9),(6,10),(7,8)]                                                 => 2
[(1,3),(2,5),(4,9),(6,10),(7,8)]                                                 => 1
[(1,4),(2,5),(3,9),(6,10),(7,8)]                                                 => 1
[(1,5),(2,4),(3,9),(6,10),(7,8)]                                                 => 1
[(1,6),(2,4),(3,9),(5,10),(7,8)]                                                 => 1
[(1,7),(2,4),(3,9),(5,10),(6,8)]                                                 => 1
[(1,8),(2,4),(3,9),(5,10),(6,7)]                                                 => 1
[(1,9),(2,4),(3,8),(5,10),(6,7)]                                                 => 1
[(1,10),(2,4),(3,8),(5,9),(6,7)]                                                 => 1
[(1,10),(2,3),(4,8),(5,9),(6,7)]                                                 => 1
[(1,9),(2,3),(4,8),(5,10),(6,7)]                                                 => 1
[(1,8),(2,3),(4,9),(5,10),(6,7)]                                                 => 1
[(1,7),(2,3),(4,9),(5,10),(6,8)]                                                 => 1
[(1,6),(2,3),(4,9),(5,10),(7,8)]                                                 => 1
[(1,5),(2,3),(4,9),(6,10),(7,8)]                                                 => 1
[(1,4),(2,3),(5,9),(6,10),(7,8)]                                                 => 2
[(1,3),(2,4),(5,9),(6,10),(7,8)]                                                 => 2
[(1,2),(3,4),(5,9),(6,10),(7,8)]                                                 => 3
[(1,2),(3,4),(5,10),(6,9),(7,8)]                                                 => 3
[(1,3),(2,4),(5,10),(6,9),(7,8)]                                                 => 2
[(1,4),(2,3),(5,10),(6,9),(7,8)]                                                 => 2
[(1,5),(2,3),(4,10),(6,9),(7,8)]                                                 => 1
[(1,6),(2,3),(4,10),(5,9),(7,8)]                                                 => 1
[(1,7),(2,3),(4,10),(5,9),(6,8)]                                                 => 1
[(1,8),(2,3),(4,10),(5,9),(6,7)]                                                 => 1
[(1,9),(2,3),(4,10),(5,8),(6,7)]                                                 => 1
[(1,10),(2,3),(4,9),(5,8),(6,7)]                                                 => 1
[(1,10),(2,4),(3,9),(5,8),(6,7)]                                                 => 1
[(1,9),(2,4),(3,10),(5,8),(6,7)]                                                 => 1
[(1,8),(2,4),(3,10),(5,9),(6,7)]                                                 => 1
[(1,7),(2,4),(3,10),(5,9),(6,8)]                                                 => 1
[(1,6),(2,4),(3,10),(5,9),(7,8)]                                                 => 1
[(1,5),(2,4),(3,10),(6,9),(7,8)]                                                 => 1
[(1,4),(2,5),(3,10),(6,9),(7,8)]                                                 => 1
[(1,3),(2,5),(4,10),(6,9),(7,8)]                                                 => 1
[(1,2),(3,5),(4,10),(6,9),(7,8)]                                                 => 2
[(1,2),(3,6),(4,10),(5,9),(7,8)]                                                 => 2
[(1,3),(2,6),(4,10),(5,9),(7,8)]                                                 => 1
[(1,4),(2,6),(3,10),(5,9),(7,8)]                                                 => 1
[(1,5),(2,6),(3,10),(4,9),(7,8)]                                                 => 1
[(1,6),(2,5),(3,10),(4,9),(7,8)]                                                 => 1
[(1,7),(2,5),(3,10),(4,9),(6,8)]                                                 => 1
[(1,8),(2,5),(3,10),(4,9),(6,7)]                                                 => 1
[(1,9),(2,5),(3,10),(4,8),(6,7)]                                                 => 1
[(1,10),(2,5),(3,9),(4,8),(6,7)]                                                 => 1
[(1,10),(2,6),(3,9),(4,8),(5,7)]                                                 => 1
[(1,9),(2,6),(3,10),(4,8),(5,7)]                                                 => 1
[(1,8),(2,6),(3,10),(4,9),(5,7)]                                                 => 1
[(1,7),(2,6),(3,10),(4,9),(5,8)]                                                 => 1
[(1,6),(2,7),(3,10),(4,9),(5,8)]                                                 => 1
[(1,5),(2,7),(3,10),(4,9),(6,8)]                                                 => 1
[(1,4),(2,7),(3,10),(5,9),(6,8)]                                                 => 1
[(1,3),(2,7),(4,10),(5,9),(6,8)]                                                 => 1
[(1,2),(3,7),(4,10),(5,9),(6,8)]                                                 => 2
[(1,2),(3,8),(4,10),(5,9),(6,7)]                                                 => 2
[(1,3),(2,8),(4,10),(5,9),(6,7)]                                                 => 1
[(1,4),(2,8),(3,10),(5,9),(6,7)]                                                 => 1
[(1,5),(2,8),(3,10),(4,9),(6,7)]                                                 => 1
[(1,6),(2,8),(3,10),(4,9),(5,7)]                                                 => 1
[(1,7),(2,8),(3,10),(4,9),(5,6)]                                                 => 1
[(1,8),(2,7),(3,10),(4,9),(5,6)]                                                 => 1
[(1,9),(2,7),(3,10),(4,8),(5,6)]                                                 => 1
[(1,10),(2,7),(3,9),(4,8),(5,6)]                                                 => 1
[(1,10),(2,8),(3,9),(4,7),(5,6)]                                                 => 1
[(1,9),(2,8),(3,10),(4,7),(5,6)]                                                 => 1
[(1,8),(2,9),(3,10),(4,7),(5,6)]                                                 => 1
[(1,7),(2,9),(3,10),(4,8),(5,6)]                                                 => 1
[(1,6),(2,9),(3,10),(4,8),(5,7)]                                                 => 1
[(1,5),(2,9),(3,10),(4,8),(6,7)]                                                 => 1
[(1,4),(2,9),(3,10),(5,8),(6,7)]                                                 => 1
[(1,3),(2,9),(4,10),(5,8),(6,7)]                                                 => 1
[(1,2),(3,9),(4,10),(5,8),(6,7)]                                                 => 2
[(1,2),(3,10),(4,9),(5,8),(6,7)]                                                 => 2
[(1,3),(2,10),(4,9),(5,8),(6,7)]                                                 => 1
[(1,4),(2,10),(3,9),(5,8),(6,7)]                                                 => 1
[(1,5),(2,10),(3,9),(4,8),(6,7)]                                                 => 1
[(1,6),(2,10),(3,9),(4,8),(5,7)]                                                 => 1
[(1,7),(2,10),(3,9),(4,8),(5,6)]                                                 => 1
[(1,8),(2,10),(3,9),(4,7),(5,6)]                                                 => 1
[(1,9),(2,10),(3,8),(4,7),(5,6)]                                                 => 1
[(1,10),(2,9),(3,8),(4,7),(5,6)]                                                 => 1
[(1,12),(2,11),(3,10),(4,9),(5,8),(6,7)]                                         => 1
[(1,2),(3,10),(4,9),(5,8),(6,7),(11,12)]                                         => 3
[(1,12),(2,3),(4,9),(5,8),(6,7),(10,11)]                                         => 1
[(1,2),(3,12),(4,9),(5,8),(6,7),(10,11)]                                         => 2
[(1,10),(2,3),(4,9),(5,8),(6,7),(11,12)]                                         => 2
[(1,12),(2,11),(3,4),(5,8),(6,7),(9,10)]                                         => 1
[(1,2),(3,4),(5,8),(6,7),(9,10),(11,12)]                                         => 5
[(1,12),(2,3),(4,11),(5,8),(6,7),(9,10)]                                         => 1
[(1,2),(3,12),(4,11),(5,8),(6,7),(9,10)]                                         => 2
[(1,4),(2,3),(5,8),(6,7),(9,10),(11,12)]                                         => 4
[(1,12),(2,9),(3,4),(5,8),(6,7),(10,11)]                                         => 1
[(1,2),(3,4),(5,8),(6,7),(9,12),(10,11)]                                         => 4
[(1,10),(2,9),(3,4),(5,8),(6,7),(11,12)]                                         => 2
[(1,4),(2,3),(5,8),(6,7),(9,12),(10,11)]                                         => 3
[(1,12),(2,11),(3,10),(4,5),(6,7),(8,9)]                                         => 1
[(1,2),(3,10),(4,5),(6,7),(8,9),(11,12)]                                         => 3
[(1,12),(2,3),(4,5),(6,7),(8,9),(10,11)]                                         => 1
[(1,2),(3,12),(4,5),(6,7),(8,9),(10,11)]                                         => 2
[(1,10),(2,3),(4,5),(6,7),(8,9),(11,12)]                                         => 2
[(1,12),(2,11),(3,4),(5,10),(6,7),(8,9)]                                         => 1
[(1,2),(3,4),(5,10),(6,7),(8,9),(11,12)]                                         => 4
[(1,12),(2,3),(4,11),(5,10),(6,7),(8,9)]                                         => 1
[(1,2),(3,12),(4,11),(5,10),(6,7),(8,9)]                                         => 2
[(1,4),(2,3),(5,10),(6,7),(8,9),(11,12)]                                         => 3
[(1,12),(2,5),(3,4),(6,7),(8,9),(10,11)]                                         => 1
[(1,2),(3,4),(5,12),(6,7),(8,9),(10,11)]                                         => 3
[(1,10),(2,5),(3,4),(6,7),(8,9),(11,12)]                                         => 2
[(1,4),(2,3),(5,12),(6,7),(8,9),(10,11)]                                         => 2
[(1,12),(2,11),(3,8),(4,5),(6,7),(9,10)]                                         => 1
[(1,2),(3,8),(4,5),(6,7),(9,10),(11,12)]                                         => 4
[(1,12),(2,3),(4,5),(6,7),(8,11),(9,10)]                                         => 1
[(1,2),(3,12),(4,5),(6,7),(8,11),(9,10)]                                         => 2
[(1,8),(2,3),(4,5),(6,7),(9,10),(11,12)]                                         => 3
[(1,12),(2,9),(3,8),(4,5),(6,7),(10,11)]                                         => 1
[(1,2),(3,8),(4,5),(6,7),(9,12),(10,11)]                                         => 3
[(1,10),(2,9),(3,8),(4,5),(6,7),(11,12)]                                         => 2
[(1,8),(2,3),(4,5),(6,7),(9,12),(10,11)]                                         => 2
[(1,12),(2,5),(3,4),(6,7),(8,11),(9,10)]                                         => 1
[(1,2),(3,4),(5,12),(6,7),(8,11),(9,10)]                                         => 3
[(1,8),(2,5),(3,4),(6,7),(9,10),(11,12)]                                         => 3
[(1,4),(2,3),(5,12),(6,7),(8,11),(9,10)]                                         => 2
[(1,8),(2,5),(3,4),(6,7),(9,12),(10,11)]                                         => 2
[(1,12),(2,11),(3,10),(4,9),(5,6),(7,8)]                                         => 1
[(1,2),(3,10),(4,9),(5,6),(7,8),(11,12)]                                         => 3
[(1,12),(2,3),(4,9),(5,6),(7,8),(10,11)]                                         => 1
[(1,2),(3,12),(4,9),(5,6),(7,8),(10,11)]                                         => 2
[(1,10),(2,3),(4,9),(5,6),(7,8),(11,12)]                                         => 2
[(1,12),(2,11),(3,4),(5,6),(7,8),(9,10)]                                         => 1
[(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)]                                         => 6
[(1,12),(2,3),(4,11),(5,6),(7,8),(9,10)]                                         => 1
[(1,2),(3,12),(4,11),(5,6),(7,8),(9,10)]                                         => 2
[(1,4),(2,3),(5,6),(7,8),(9,10),(11,12)]                                         => 5
[(1,12),(2,9),(3,4),(5,6),(7,8),(10,11)]                                         => 1
[(1,2),(3,4),(5,6),(7,8),(9,12),(10,11)]                                         => 5
[(1,10),(2,9),(3,4),(5,6),(7,8),(11,12)]                                         => 2
[(1,4),(2,3),(5,6),(7,8),(9,12),(10,11)]                                         => 4
[(1,12),(2,11),(3,10),(4,5),(6,9),(7,8)]                                         => 1
[(1,2),(3,10),(4,5),(6,9),(7,8),(11,12)]                                         => 3
[(1,12),(2,3),(4,5),(6,9),(7,8),(10,11)]                                         => 1
[(1,2),(3,12),(4,5),(6,9),(7,8),(10,11)]                                         => 2
[(1,10),(2,3),(4,5),(6,9),(7,8),(11,12)]                                         => 2
[(1,12),(2,11),(3,4),(5,10),(6,9),(7,8)]                                         => 1
[(1,2),(3,4),(5,10),(6,9),(7,8),(11,12)]                                         => 4
[(1,12),(2,3),(4,11),(5,10),(6,9),(7,8)]                                         => 1
[(1,2),(3,12),(4,11),(5,10),(6,9),(7,8)]                                         => 2
[(1,4),(2,3),(5,10),(6,9),(7,8),(11,12)]                                         => 3
[(1,12),(2,5),(3,4),(6,9),(7,8),(10,11)]                                         => 1
[(1,2),(3,4),(5,12),(6,9),(7,8),(10,11)]                                         => 3
[(1,10),(2,5),(3,4),(6,9),(7,8),(11,12)]                                         => 2
[(1,4),(2,3),(5,12),(6,9),(7,8),(10,11)]                                         => 2
[(1,12),(2,11),(3,6),(4,5),(7,8),(9,10)]                                         => 1
[(1,2),(3,6),(4,5),(7,8),(9,10),(11,12)]                                         => 5
[(1,12),(2,3),(4,5),(6,11),(7,8),(9,10)]                                         => 1
[(1,2),(3,12),(4,5),(6,11),(7,8),(9,10)]                                         => 2
[(1,6),(2,3),(4,5),(7,8),(9,10),(11,12)]                                         => 4
[(1,12),(2,9),(3,6),(4,5),(7,8),(10,11)]                                         => 1
[(1,2),(3,6),(4,5),(7,8),(9,12),(10,11)]                                         => 4
[(1,10),(2,9),(3,6),(4,5),(7,8),(11,12)]                                         => 2
[(1,6),(2,3),(4,5),(7,8),(9,12),(10,11)]                                         => 3
[(1,12),(2,5),(3,4),(6,11),(7,8),(9,10)]                                         => 1
[(1,2),(3,4),(5,12),(6,11),(7,8),(9,10)]                                         => 3
[(1,6),(2,5),(3,4),(7,8),(9,10),(11,12)]                                         => 4
[(1,4),(2,3),(5,12),(6,11),(7,8),(9,10)]                                         => 2
[(1,6),(2,5),(3,4),(7,8),(9,12),(10,11)]                                         => 3
[(1,12),(2,11),(3,10),(4,7),(5,6),(8,9)]                                         => 1
[(1,2),(3,10),(4,7),(5,6),(8,9),(11,12)]                                         => 3
[(1,12),(2,3),(4,7),(5,6),(8,9),(10,11)]                                         => 1
[(1,2),(3,12),(4,7),(5,6),(8,9),(10,11)]                                         => 2
[(1,10),(2,3),(4,7),(5,6),(8,9),(11,12)]                                         => 2
[(1,12),(2,11),(3,4),(5,6),(7,10),(8,9)]                                         => 1
[(1,2),(3,4),(5,6),(7,10),(8,9),(11,12)]                                         => 5
[(1,12),(2,3),(4,11),(5,6),(7,10),(8,9)]                                         => 1
[(1,2),(3,12),(4,11),(5,6),(7,10),(8,9)]                                         => 2
[(1,4),(2,3),(5,6),(7,10),(8,9),(11,12)]                                         => 4
[(1,12),(2,7),(3,4),(5,6),(8,9),(10,11)]                                         => 1
[(1,2),(3,4),(5,6),(7,12),(8,9),(10,11)]                                         => 4
[(1,10),(2,7),(3,4),(5,6),(8,9),(11,12)]                                         => 2
[(1,4),(2,3),(5,6),(7,12),(8,9),(10,11)]                                         => 3
[(1,12),(2,11),(3,8),(4,7),(5,6),(9,10)]                                         => 1
[(1,2),(3,8),(4,7),(5,6),(9,10),(11,12)]                                         => 4
[(1,12),(2,3),(4,7),(5,6),(8,11),(9,10)]                                         => 1
[(1,2),(3,12),(4,7),(5,6),(8,11),(9,10)]                                         => 2
[(1,8),(2,3),(4,7),(5,6),(9,10),(11,12)]                                         => 3
[(1,12),(2,9),(3,8),(4,7),(5,6),(10,11)]                                         => 1
[(1,2),(3,8),(4,7),(5,6),(9,12),(10,11)]                                         => 3
[(1,10),(2,9),(3,8),(4,7),(5,6),(11,12)]                                         => 2
[(1,8),(2,3),(4,7),(5,6),(9,12),(10,11)]                                         => 2
[(1,12),(2,7),(3,4),(5,6),(8,11),(9,10)]                                         => 1
[(1,2),(3,4),(5,6),(7,12),(8,11),(9,10)]                                         => 4
[(1,8),(2,7),(3,4),(5,6),(9,10),(11,12)]                                         => 3
[(1,4),(2,3),(5,6),(7,12),(8,11),(9,10)]                                         => 3
[(1,8),(2,7),(3,4),(5,6),(9,12),(10,11)]                                         => 2
[(1,12),(2,11),(3,6),(4,5),(7,10),(8,9)]                                         => 1
[(1,2),(3,6),(4,5),(7,10),(8,9),(11,12)]                                         => 4
[(1,12),(2,3),(4,5),(6,11),(7,10),(8,9)]                                         => 1
[(1,2),(3,12),(4,5),(6,11),(7,10),(8,9)]                                         => 2
[(1,6),(2,3),(4,5),(7,10),(8,9),(11,12)]                                         => 3
[(1,12),(2,7),(3,6),(4,5),(8,9),(10,11)]                                         => 1
[(1,2),(3,6),(4,5),(7,12),(8,9),(10,11)]                                         => 3
[(1,10),(2,7),(3,6),(4,5),(8,9),(11,12)]                                         => 2
[(1,6),(2,3),(4,5),(7,12),(8,9),(10,11)]                                         => 2
[(1,12),(2,5),(3,4),(6,11),(7,10),(8,9)]                                         => 1
[(1,2),(3,4),(5,12),(6,11),(7,10),(8,9)]                                         => 3
[(1,6),(2,5),(3,4),(7,10),(8,9),(11,12)]                                         => 3
[(1,4),(2,3),(5,12),(6,11),(7,10),(8,9)]                                         => 2
[(1,6),(2,5),(3,4),(7,12),(8,9),(10,11)]                                         => 2
[(1,12),(2,7),(3,6),(4,5),(8,11),(9,10)]                                         => 1
[(1,2),(3,6),(4,5),(7,12),(8,11),(9,10)]                                         => 3
[(1,8),(2,7),(3,6),(4,5),(9,10),(11,12)]                                         => 3
[(1,6),(2,3),(4,5),(7,12),(8,11),(9,10)]                                         => 2
[(1,8),(2,7),(3,6),(4,5),(9,12),(10,11)]                                         => 2
[(1,6),(2,5),(3,4),(7,12),(8,11),(9,10)]                                         => 2
[(1,2),(3,4),(5,6),(7,8),(9,11),(10,12)]                                         => 5
[(1,2),(3,4),(5,6),(7,9),(8,10),(11,12)]                                         => 5
[(1,2),(3,4),(5,6),(7,9),(8,11),(10,12)]                                         => 4
[(1,2),(3,4),(5,6),(7,10),(8,11),(9,12)]                                         => 4
[(1,2),(3,4),(5,7),(6,8),(9,10),(11,12)]                                         => 5
[(1,2),(3,4),(5,7),(6,8),(9,11),(10,12)]                                         => 4
[(1,2),(3,4),(5,7),(6,9),(8,10),(11,12)]                                         => 4
[(1,2),(3,4),(5,7),(6,9),(8,11),(10,12)]                                         => 3
[(1,2),(3,4),(5,7),(6,10),(8,11),(9,12)]                                         => 3
[(1,2),(3,4),(5,8),(6,9),(7,10),(11,12)]                                         => 4
[(1,2),(3,4),(5,8),(6,9),(7,11),(10,12)]                                         => 3
[(1,2),(3,4),(5,8),(6,10),(7,11),(9,12)]                                         => 3
[(1,2),(3,4),(5,9),(6,10),(7,11),(8,12)]                                         => 3
[(1,2),(3,5),(4,6),(7,8),(9,10),(11,12)]                                         => 5
[(1,2),(3,5),(4,6),(7,8),(9,11),(10,12)]                                         => 4
[(1,2),(3,5),(4,6),(7,9),(8,10),(11,12)]                                         => 4
[(1,2),(3,5),(4,6),(7,9),(8,11),(10,12)]                                         => 3
[(1,2),(3,5),(4,6),(7,10),(8,11),(9,12)]                                         => 3
[(1,2),(3,5),(4,7),(6,8),(9,10),(11,12)]                                         => 4
[(1,2),(3,5),(4,7),(6,8),(9,11),(10,12)]                                         => 3
[(1,2),(3,5),(4,7),(6,9),(8,10),(11,12)]                                         => 3
[(1,2),(3,5),(4,7),(6,9),(8,11),(10,12)]                                         => 2
[(1,2),(3,5),(4,7),(6,10),(8,11),(9,12)]                                         => 2
[(1,2),(3,5),(4,8),(6,9),(7,10),(11,12)]                                         => 3
[(1,2),(3,5),(4,8),(6,9),(7,11),(10,12)]                                         => 2
[(1,2),(3,5),(4,8),(6,10),(7,11),(9,12)]                                         => 2
[(1,2),(3,5),(4,9),(6,10),(7,11),(8,12)]                                         => 2
[(1,2),(3,6),(4,7),(5,8),(9,10),(11,12)]                                         => 4
[(1,2),(3,6),(4,7),(5,8),(9,11),(10,12)]                                         => 3
[(1,2),(3,6),(4,7),(5,9),(8,10),(11,12)]                                         => 3
[(1,2),(3,6),(4,7),(5,9),(8,11),(10,12)]                                         => 2
[(1,2),(3,6),(4,7),(5,10),(8,11),(9,12)]                                         => 2
[(1,2),(3,6),(4,8),(5,9),(7,10),(11,12)]                                         => 3
[(1,2),(3,6),(4,8),(5,9),(7,11),(10,12)]                                         => 2
[(1,2),(3,6),(4,8),(5,10),(7,11),(9,12)]                                         => 2
[(1,2),(3,6),(4,9),(5,10),(7,11),(8,12)]                                         => 2
[(1,2),(3,7),(4,8),(5,9),(6,10),(11,12)]                                         => 3
[(1,2),(3,7),(4,8),(5,9),(6,11),(10,12)]                                         => 2
[(1,2),(3,7),(4,8),(5,10),(6,11),(9,12)]                                         => 2
[(1,2),(3,7),(4,9),(5,10),(6,11),(8,12)]                                         => 2
[(1,2),(3,8),(4,9),(5,10),(6,11),(7,12)]                                         => 2
[(1,3),(2,4),(5,6),(7,8),(9,10),(11,12)]                                         => 5
[(1,3),(2,4),(5,6),(7,8),(9,11),(10,12)]                                         => 4
[(1,3),(2,4),(5,6),(7,9),(8,10),(11,12)]                                         => 4
[(1,3),(2,4),(5,6),(7,9),(8,11),(10,12)]                                         => 3
[(1,3),(2,4),(5,6),(7,10),(8,11),(9,12)]                                         => 3
[(1,3),(2,4),(5,7),(6,8),(9,10),(11,12)]                                         => 4
[(1,3),(2,4),(5,7),(6,8),(9,11),(10,12)]                                         => 3
[(1,3),(2,4),(5,7),(6,9),(8,10),(11,12)]                                         => 3
[(1,3),(2,4),(5,7),(6,9),(8,11),(10,12)]                                         => 2
[(1,3),(2,4),(5,7),(6,10),(8,11),(9,12)]                                         => 2
[(1,3),(2,4),(5,8),(6,9),(7,10),(11,12)]                                         => 3
[(1,3),(2,4),(5,8),(6,9),(7,11),(10,12)]                                         => 2
[(1,3),(2,4),(5,8),(6,10),(7,11),(9,12)]                                         => 2
[(1,3),(2,4),(5,9),(6,10),(7,11),(8,12)]                                         => 2
[(1,3),(2,5),(4,6),(7,8),(9,10),(11,12)]                                         => 4
[(1,3),(2,5),(4,6),(7,8),(9,11),(10,12)]                                         => 3
[(1,3),(2,5),(4,6),(7,9),(8,10),(11,12)]                                         => 3
[(1,3),(2,5),(4,6),(7,9),(8,11),(10,12)]                                         => 2
[(1,3),(2,5),(4,6),(7,10),(8,11),(9,12)]                                         => 2
[(1,3),(2,5),(4,7),(6,8),(9,10),(11,12)]                                         => 3
[(1,3),(2,5),(4,7),(6,8),(9,11),(10,12)]                                         => 2
[(1,3),(2,5),(4,7),(6,9),(8,10),(11,12)]                                         => 2
[(1,3),(2,5),(4,7),(6,9),(8,11),(10,12)]                                         => 1
[(1,3),(2,5),(4,7),(6,10),(8,11),(9,12)]                                         => 1
[(1,3),(2,5),(4,8),(6,9),(7,10),(11,12)]                                         => 2
[(1,3),(2,5),(4,8),(6,9),(7,11),(10,12)]                                         => 1
[(1,3),(2,5),(4,8),(6,10),(7,11),(9,12)]                                         => 1
[(1,3),(2,5),(4,9),(6,10),(7,11),(8,12)]                                         => 1
[(1,3),(2,6),(4,7),(5,8),(9,10),(11,12)]                                         => 3
[(1,3),(2,6),(4,7),(5,8),(9,11),(10,12)]                                         => 2
[(1,3),(2,6),(4,7),(5,9),(8,10),(11,12)]                                         => 2
[(1,3),(2,6),(4,7),(5,9),(8,11),(10,12)]                                         => 1
[(1,3),(2,6),(4,7),(5,10),(8,11),(9,12)]                                         => 1
[(1,3),(2,6),(4,8),(5,9),(7,10),(11,12)]                                         => 2
[(1,3),(2,6),(4,8),(5,9),(7,11),(10,12)]                                         => 1
[(1,3),(2,6),(4,8),(5,10),(7,11),(9,12)]                                         => 1
[(1,3),(2,6),(4,9),(5,10),(7,11),(8,12)]                                         => 1
[(1,3),(2,7),(4,8),(5,9),(6,10),(11,12)]                                         => 2
[(1,3),(2,7),(4,8),(5,9),(6,11),(10,12)]                                         => 1
[(1,3),(2,7),(4,8),(5,10),(6,11),(9,12)]                                         => 1
[(1,3),(2,7),(4,9),(5,10),(6,11),(8,12)]                                         => 1
[(1,3),(2,8),(4,9),(5,10),(6,11),(7,12)]                                         => 1
[(1,4),(2,5),(3,6),(7,8),(9,10),(11,12)]                                         => 4
[(1,4),(2,5),(3,6),(7,8),(9,11),(10,12)]                                         => 3
[(1,4),(2,5),(3,6),(7,9),(8,10),(11,12)]                                         => 3
[(1,4),(2,5),(3,6),(7,9),(8,11),(10,12)]                                         => 2
[(1,4),(2,5),(3,6),(7,10),(8,11),(9,12)]                                         => 2
[(1,4),(2,5),(3,7),(6,8),(9,10),(11,12)]                                         => 3
[(1,4),(2,5),(3,7),(6,8),(9,11),(10,12)]                                         => 2
[(1,4),(2,5),(3,7),(6,9),(8,10),(11,12)]                                         => 2
[(1,4),(2,5),(3,7),(6,9),(8,11),(10,12)]                                         => 1
[(1,4),(2,5),(3,7),(6,10),(8,11),(9,12)]                                         => 1
[(1,4),(2,5),(3,8),(6,9),(7,10),(11,12)]                                         => 2
[(1,4),(2,5),(3,8),(6,9),(7,11),(10,12)]                                         => 1
[(1,4),(2,5),(3,8),(6,10),(7,11),(9,12)]                                         => 1
[(1,4),(2,5),(3,9),(6,10),(7,11),(8,12)]                                         => 1
[(1,4),(2,6),(3,7),(5,8),(9,10),(11,12)]                                         => 3
[(1,4),(2,6),(3,7),(5,8),(9,11),(10,12)]                                         => 2
[(1,4),(2,6),(3,7),(5,9),(8,10),(11,12)]                                         => 2
[(1,4),(2,6),(3,7),(5,9),(8,11),(10,12)]                                         => 1
[(1,4),(2,6),(3,7),(5,10),(8,11),(9,12)]                                         => 1
[(1,4),(2,6),(3,8),(5,9),(7,10),(11,12)]                                         => 2
[(1,4),(2,6),(3,8),(5,9),(7,11),(10,12)]                                         => 1
[(1,4),(2,6),(3,8),(5,10),(7,11),(9,12)]                                         => 1
[(1,4),(2,6),(3,9),(5,10),(7,11),(8,12)]                                         => 1
[(1,4),(2,7),(3,8),(5,9),(6,10),(11,12)]                                         => 2
[(1,4),(2,7),(3,8),(5,9),(6,11),(10,12)]                                         => 1
[(1,4),(2,7),(3,8),(5,10),(6,11),(9,12)]                                         => 1
[(1,4),(2,7),(3,9),(5,10),(6,11),(8,12)]                                         => 1
[(1,4),(2,8),(3,9),(5,10),(6,11),(7,12)]                                         => 1
[(1,5),(2,6),(3,7),(4,8),(9,10),(11,12)]                                         => 3
[(1,5),(2,6),(3,7),(4,8),(9,11),(10,12)]                                         => 2
[(1,5),(2,6),(3,7),(4,9),(8,10),(11,12)]                                         => 2
[(1,5),(2,6),(3,7),(4,9),(8,11),(10,12)]                                         => 1
[(1,5),(2,6),(3,7),(4,10),(8,11),(9,12)]                                         => 1
[(1,5),(2,6),(3,8),(4,9),(7,10),(11,12)]                                         => 2
[(1,5),(2,6),(3,8),(4,9),(7,11),(10,12)]                                         => 1
[(1,5),(2,6),(3,8),(4,10),(7,11),(9,12)]                                         => 1
[(1,5),(2,6),(3,9),(4,10),(7,11),(8,12)]                                         => 1
[(1,5),(2,7),(3,8),(4,9),(6,10),(11,12)]                                         => 2
[(1,5),(2,7),(3,8),(4,9),(6,11),(10,12)]                                         => 1
[(1,5),(2,7),(3,8),(4,10),(6,11),(9,12)]                                         => 1
[(1,5),(2,7),(3,9),(4,10),(6,11),(8,12)]                                         => 1
[(1,5),(2,8),(3,9),(4,10),(6,11),(7,12)]                                         => 1
[(1,6),(2,7),(3,8),(4,9),(5,10),(11,12)]                                         => 2
[(1,6),(2,7),(3,8),(4,9),(5,11),(10,12)]                                         => 1
[(1,6),(2,7),(3,8),(4,10),(5,11),(9,12)]                                         => 1
[(1,6),(2,7),(3,9),(4,10),(5,11),(8,12)]                                         => 1
[(1,6),(2,8),(3,9),(4,10),(5,11),(7,12)]                                         => 1
[(1,7),(2,8),(3,9),(4,10),(5,11),(6,12)]                                         => 1
[(1,2),(3,14),(4,5),(6,13),(7,12),(8,11),(9,10)]                                 => 2
[(1,2),(3,14),(4,13),(5,6),(7,12),(8,9),(10,11)]                                 => 2
[(1,2),(3,14),(4,13),(5,6),(7,12),(8,11),(9,10)]                                 => 2
[(1,2),(3,14),(4,13),(5,8),(6,7),(9,12),(10,11)]                                 => 2
[(1,2),(3,14),(4,13),(5,10),(6,7),(8,9),(11,12)]                                 => 2
[(1,2),(3,14),(4,13),(5,12),(6,7),(8,9),(10,11)]                                 => 2
[(1,2),(3,14),(4,13),(5,12),(6,7),(8,11),(9,10)]                                 => 2
[(1,2),(3,14),(4,11),(5,10),(6,9),(7,8),(12,13)]                                 => 2
[(1,2),(3,14),(4,13),(5,10),(6,9),(7,8),(11,12)]                                 => 2
[(1,2),(3,14),(4,13),(5,12),(6,9),(7,8),(10,11)]                                 => 2
[(1,2),(3,14),(4,13),(5,12),(6,11),(7,8),(9,10)]                                 => 2
[(1,2),(3,14),(4,13),(5,12),(6,11),(7,10),(8,9)]                                 => 2
[(1,4),(2,3),(5,14),(6,13),(7,12),(8,11),(9,10)]                                 => 2
[(1,12),(2,3),(4,11),(5,10),(6,9),(7,8),(13,14)]                                 => 2
[(1,12),(2,11),(3,4),(5,10),(6,7),(8,9),(13,14)]                                 => 2
[(1,12),(2,11),(3,4),(5,10),(6,9),(7,8),(13,14)]                                 => 2
[(1,12),(2,11),(3,6),(4,5),(7,10),(8,9),(13,14)]                                 => 2
[(1,12),(2,11),(3,8),(4,5),(6,7),(9,10),(13,14)]                                 => 2
[(1,12),(2,11),(3,10),(4,5),(6,7),(8,9),(13,14)]                                 => 2
[(1,12),(2,11),(3,10),(4,5),(6,9),(7,8),(13,14)]                                 => 2
[(1,10),(2,9),(3,8),(4,7),(5,6),(11,14),(12,13)]                                 => 2
[(1,12),(2,9),(3,8),(4,7),(5,6),(10,11),(13,14)]                                 => 2
[(1,12),(2,11),(3,8),(4,7),(5,6),(9,10),(13,14)]                                 => 2
[(1,12),(2,11),(3,10),(4,7),(5,6),(8,9),(13,14)]                                 => 2
[(1,12),(2,11),(3,10),(4,9),(5,6),(7,8),(13,14)]                                 => 2
[(1,12),(2,11),(3,10),(4,9),(5,8),(6,7),(13,14)]                                 => 2
[(1,2),(3,16),(4,15),(5,14),(6,7),(8,13),(9,12),(10,11)]                         => 2
[(1,2),(3,16),(4,15),(5,14),(6,13),(7,8),(9,10),(11,12)]                         => 2
[(1,2),(3,16),(4,15),(5,14),(6,13),(7,8),(9,12),(10,11)]                         => 2
[(1,2),(3,16),(4,15),(5,14),(6,11),(7,10),(8,9),(12,13)]                         => 2
[(1,2),(3,16),(4,15),(5,14),(6,13),(7,10),(8,9),(11,12)]                         => 2
[(1,2),(3,16),(4,15),(5,14),(6,13),(7,12),(8,9),(10,11)]                         => 2
[(1,2),(3,16),(4,15),(5,14),(6,13),(7,12),(8,11),(9,10)]                         => 2
[(1,14),(2,13),(3,12),(4,5),(6,11),(7,10),(8,9),(15,16)]                         => 2
[(1,14),(2,13),(3,12),(4,11),(5,6),(7,8),(9,10),(15,16)]                         => 2
[(1,14),(2,13),(3,12),(4,11),(5,6),(7,10),(8,9),(15,16)]                         => 2
[(1,14),(2,13),(3,12),(4,9),(5,8),(6,7),(10,11),(15,16)]                         => 2
[(1,14),(2,13),(3,12),(4,11),(5,8),(6,7),(9,10),(15,16)]                         => 2
[(1,14),(2,13),(3,12),(4,11),(5,10),(6,7),(8,9),(15,16)]                         => 2
[(1,14),(2,13),(3,12),(4,11),(5,10),(6,9),(7,8),(15,16)]                         => 2
[(1,16),(2,15),(3,14),(4,13),(5,12),(6,11),(7,10),(8,9),(17,18)]                 => 2
[(1,2),(3,18),(4,17),(5,16),(6,15),(7,14),(8,13),(9,12),(10,11)]                 => 2
[(1,16),(2,15),(3,14),(4,13),(5,12),(6,11),(7,8),(9,10),(17,18)]                 => 2
[(1,2),(3,18),(4,17),(5,16),(6,15),(7,14),(8,13),(9,10),(11,12)]                 => 2
[(1,16),(2,15),(3,14),(4,13),(5,12),(6,9),(7,8),(10,11),(17,18)]                 => 2
[(1,16),(2,15),(3,14),(4,13),(5,12),(6,7),(8,11),(9,10),(17,18)]                 => 2
[(1,2),(3,18),(4,17),(5,16),(6,15),(7,14),(8,11),(9,10),(12,13)]                 => 2
[(1,2),(3,18),(4,17),(5,16),(6,15),(7,14),(8,9),(10,13),(11,12)]                 => 2
[(1,18),(2,17),(3,16),(4,15),(5,14),(6,13),(7,12),(8,11),(9,10),(19,20)]         => 2
[(1,2),(3,20),(4,19),(5,18),(6,17),(7,16),(8,15),(9,14),(10,13),(11,12)]         => 2
[(1,18),(2,17),(3,16),(4,15),(5,14),(6,13),(7,12),(8,9),(10,11),(19,20)]         => 2
[(1,2),(3,20),(4,19),(5,18),(6,17),(7,16),(8,15),(9,14),(10,11),(12,13)]         => 2
[(1,20),(2,19),(3,18),(4,17),(5,16),(6,15),(7,14),(8,13),(9,12),(10,11),(21,22)] => 2
[(1,2),(3,22),(4,21),(5,20),(6,19),(7,18),(8,17),(9,16),(10,15),(11,14),(12,13)] => 2
[(1,2),(3,4),(5,6),(7,9),(8,12),(10,11)]                                         => 4
[(1,2),(3,4),(5,6),(7,10),(8,12),(9,11)]                                         => 4
[(1,2),(3,4),(5,6),(7,11),(8,9),(10,12)]                                         => 4
[(1,2),(3,4),(5,6),(7,11),(8,10),(9,12)]                                         => 4
[(1,2),(3,4),(5,6),(7,11),(8,12),(9,10)]                                         => 4
[(1,2),(3,4),(5,6),(7,12),(8,10),(9,11)]                                         => 4
[(1,2),(3,4),(5,7),(6,8),(9,12),(10,11)]                                         => 4
[(1,2),(3,4),(5,7),(6,9),(8,12),(10,11)]                                         => 3
[(1,2),(3,4),(5,7),(6,10),(8,9),(11,12)]                                         => 4
[(1,2),(3,4),(5,7),(6,10),(8,12),(9,11)]                                         => 3
[(1,2),(3,4),(5,7),(6,11),(8,9),(10,12)]                                         => 3
[(1,2),(3,4),(5,7),(6,11),(8,10),(9,12)]                                         => 3
[(1,2),(3,4),(5,7),(6,11),(8,12),(9,10)]                                         => 3
[(1,2),(3,4),(5,7),(6,12),(8,9),(10,11)]                                         => 3
[(1,2),(3,4),(5,7),(6,12),(8,10),(9,11)]                                         => 3
[(1,2),(3,4),(5,7),(6,12),(8,11),(9,10)]                                         => 3
[(1,2),(3,4),(5,8),(6,7),(9,11),(10,12)]                                         => 4
[(1,2),(3,4),(5,8),(6,9),(7,12),(10,11)]                                         => 3
[(1,2),(3,4),(5,8),(6,10),(7,12),(9,11)]                                         => 3
[(1,2),(3,4),(5,8),(6,10),(7,9),(11,12)]                                         => 4
[(1,2),(3,4),(5,8),(6,11),(7,12),(9,10)]                                         => 3
[(1,2),(3,4),(5,8),(6,11),(7,10),(9,12)]                                         => 3
[(1,2),(3,4),(5,8),(6,11),(7,9),(10,12)]                                         => 3
[(1,2),(3,4),(5,8),(6,12),(7,11),(9,10)]                                         => 3
[(1,2),(3,4),(5,8),(6,12),(7,10),(9,11)]                                         => 3
[(1,2),(3,4),(5,8),(6,12),(7,9),(10,11)]                                         => 3
[(1,2),(3,4),(5,9),(6,7),(8,10),(11,12)]                                         => 4
[(1,2),(3,4),(5,9),(6,7),(8,11),(10,12)]                                         => 3
[(1,2),(3,4),(5,9),(6,7),(8,12),(10,11)]                                         => 3
[(1,2),(3,4),(5,9),(6,8),(7,12),(10,11)]                                         => 3
[(1,2),(3,4),(5,9),(6,8),(7,11),(10,12)]                                         => 3
[(1,2),(3,4),(5,9),(6,8),(7,10),(11,12)]                                         => 4
[(1,2),(3,4),(5,9),(6,10),(7,12),(8,11)]                                         => 3
[(1,2),(3,4),(5,9),(6,10),(7,8),(11,12)]                                         => 4
[(1,2),(3,4),(5,9),(6,11),(7,12),(8,10)]                                         => 3
[(1,2),(3,4),(5,9),(6,11),(7,10),(8,12)]                                         => 3
[(1,2),(3,4),(5,9),(6,11),(7,8),(10,12)]                                         => 3
[(1,2),(3,4),(5,9),(6,12),(7,11),(8,10)]                                         => 3
[(1,2),(3,4),(5,9),(6,12),(7,10),(8,11)]                                         => 3
[(1,2),(3,4),(5,9),(6,12),(7,8),(10,11)]                                         => 3
[(1,2),(3,4),(5,10),(6,7),(8,11),(9,12)]                                         => 3
[(1,2),(3,4),(5,10),(6,7),(8,12),(9,11)]                                         => 3
[(1,2),(3,4),(5,10),(6,8),(7,12),(9,11)]                                         => 3
[(1,2),(3,4),(5,10),(6,8),(7,11),(9,12)]                                         => 3
[(1,2),(3,4),(5,10),(6,8),(7,9),(11,12)]                                         => 4
[(1,2),(3,4),(5,10),(6,9),(7,12),(8,11)]                                         => 3
[(1,2),(3,4),(5,10),(6,9),(7,11),(8,12)]                                         => 3
[(1,2),(3,4),(5,10),(6,11),(7,12),(8,9)]                                         => 3
[(1,2),(3,4),(5,10),(6,11),(7,9),(8,12)]                                         => 3
[(1,2),(3,4),(5,10),(6,11),(7,8),(9,12)]                                         => 3
[(1,2),(3,4),(5,10),(6,12),(7,11),(8,9)]                                         => 3
[(1,2),(3,4),(5,10),(6,12),(7,9),(8,11)]                                         => 3
[(1,2),(3,4),(5,10),(6,12),(7,8),(9,11)]                                         => 3
[(1,2),(3,4),(5,11),(6,7),(8,9),(10,12)]                                         => 3
[(1,2),(3,4),(5,11),(6,7),(8,10),(9,12)]                                         => 3
[(1,2),(3,4),(5,11),(6,7),(8,12),(9,10)]                                         => 3
[(1,2),(3,4),(5,11),(6,8),(7,12),(9,10)]                                         => 3
[(1,2),(3,4),(5,11),(6,8),(7,10),(9,12)]                                         => 3
[(1,2),(3,4),(5,11),(6,8),(7,9),(10,12)]                                         => 3
[(1,2),(3,4),(5,11),(6,9),(7,12),(8,10)]                                         => 3
[(1,2),(3,4),(5,11),(6,9),(7,10),(8,12)]                                         => 3
[(1,2),(3,4),(5,11),(6,9),(7,8),(10,12)]                                         => 3
[(1,2),(3,4),(5,11),(6,10),(7,12),(8,9)]                                         => 3
[(1,2),(3,4),(5,11),(6,10),(7,9),(8,12)]                                         => 3
[(1,2),(3,4),(5,11),(6,10),(7,8),(9,12)]                                         => 3
[(1,2),(3,4),(5,11),(6,12),(7,10),(8,9)]                                         => 3
[(1,2),(3,4),(5,11),(6,12),(7,9),(8,10)]                                         => 3
[(1,2),(3,4),(5,11),(6,12),(7,8),(9,10)]                                         => 3
[(1,2),(3,4),(5,12),(6,7),(8,10),(9,11)]                                         => 3
[(1,2),(3,4),(5,12),(6,8),(7,11),(9,10)]                                         => 3
[(1,2),(3,4),(5,12),(6,8),(7,10),(9,11)]                                         => 3
[(1,2),(3,4),(5,12),(6,8),(7,9),(10,11)]                                         => 3
[(1,2),(3,4),(5,12),(6,9),(7,11),(8,10)]                                         => 3
[(1,2),(3,4),(5,12),(6,9),(7,10),(8,11)]                                         => 3
[(1,2),(3,4),(5,12),(6,10),(7,11),(8,9)]                                         => 3
[(1,2),(3,4),(5,12),(6,10),(7,9),(8,11)]                                         => 3
[(1,2),(3,4),(5,12),(6,10),(7,8),(9,11)]                                         => 3
[(1,2),(3,4),(5,12),(6,11),(7,9),(8,10)]                                         => 3
[(1,2),(3,5),(4,6),(7,8),(9,12),(10,11)]                                         => 4
[(1,2),(3,5),(4,6),(7,9),(8,12),(10,11)]                                         => 3
[(1,2),(3,5),(4,6),(7,10),(8,9),(11,12)]                                         => 4
[(1,2),(3,5),(4,6),(7,10),(8,12),(9,11)]                                         => 3
[(1,2),(3,5),(4,6),(7,11),(8,9),(10,12)]                                         => 3
[(1,2),(3,5),(4,6),(7,11),(8,10),(9,12)]                                         => 3
[(1,2),(3,5),(4,6),(7,11),(8,12),(9,10)]                                         => 3
[(1,2),(3,5),(4,6),(7,12),(8,9),(10,11)]                                         => 3
[(1,2),(3,5),(4,6),(7,12),(8,10),(9,11)]                                         => 3
[(1,2),(3,5),(4,6),(7,12),(8,11),(9,10)]                                         => 3
[(1,2),(3,5),(4,7),(6,8),(9,12),(10,11)]                                         => 3
[(1,2),(3,5),(4,7),(6,9),(8,12),(10,11)]                                         => 2
[(1,2),(3,5),(4,7),(6,10),(8,9),(11,12)]                                         => 3
[(1,2),(3,5),(4,7),(6,10),(8,12),(9,11)]                                         => 2
[(1,2),(3,5),(4,7),(6,11),(8,9),(10,12)]                                         => 2
[(1,2),(3,5),(4,7),(6,11),(8,10),(9,12)]                                         => 2

-----------------------------------------------------------------------------
Created: Jun 07, 2017 at 20:55 by Michael Breunig

-----------------------------------------------------------------------------
Last Updated: May 14, 2018 at 21:03 by Martin Rubey