Identifier
-
Mp00045:
Integer partitions
—reading tableau⟶
Standard tableaux
Mp00084: Standard tableaux —conjugate⟶ Standard tableaux
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
St000825: Permutations ⟶ ℤ
Values
[1] => [[1]] => [[1]] => [1] => 0
[2] => [[1,2]] => [[1],[2]] => [2,1] => 2
[1,1] => [[1],[2]] => [[1,2]] => [1,2] => 0
[3] => [[1,2,3]] => [[1],[2],[3]] => [3,2,1] => 6
[2,1] => [[1,3],[2]] => [[1,2],[3]] => [3,1,2] => 3
[1,1,1] => [[1],[2],[3]] => [[1,2,3]] => [1,2,3] => 0
[4] => [[1,2,3,4]] => [[1],[2],[3],[4]] => [4,3,2,1] => 12
[3,1] => [[1,3,4],[2]] => [[1,2],[3],[4]] => [4,3,1,2] => 8
[2,2] => [[1,2],[3,4]] => [[1,3],[2,4]] => [2,4,1,3] => 6
[2,1,1] => [[1,4],[2],[3]] => [[1,2,3],[4]] => [4,1,2,3] => 4
[1,1,1,1] => [[1],[2],[3],[4]] => [[1,2,3,4]] => [1,2,3,4] => 0
[5] => [[1,2,3,4,5]] => [[1],[2],[3],[4],[5]] => [5,4,3,2,1] => 20
[4,1] => [[1,3,4,5],[2]] => [[1,2],[3],[4],[5]] => [5,4,3,1,2] => 15
[3,2] => [[1,2,5],[3,4]] => [[1,3],[2,4],[5]] => [5,2,4,1,3] => 12
[3,1,1] => [[1,4,5],[2],[3]] => [[1,2,3],[4],[5]] => [5,4,1,2,3] => 10
[2,2,1] => [[1,3],[2,5],[4]] => [[1,2,4],[3,5]] => [3,5,1,2,4] => 8
[2,1,1,1] => [[1,5],[2],[3],[4]] => [[1,2,3,4],[5]] => [5,1,2,3,4] => 5
[1,1,1,1,1] => [[1],[2],[3],[4],[5]] => [[1,2,3,4,5]] => [1,2,3,4,5] => 0
[6] => [[1,2,3,4,5,6]] => [[1],[2],[3],[4],[5],[6]] => [6,5,4,3,2,1] => 30
[5,1] => [[1,3,4,5,6],[2]] => [[1,2],[3],[4],[5],[6]] => [6,5,4,3,1,2] => 24
[4,2] => [[1,2,5,6],[3,4]] => [[1,3],[2,4],[5],[6]] => [6,5,2,4,1,3] => 20
[4,1,1] => [[1,4,5,6],[2],[3]] => [[1,2,3],[4],[5],[6]] => [6,5,4,1,2,3] => 18
[3,3] => [[1,2,3],[4,5,6]] => [[1,4],[2,5],[3,6]] => [3,6,2,5,1,4] => 18
[3,2,1] => [[1,3,6],[2,5],[4]] => [[1,2,4],[3,5],[6]] => [6,3,5,1,2,4] => 15
[3,1,1,1] => [[1,5,6],[2],[3],[4]] => [[1,2,3,4],[5],[6]] => [6,5,1,2,3,4] => 12
[2,2,2] => [[1,2],[3,4],[5,6]] => [[1,3,5],[2,4,6]] => [2,4,6,1,3,5] => 12
[2,2,1,1] => [[1,4],[2,6],[3],[5]] => [[1,2,3,5],[4,6]] => [4,6,1,2,3,5] => 10
[2,1,1,1,1] => [[1,6],[2],[3],[4],[5]] => [[1,2,3,4,5],[6]] => [6,1,2,3,4,5] => 6
[1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6]] => [[1,2,3,4,5,6]] => [1,2,3,4,5,6] => 0
[7] => [[1,2,3,4,5,6,7]] => [[1],[2],[3],[4],[5],[6],[7]] => [7,6,5,4,3,2,1] => 42
[6,1] => [[1,3,4,5,6,7],[2]] => [[1,2],[3],[4],[5],[6],[7]] => [7,6,5,4,3,1,2] => 35
[5,1,1] => [[1,4,5,6,7],[2],[3]] => [[1,2,3],[4],[5],[6],[7]] => [7,6,5,4,1,2,3] => 28
[4,1,1,1] => [[1,5,6,7],[2],[3],[4]] => [[1,2,3,4],[5],[6],[7]] => [7,6,5,1,2,3,4] => 21
[3,1,1,1,1] => [[1,6,7],[2],[3],[4],[5]] => [[1,2,3,4,5],[6],[7]] => [7,6,1,2,3,4,5] => 14
[2,1,1,1,1,1] => [[1,7],[2],[3],[4],[5],[6]] => [[1,2,3,4,5,6],[7]] => [7,1,2,3,4,5,6] => 7
[1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7]] => [[1,2,3,4,5,6,7]] => [1,2,3,4,5,6,7] => 0
[8] => [[1,2,3,4,5,6,7,8]] => [[1],[2],[3],[4],[5],[6],[7],[8]] => [8,7,6,5,4,3,2,1] => 56
[7,1] => [[1,3,4,5,6,7,8],[2]] => [[1,2],[3],[4],[5],[6],[7],[8]] => [8,7,6,5,4,3,1,2] => 48
[6,1,1] => [[1,4,5,6,7,8],[2],[3]] => [[1,2,3],[4],[5],[6],[7],[8]] => [8,7,6,5,4,1,2,3] => 40
[5,1,1,1] => [[1,5,6,7,8],[2],[3],[4]] => [[1,2,3,4],[5],[6],[7],[8]] => [8,7,6,5,1,2,3,4] => 32
[4,1,1,1,1] => [[1,6,7,8],[2],[3],[4],[5]] => [[1,2,3,4,5],[6],[7],[8]] => [8,7,6,1,2,3,4,5] => 24
[3,1,1,1,1,1] => [[1,7,8],[2],[3],[4],[5],[6]] => [[1,2,3,4,5,6],[7],[8]] => [8,7,1,2,3,4,5,6] => 16
[2,2,2,2] => [[1,2],[3,4],[5,6],[7,8]] => [[1,3,5,7],[2,4,6,8]] => [2,4,6,8,1,3,5,7] => 20
[2,1,1,1,1,1,1] => [[1,8],[2],[3],[4],[5],[6],[7]] => [[1,2,3,4,5,6,7],[8]] => [8,1,2,3,4,5,6,7] => 8
[1,1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7],[8]] => [[1,2,3,4,5,6,7,8]] => [1,2,3,4,5,6,7,8] => 0
[9] => [[1,2,3,4,5,6,7,8,9]] => [[1],[2],[3],[4],[5],[6],[7],[8],[9]] => [9,8,7,6,5,4,3,2,1] => 72
[8,1] => [[1,3,4,5,6,7,8,9],[2]] => [[1,2],[3],[4],[5],[6],[7],[8],[9]] => [9,8,7,6,5,4,3,1,2] => 63
[7,1,1] => [[1,4,5,6,7,8,9],[2],[3]] => [[1,2,3],[4],[5],[6],[7],[8],[9]] => [9,8,7,6,5,4,1,2,3] => 54
[6,1,1,1] => [[1,5,6,7,8,9],[2],[3],[4]] => [[1,2,3,4],[5],[6],[7],[8],[9]] => [9,8,7,6,5,1,2,3,4] => 45
[5,1,1,1,1] => [[1,6,7,8,9],[2],[3],[4],[5]] => [[1,2,3,4,5],[6],[7],[8],[9]] => [9,8,7,6,1,2,3,4,5] => 36
[4,1,1,1,1,1] => [[1,7,8,9],[2],[3],[4],[5],[6]] => [[1,2,3,4,5,6],[7],[8],[9]] => [9,8,7,1,2,3,4,5,6] => 27
[3,1,1,1,1,1,1] => [[1,8,9],[2],[3],[4],[5],[6],[7]] => [[1,2,3,4,5,6,7],[8],[9]] => [9,8,1,2,3,4,5,6,7] => 18
[2,1,1,1,1,1,1,1] => [[1,9],[2],[3],[4],[5],[6],[7],[8]] => [[1,2,3,4,5,6,7,8],[9]] => [9,1,2,3,4,5,6,7,8] => 9
[1,1,1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7],[8],[9]] => [[1,2,3,4,5,6,7,8,9]] => [1,2,3,4,5,6,7,8,9] => 0
[10] => [[1,2,3,4,5,6,7,8,9,10]] => [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10]] => [10,9,8,7,6,5,4,3,2,1] => 90
[9,1] => [[1,3,4,5,6,7,8,9,10],[2]] => [[1,2],[3],[4],[5],[6],[7],[8],[9],[10]] => [10,9,8,7,6,5,4,3,1,2] => 80
[8,1,1] => [[1,4,5,6,7,8,9,10],[2],[3]] => [[1,2,3],[4],[5],[6],[7],[8],[9],[10]] => [10,9,8,7,6,5,4,1,2,3] => 70
[7,1,1,1] => [[1,5,6,7,8,9,10],[2],[3],[4]] => [[1,2,3,4],[5],[6],[7],[8],[9],[10]] => [10,9,8,7,6,5,1,2,3,4] => 60
[6,1,1,1,1] => [[1,6,7,8,9,10],[2],[3],[4],[5]] => [[1,2,3,4,5],[6],[7],[8],[9],[10]] => [10,9,8,7,6,1,2,3,4,5] => 50
[5,1,1,1,1,1] => [[1,7,8,9,10],[2],[3],[4],[5],[6]] => [[1,2,3,4,5,6],[7],[8],[9],[10]] => [10,9,8,7,1,2,3,4,5,6] => 40
[4,1,1,1,1,1,1] => [[1,8,9,10],[2],[3],[4],[5],[6],[7]] => [[1,2,3,4,5,6,7],[8],[9],[10]] => [10,9,8,1,2,3,4,5,6,7] => 30
[3,1,1,1,1,1,1,1] => [[1,9,10],[2],[3],[4],[5],[6],[7],[8]] => [[1,2,3,4,5,6,7,8],[9],[10]] => [10,9,1,2,3,4,5,6,7,8] => 20
[2,2,2,2,2] => [[1,2],[3,4],[5,6],[7,8],[9,10]] => [[1,3,5,7,9],[2,4,6,8,10]] => [2,4,6,8,10,1,3,5,7,9] => 30
[2,1,1,1,1,1,1,1,1] => [[1,10],[2],[3],[4],[5],[6],[7],[8],[9]] => [[1,2,3,4,5,6,7,8,9],[10]] => [10,1,2,3,4,5,6,7,8,9] => 10
[1,1,1,1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10]] => [[1,2,3,4,5,6,7,8,9,10]] => [1,2,3,4,5,6,7,8,9,10] => 0
[12] => [[1,2,3,4,5,6,7,8,9,10,11,12]] => [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12]] => [12,11,10,9,8,7,6,5,4,3,2,1] => 132
[2,2,2,2,2,2] => [[1,2],[3,4],[5,6],[7,8],[9,10],[11,12]] => [[1,3,5,7,9,11],[2,4,6,8,10,12]] => [2,4,6,8,10,12,1,3,5,7,9,11] => 42
[] => [] => [] => [] => 0
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
Map
reading word permutation
Description
Return the permutation obtained by reading the entries of the tableau row by row, starting with the bottom-most row in English notation.
Map
reading tableau
Description
Return the RSK recording tableau of the reading word of the (standard) tableau $T$ labeled down (in English convention) each column to the shape of a partition.
Map
conjugate
Description
Sends a standard tableau to its conjugate tableau.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!