***************************************************************************** * www.FindStat.org - The Combinatorial Statistic Finder * * * * Copyright (C) 2019 The FindStatCrew * * * * This information is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * ***************************************************************************** ----------------------------------------------------------------------------- Statistic identifier: St000816 ----------------------------------------------------------------------------- Collection: Integer compositions ----------------------------------------------------------------------------- Description: The number of standard composition tableaux of the composition. See [1, Def. 4.2.6]. Apparently, the total number of tableaux of given size is the number of involutions. ----------------------------------------------------------------------------- References: [1] Luoto, K., Mykytiuk, S., van Willigenburg, S. An introduction to quasisymmetric Schur functions [[MathSciNet:3097867]] ----------------------------------------------------------------------------- Code: def statistic(c): F = QuasiSymmetricFunctions(ZZ).F() QS = QuasiSymmetricFunctions(ZZ).QS() return sum(coeff for _, coeff in F(QS(c))) ----------------------------------------------------------------------------- Statistic values: [1] => 1 [1,1] => 1 [2] => 1 [1,1,1] => 1 [1,2] => 1 [2,1] => 1 [3] => 1 [1,1,1,1] => 1 [1,1,2] => 1 [1,2,1] => 1 [1,3] => 2 [2,1,1] => 1 [2,2] => 2 [3,1] => 1 [4] => 1 [1,1,1,1,1] => 1 [1,1,1,2] => 1 [1,1,2,1] => 1 [1,1,3] => 3 [1,2,1,1] => 1 [1,2,2] => 2 [1,3,1] => 2 [1,4] => 3 [2,1,1,1] => 1 [2,1,2] => 1 [2,2,1] => 2 [2,3] => 2 [3,1,1] => 1 [3,2] => 3 [4,1] => 1 [5] => 1 [1,1,1,1,1,1] => 1 [1,1,1,1,2] => 1 [1,1,1,2,1] => 1 [1,1,1,3] => 4 [1,1,2,1,1] => 1 [1,1,2,2] => 2 [1,1,3,1] => 3 [1,1,4] => 6 [1,2,1,1,1] => 1 [1,2,1,2] => 1 [1,2,2,1] => 2 [1,2,3] => 2 [1,3,1,1] => 2 [1,3,2] => 5 [1,4,1] => 3 [1,5] => 4 [2,1,1,1,1] => 1 [2,1,1,2] => 1 [2,1,2,1] => 1 [2,1,3] => 3 [2,2,1,1] => 2 [2,2,2] => 5 [2,3,1] => 2 [2,4] => 5 [3,1,1,1] => 1 [3,1,2] => 1 [3,2,1] => 3 [3,3] => 5 [4,1,1] => 1 [4,2] => 4 [5,1] => 1 [6] => 1 [1,1,1,1,1,1,1] => 1 [1,1,1,1,1,2] => 1 [1,1,1,1,2,1] => 1 [1,1,1,1,3] => 5 [1,1,1,2,1,1] => 1 [1,1,1,2,2] => 2 [1,1,1,3,1] => 4 [1,1,1,4] => 10 [1,1,2,1,1,1] => 1 [1,1,2,1,2] => 1 [1,1,2,2,1] => 2 [1,1,2,3] => 2 [1,1,3,1,1] => 3 [1,1,3,2] => 7 [1,1,4,1] => 6 [1,1,5] => 10 [1,2,1,1,1,1] => 1 [1,2,1,1,2] => 1 [1,2,1,2,1] => 1 [1,2,1,3] => 3 [1,2,2,1,1] => 2 [1,2,2,2] => 5 [1,2,3,1] => 2 [1,2,4] => 7 [1,3,1,1,1] => 2 [1,3,1,2] => 2 [1,3,2,1] => 5 [1,3,3] => 12 [1,4,1,1] => 3 [1,4,2] => 9 [1,5,1] => 4 [1,6] => 5 [2,1,1,1,1,1] => 1 [2,1,1,1,2] => 1 [2,1,1,2,1] => 1 [2,1,1,3] => 4 [2,1,2,1,1] => 1 [2,1,2,2] => 2 [2,1,3,1] => 3 [2,1,4] => 9 [2,2,1,1,1] => 2 [2,2,1,2] => 2 [2,2,2,1] => 5 [2,2,3] => 5 [2,3,1,1] => 2 [2,3,2] => 7 [2,4,1] => 5 [2,5] => 9 [3,1,1,1,1] => 1 [3,1,1,2] => 1 [3,1,2,1] => 1 [3,1,3] => 4 [3,2,1,1] => 3 [3,2,2] => 9 [3,3,1] => 5 [3,4] => 5 [4,1,1,1] => 1 [4,1,2] => 1 [4,2,1] => 4 [4,3] => 9 [5,1,1] => 1 [5,2] => 5 [6,1] => 1 [7] => 1 [1,1,1,1,1,1,1,1] => 1 [1,1,1,1,1,1,2] => 1 [1,1,1,1,1,2,1] => 1 [1,1,1,1,1,3] => 6 [1,1,1,1,2,1,1] => 1 [1,1,1,1,2,2] => 2 [1,1,1,1,3,1] => 5 [1,1,1,1,4] => 15 [1,1,1,2,1,1,1] => 1 [1,1,1,2,1,2] => 1 [1,1,1,2,2,1] => 2 [1,1,1,2,3] => 2 [1,1,1,3,1,1] => 4 [1,1,1,3,2] => 9 [1,1,1,4,1] => 10 [1,1,1,5] => 20 [1,1,2,1,1,1,1] => 1 [1,1,2,1,1,2] => 1 [1,1,2,1,2,1] => 1 [1,1,2,1,3] => 3 [1,1,2,2,1,1] => 2 [1,1,2,2,2] => 5 [1,1,2,3,1] => 2 [1,1,2,4] => 9 [1,1,3,1,1,1] => 3 [1,1,3,1,2] => 3 [1,1,3,2,1] => 7 [1,1,3,3] => 21 [1,1,4,1,1] => 6 [1,1,4,2] => 16 [1,1,5,1] => 10 [1,1,6] => 15 [1,2,1,1,1,1,1] => 1 [1,2,1,1,1,2] => 1 [1,2,1,1,2,1] => 1 [1,2,1,1,3] => 4 [1,2,1,2,1,1] => 1 [1,2,1,2,2] => 2 [1,2,1,3,1] => 3 [1,2,1,4] => 12 [1,2,2,1,1,1] => 2 [1,2,2,1,2] => 2 [1,2,2,2,1] => 5 [1,2,2,3] => 5 [1,2,3,1,1] => 2 [1,2,3,2] => 7 [1,2,4,1] => 7 [1,2,5] => 16 [1,3,1,1,1,1] => 2 [1,3,1,1,2] => 2 [1,3,1,2,1] => 2 [1,3,1,3] => 9 [1,3,2,1,1] => 5 [1,3,2,2] => 14 [1,3,3,1] => 12 [1,3,4] => 12 [1,4,1,1,1] => 3 [1,4,1,2] => 3 [1,4,2,1] => 9 [1,4,3] => 30 [1,5,1,1] => 4 [1,5,2] => 14 [1,6,1] => 5 [1,7] => 6 [2,1,1,1,1,1,1] => 1 [2,1,1,1,1,2] => 1 [2,1,1,1,2,1] => 1 [2,1,1,1,3] => 5 [2,1,1,2,1,1] => 1 [2,1,1,2,2] => 2 [2,1,1,3,1] => 4 [2,1,1,4] => 14 [2,1,2,1,1,1] => 1 [2,1,2,1,2] => 1 [2,1,2,2,1] => 2 [2,1,2,3] => 2 [2,1,3,1,1] => 3 [2,1,3,2] => 7 [2,1,4,1] => 9 [2,1,5] => 19 [2,2,1,1,1,1] => 2 [2,2,1,1,2] => 2 [2,2,1,2,1] => 2 [2,2,1,3] => 7 [2,2,2,1,1] => 5 [2,2,2,2] => 14 [2,2,3,1] => 5 [2,2,4] => 21 [2,3,1,1,1] => 2 [2,3,1,2] => 2 [2,3,2,1] => 7 [2,3,3] => 12 [2,4,1,1] => 5 [2,4,2] => 21 [2,5,1] => 9 [2,6] => 14 [3,1,1,1,1,1] => 1 [3,1,1,1,2] => 1 [3,1,1,2,1] => 1 [3,1,1,3] => 5 [3,1,2,1,1] => 1 [3,1,2,2] => 2 [3,1,3,1] => 4 [3,1,4] => 9 [3,2,1,1,1] => 3 [3,2,1,2] => 3 [3,2,2,1] => 9 [3,2,3] => 9 [3,3,1,1] => 5 [3,3,2] => 21 [3,4,1] => 5 [3,5] => 14 [4,1,1,1,1] => 1 [4,1,1,2] => 1 [4,1,2,1] => 1 [4,1,3] => 5 [4,2,1,1] => 4 [4,2,2] => 14 [4,3,1] => 9 [4,4] => 14 [5,1,1,1] => 1 [5,1,2] => 1 [5,2,1] => 5 [5,3] => 14 [6,1,1] => 1 [6,2] => 6 [7,1] => 1 [8] => 1 [1,1,1,1,1,1,1,1,1] => 1 [1,1,1,1,1,1,1,2] => 1 [1,1,1,1,1,1,2,1] => 1 [1,1,1,1,1,1,3] => 7 [1,1,1,1,1,2,1,1] => 1 [1,1,1,1,1,2,2] => 2 [1,1,1,1,1,3,1] => 6 [1,1,1,1,1,4] => 21 [1,1,1,1,2,1,1,1] => 1 [1,1,1,1,2,1,2] => 1 [1,1,1,1,2,2,1] => 2 [1,1,1,1,2,3] => 2 [1,1,1,1,3,1,1] => 5 [1,1,1,1,3,2] => 11 [1,1,1,1,4,1] => 15 [1,1,1,1,5] => 35 [1,1,1,2,1,1,1,1] => 1 [1,1,1,2,1,1,2] => 1 [1,1,1,2,1,2,1] => 1 [1,1,1,2,1,3] => 3 [1,1,1,2,2,1,1] => 2 [1,1,1,2,2,2] => 5 [1,1,1,2,3,1] => 2 [1,1,1,2,4] => 11 [1,1,1,3,1,1,1] => 4 [1,1,1,3,1,2] => 4 [1,1,1,3,2,1] => 9 [1,1,1,3,3] => 32 [1,1,1,4,1,1] => 10 [1,1,1,4,2] => 25 [1,1,1,5,1] => 20 [1,1,1,6] => 35 [1,1,2,1,1,1,1,1] => 1 [1,1,2,1,1,1,2] => 1 [1,1,2,1,1,2,1] => 1 [1,1,2,1,1,3] => 4 [1,1,2,1,2,1,1] => 1 [1,1,2,1,2,2] => 2 [1,1,2,1,3,1] => 3 [1,1,2,1,4] => 15 [1,1,2,2,1,1,1] => 2 [1,1,2,2,1,2] => 2 [1,1,2,2,2,1] => 5 [1,1,2,2,3] => 5 [1,1,2,3,1,1] => 2 [1,1,2,3,2] => 7 [1,1,2,4,1] => 9 [1,1,2,5] => 25 [1,1,3,1,1,1,1] => 3 [1,1,3,1,1,2] => 3 [1,1,3,1,2,1] => 3 [1,1,3,1,3] => 15 [1,1,3,2,1,1] => 7 [1,1,3,2,2] => 19 [1,1,3,3,1] => 21 [1,1,3,4] => 21 [1,1,4,1,1,1] => 6 [1,1,4,1,2] => 6 [1,1,4,2,1] => 16 [1,1,4,3] => 67 [1,1,5,1,1] => 10 [1,1,5,2] => 30 [1,1,6,1] => 15 [1,1,7] => 21 [1,2,1,1,1,1,1,1] => 1 [1,2,1,1,1,1,2] => 1 [1,2,1,1,1,2,1] => 1 [1,2,1,1,1,3] => 5 [1,2,1,1,2,1,1] => 1 [1,2,1,1,2,2] => 2 [1,2,1,1,3,1] => 4 [1,2,1,1,4] => 18 [1,2,1,2,1,1,1] => 1 [1,2,1,2,1,2] => 1 [1,2,1,2,2,1] => 2 [1,2,1,2,3] => 2 [1,2,1,3,1,1] => 3 [1,2,1,3,2] => 7 [1,2,1,4,1] => 12 [1,2,1,5] => 31 [1,2,2,1,1,1,1] => 2 [1,2,2,1,1,2] => 2 [1,2,2,1,2,1] => 2 [1,2,2,1,3] => 7 [1,2,2,2,1,1] => 5 [1,2,2,2,2] => 14 [1,2,2,3,1] => 5 [1,2,2,4] => 26 [1,2,3,1,1,1] => 2 [1,2,3,1,2] => 2 [1,2,3,2,1] => 7 [1,2,3,3] => 12 [1,2,4,1,1] => 7 [1,2,4,2] => 28 [1,2,5,1] => 16 [1,2,6] => 30 [1,3,1,1,1,1,1] => 2 [1,3,1,1,1,2] => 2 [1,3,1,1,2,1] => 2 [1,3,1,1,3] => 11 [1,3,1,2,1,1] => 2 [1,3,1,2,2] => 4 [1,3,1,3,1] => 9 [1,3,1,4] => 21 [1,3,2,1,1,1] => 5 [1,3,2,1,2] => 5 [1,3,2,2,1] => 14 [1,3,2,3] => 14 [1,3,3,1,1] => 12 [1,3,3,2] => 42 [1,3,4,1] => 12 [1,3,5] => 42 [1,4,1,1,1,1] => 3 [1,4,1,1,2] => 3 [1,4,1,2,1] => 3 [1,4,1,3] => 17 [1,4,2,1,1] => 9 [1,4,2,2] => 28 [1,4,3,1] => 30 [1,4,4] => 56 [1,5,1,1,1] => 4 [1,5,1,2] => 4 [1,5,2,1] => 14 [1,5,3] => 58 [1,6,1,1] => 5 [1,6,2] => 20 [1,7,1] => 6 [1,8] => 7 [2,1,1,1,1,1,1,1] => 1 [2,1,1,1,1,1,2] => 1 [2,1,1,1,1,2,1] => 1 [2,1,1,1,1,3] => 6 [2,1,1,1,2,1,1] => 1 [2,1,1,1,2,2] => 2 [2,1,1,1,3,1] => 5 [2,1,1,1,4] => 20 [2,1,1,2,1,1,1] => 1 [2,1,1,2,1,2] => 1 [2,1,1,2,2,1] => 2 [2,1,1,2,3] => 2 [2,1,1,3,1,1] => 4 [2,1,1,3,2] => 9 [2,1,1,4,1] => 14 [2,1,1,5] => 34 [2,1,2,1,1,1,1] => 1 [2,1,2,1,1,2] => 1 [2,1,2,1,2,1] => 1 [2,1,2,1,3] => 3 [2,1,2,2,1,1] => 2 [2,1,2,2,2] => 5 [2,1,2,3,1] => 2 [2,1,2,4] => 11 [2,1,3,1,1,1] => 3 [2,1,3,1,2] => 3 [2,1,3,2,1] => 7 [2,1,3,3] => 21 [2,1,4,1,1] => 9 [2,1,4,2] => 23 [2,1,5,1] => 19 [2,1,6] => 34 [2,2,1,1,1,1,1] => 2 [2,2,1,1,1,2] => 2 [2,2,1,1,2,1] => 2 [2,2,1,1,3] => 9 [2,2,1,2,1,1] => 2 [2,2,1,2,2] => 4 [2,2,1,3,1] => 7 [2,2,1,4] => 33 [2,2,2,1,1,1] => 5 [2,2,2,1,2] => 5 [2,2,2,2,1] => 14 [2,2,2,3] => 14 [2,2,3,1,1] => 5 [2,2,3,2] => 19 [2,2,4,1] => 21 [2,2,5] => 56 [2,3,1,1,1,1] => 2 [2,3,1,1,2] => 2 [2,3,1,2,1] => 2 [2,3,1,3] => 9 [2,3,2,1,1] => 7 [2,3,2,2] => 23 [2,3,3,1] => 12 [2,3,4] => 12 [2,4,1,1,1] => 5 [2,4,1,2] => 5 [2,4,2,1] => 21 [2,4,3] => 42 [2,5,1,1] => 9 [2,5,2] => 44 [2,6,1] => 14 [2,7] => 20 [3,1,1,1,1,1,1] => 1 [3,1,1,1,1,2] => 1 [3,1,1,1,2,1] => 1 [3,1,1,1,3] => 6 [3,1,1,2,1,1] => 1 [3,1,1,2,2] => 2 [3,1,1,3,1] => 5 [3,1,1,4] => 14 [3,1,2,1,1,1] => 1 [3,1,2,1,2] => 1 [3,1,2,2,1] => 2 [3,1,2,3] => 2 [3,1,3,1,1] => 4 [3,1,3,2] => 9 [3,1,4,1] => 9 [3,1,5] => 28 [3,2,1,1,1,1] => 3 [3,2,1,1,2] => 3 [3,2,1,2,1] => 3 [3,2,1,3] => 12 [3,2,2,1,1] => 9 [3,2,2,2] => 28 [3,2,3,1] => 9 [3,2,4] => 30 [3,3,1,1,1] => 5 [3,3,1,2] => 5 [3,3,2,1] => 21 [3,3,3] => 42 [3,4,1,1] => 5 [3,4,2] => 26 [3,5,1] => 14 [3,6] => 28 [4,1,1,1,1,1] => 1 [4,1,1,1,2] => 1 [4,1,1,2,1] => 1 [4,1,1,3] => 6 [4,1,2,1,1] => 1 [4,1,2,2] => 2 [4,1,3,1] => 5 [4,1,4] => 14 [4,2,1,1,1] => 4 [4,2,1,2] => 4 [4,2,2,1] => 14 [4,2,3] => 14 [4,3,1,1] => 9 [4,3,2] => 44 [4,4,1] => 14 [4,5] => 14 [5,1,1,1,1] => 1 [5,1,1,2] => 1 [5,1,2,1] => 1 [5,1,3] => 6 [5,2,1,1] => 5 [5,2,2] => 20 [5,3,1] => 14 [5,4] => 28 [6,1,1,1] => 1 [6,1,2] => 1 [6,2,1] => 6 [6,3] => 20 [7,1,1] => 1 [7,2] => 7 [8,1] => 1 [9] => 1 ----------------------------------------------------------------------------- Created: May 19, 2017 at 23:08 by Martin Rubey ----------------------------------------------------------------------------- Last Updated: Nov 19, 2017 at 22:03 by Christian Stump