Identifier
-
Mp00231:
Integer compositions
—bounce path⟶
Dyck paths
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00201: Dyck paths —Ringel⟶ Permutations
St000842: Permutations ⟶ ℤ
Values
[1] => [1,0] => [1,1,0,0] => [2,3,1] => 2
[1,1] => [1,0,1,0] => [1,1,0,1,0,0] => [4,3,1,2] => 2
[2] => [1,1,0,0] => [1,1,1,0,0,0] => [2,3,4,1] => 2
[1,1,1] => [1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => [5,4,1,2,3] => 2
[1,2] => [1,0,1,1,0,0] => [1,1,0,1,1,0,0,0] => [4,3,1,5,2] => 2
[2,1] => [1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => [2,5,4,1,3] => 2
[3] => [1,1,1,0,0,0] => [1,1,1,1,0,0,0,0] => [2,3,4,5,1] => 2
[1,1,1,1] => [1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [5,6,1,2,3,4] => 2
[1,1,2] => [1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,0] => [5,4,1,2,6,3] => 2
[1,2,1] => [1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0] => [6,3,1,5,2,4] => 3
[1,3] => [1,0,1,1,1,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => [4,3,1,5,6,2] => 2
[2,1,1] => [1,1,0,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => [2,6,5,1,3,4] => 2
[2,2] => [1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,0] => [2,5,4,1,6,3] => 2
[3,1] => [1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => [2,3,6,5,1,4] => 2
[4] => [1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [2,3,4,5,6,1] => 2
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => [7,6,1,2,3,4,5] => 2
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,1,0,0,0] => [5,6,1,2,3,7,4] => 2
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,0] => [2,6,7,1,3,4,5] => 2
[5] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [2,3,4,5,6,7,1] => 2
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,0] => [8,7,1,2,3,4,5,6] => 2
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0] => [1,1,1,0,0,1,0,1,0,1,1,0,0,0] => [2,6,7,1,3,4,8,5] => 2
[6] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0] => [2,3,4,5,6,7,8,1] => 2
[1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0] => [8,9,1,2,3,4,5,6,7] => 2
[7] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0] => [2,3,4,5,6,7,8,9,1] => 2
[1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0] => [10,9,1,2,3,4,5,6,7,8] => 2
[8] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0] => [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0] => [2,3,4,5,6,7,8,9,10,1] => 2
[9] => [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0] => [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0] => [2,3,4,5,6,7,8,9,10,11,1] => 2
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The breadth of a permutation.
According to [1, Def.1.6], this is the minimal Manhattan distance between two ones in the permutation matrix of $\pi$: $$\min\{|i-j|+|\pi(i)-\pi(j)|: i\neq j\}.$$
According to [1, Def.1.3], a permutation $\pi$ is $k$-prolific, if the set of permutations obtained from $\pi$ by deleting any $k$ elements and standardising has maximal cardinality, i.e., $\binom{n}{k}$.
By [1, Thm.2.22], a permutation is $k$-prolific if and only if its breath is at least $k+2$.
By [1, Cor.4.3], the smallest permutations that are $k$-prolific have size $\lceil k^2+2k+1\rceil$, and by [1, Thm.4.4], there are $k$-prolific permutations of any size larger than this.
According to [2] the proportion of $k$-prolific permutations in the set of all permutations is asymptotically equal to $\exp(-k^2-k)$.
According to [1, Def.1.6], this is the minimal Manhattan distance between two ones in the permutation matrix of $\pi$: $$\min\{|i-j|+|\pi(i)-\pi(j)|: i\neq j\}.$$
According to [1, Def.1.3], a permutation $\pi$ is $k$-prolific, if the set of permutations obtained from $\pi$ by deleting any $k$ elements and standardising has maximal cardinality, i.e., $\binom{n}{k}$.
By [1, Thm.2.22], a permutation is $k$-prolific if and only if its breath is at least $k+2$.
By [1, Cor.4.3], the smallest permutations that are $k$-prolific have size $\lceil k^2+2k+1\rceil$, and by [1, Thm.4.4], there are $k$-prolific permutations of any size larger than this.
According to [2] the proportion of $k$-prolific permutations in the set of all permutations is asymptotically equal to $\exp(-k^2-k)$.
Map
prime Dyck path
Description
Return the Dyck path obtained by adding an initial up and a final down step.
Map
Ringel
Description
The Ringel permutation of the LNakayama algebra corresponding to a Dyck path.
Map
bounce path
Description
The bounce path determined by an integer composition.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!