*****************************************************************************
*       www.FindStat.org - The Combinatorial Statistic Finder               *
*                                                                           *
*       Copyright (C) 2019 The FindStatCrew <info@findstat.org>             *
*                                                                           *
*    This information is distributed in the hope that it will be useful,    *
*    but WITHOUT ANY WARRANTY; without even the implied warranty of         *
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                   *
*****************************************************************************

-----------------------------------------------------------------------------
Statistic identifier: St000815

-----------------------------------------------------------------------------
Collection: Integer partitions

-----------------------------------------------------------------------------
Description: The number of semistandard Young tableaux of partition weight of given shape.

The weight of a semistandard Young tableaux is the sequence $(m_1, m_2,\dots)$, where $m_i$ is the number of occurrences of the number $i$ in the tableau.  This statistic counts those tableaux whose weight is a weakly decreasing sequence.

Alternatively, this is the sum of the entries in the column specified by the partition of the change of basis matrix from Schur functions to monomial symmetric functions.

-----------------------------------------------------------------------------
References: [1]   a(n)= sum of entries of n-th Kostka matrix for the partitions of n. [[OEIS:A178718]]

-----------------------------------------------------------------------------
Code:
def statistic(mu):
    m = SymmetricFunctions(ZZ).m()
    s = SymmetricFunctions(ZZ).s()
    return sum(coeff for _, coeff in m(s(mu)))


-----------------------------------------------------------------------------
Statistic values:

[2]                       => 2
[1,1]                     => 1
[3]                       => 3
[2,1]                     => 3
[1,1,1]                   => 1
[4]                       => 5
[3,1]                     => 7
[2,2]                     => 4
[2,1,1]                   => 4
[1,1,1,1]                 => 1
[5]                       => 7
[4,1]                     => 13
[3,2]                     => 12
[3,1,1]                   => 11
[2,2,1]                   => 8
[2,1,1,1]                 => 5
[1,1,1,1,1]               => 1
[6]                       => 11
[5,1]                     => 24
[4,2]                     => 30
[4,1,1]                   => 25
[3,3]                     => 14
[3,2,1]                   => 33
[3,1,1,1]                 => 16
[2,2,2]                   => 9
[2,2,1,1]                 => 13
[2,1,1,1,1]               => 6
[1,1,1,1,1,1]             => 1
[7]                       => 15
[6,1]                     => 39
[5,2]                     => 59
[5,1,1]                   => 50
[4,3]                     => 47
[4,2,1]                   => 90
[4,1,1,1]                 => 41
[3,3,1]                   => 48
[3,2,2]                   => 43
[3,2,1,1]                 => 62
[3,1,1,1,1]               => 22
[2,2,2,1]                 => 22
[2,2,1,1,1]               => 19
[2,1,1,1,1,1]             => 7
[1,1,1,1,1,1,1]           => 1
[8]                       => 22
[7,1]                     => 64
[6,2]                     => 113
[6,1,1]                   => 94
[5,3]                     => 119
[5,2,1]                   => 211
[5,1,1,1]                 => 92
[4,4]                     => 53
[4,3,1]                   => 195
[4,2,2]                   => 141
[4,2,1,1]                 => 196
[4,1,1,1,1]               => 63
[3,3,2]                   => 95
[3,3,1,1]                 => 112
[3,2,2,1]                 => 130
[3,2,1,1,1]               => 103
[3,1,1,1,1,1]             => 29
[2,2,2,2]                 => 23
[2,2,2,1,1]               => 41
[2,2,1,1,1,1]             => 26
[2,1,1,1,1,1,1]           => 8
[1,1,1,1,1,1,1,1]         => 1
[9]                       => 30
[8,1]                     => 98
[7,2]                     => 195
[7,1,1]                   => 164
[6,3]                     => 250
[6,2,1]                   => 432
[6,1,1,1]                 => 187
[5,4]                     => 183
[5,3,1]                   => 540
[5,2,2]                   => 361
[5,2,1,1]                 => 502
[5,1,1,1,1]               => 155
[4,4,1]                   => 254
[4,3,2]                   => 440
[4,3,1,1]                 => 506
[4,2,2,1]                 => 470
[4,2,1,1,1]               => 362
[4,1,1,1,1,1]             => 92
[3,3,3]                   => 97
[3,3,2,1]                 => 339
[3,3,1,1,1]               => 215
[3,2,2,2]                 => 154
[3,2,2,1,1]               => 274
[3,2,1,1,1,1]             => 158
[3,1,1,1,1,1,1]           => 37
[2,2,2,2,1]               => 64
[2,2,2,1,1,1]             => 67
[2,2,1,1,1,1,1]           => 34
[2,1,1,1,1,1,1,1]         => 9
[1,1,1,1,1,1,1,1,1]       => 1
[10]                      => 42
[9,1]                     => 150
[8,2]                     => 331
[8,1,1]                   => 278
[7,3]                     => 490
[7,2,1]                   => 835
[7,1,1,1]                 => 357
[6,4]                     => 472
[6,3,1]                   => 1280
[6,2,2]                   => 829
[6,2,1,1]                 => 1142
[6,1,1,1,1]               => 343
[5,5]                     => 198
[5,4,1]                   => 1020
[5,3,2]                   => 1390
[5,3,1,1]                 => 1576
[5,2,2,1]                 => 1359
[5,2,1,1,1]               => 1023
[5,1,1,1,1,1]             => 247
[4,4,2]                   => 719
[4,4,1,1]                 => 773
[4,3,3]                   => 552
[4,3,2,1]                 => 1785
[4,3,1,1,1]               => 1088
[4,2,2,2]                 => 636
[4,2,2,1,1]               => 1112
[4,2,1,1,1,1]             => 612
[4,1,1,1,1,1,1]           => 129
[3,3,3,1]                 => 442
[3,3,2,2]                 => 500
[3,3,2,1,1]               => 833
[3,3,1,1,1,1]             => 373
[3,2,2,2,1]               => 496
[3,2,2,1,1,1]             => 499
[3,2,1,1,1,1,1]           => 229
[3,1,1,1,1,1,1,1]         => 46
[2,2,2,2,2]               => 65
[2,2,2,2,1,1]             => 131
[2,2,2,1,1,1,1]           => 101
[2,2,1,1,1,1,1,1]         => 43
[2,1,1,1,1,1,1,1,1]       => 10
[1,1,1,1,1,1,1,1,1,1]     => 1
[11]                      => 56
[10,1]                    => 219
[9,2]                     => 528
[9,1,1]                   => 448
[8,3]                     => 880
[8,2,1]                   => 1498
[8,1,1,1]                 => 642
[7,4]                     => 1018
[7,3,1]                   => 2682
[7,2,2]                   => 1707
[7,2,1,1]                 => 2358
[7,1,1,1,1]               => 701
[6,5]                     => 704
[6,4,1]                   => 2841
[6,3,2]                   => 3568
[6,3,1,1]                 => 4034
[6,2,2,1]                 => 3359
[6,2,1,1,1]               => 2512
[6,1,1,1,1,1]             => 590
[5,5,1]                   => 1246
[5,4,2]                   => 3182
[5,4,1,1]                 => 3396
[5,3,3]                   => 1970
[5,3,2,1]                 => 6154
[5,3,1,1,1]               => 3693
[5,2,2,2]                 => 2008
[5,2,2,1,1]               => 3500
[5,2,1,1,1,1]             => 1882
[5,1,1,1,1,1,1]           => 376
[4,4,3]                   => 1287
[4,4,2,1]                 => 3298
[4,4,1,1,1]               => 1864
[4,3,3,1]                 => 2795
[4,3,2,2]                 => 2936
[4,3,2,1,1]               => 4826
[4,3,1,1,1,1]             => 2073
[4,2,2,2,1]               => 2248
[4,2,2,1,1,1]             => 2223
[4,2,1,1,1,1,1]           => 970
[4,1,1,1,1,1,1,1]         => 175
[3,3,3,2]                 => 946
[3,3,3,1,1]               => 1277
[3,3,2,2,1]               => 1832
[3,3,2,1,1,1]             => 1705
[3,3,1,1,1,1,1]           => 602
[3,2,2,2,2]               => 562
[3,2,2,2,1,1]             => 1126
[3,2,2,1,1,1,1]           => 829
[3,2,1,1,1,1,1,1]         => 318
[3,1,1,1,1,1,1,1,1]       => 56
[2,2,2,2,2,1]             => 196
[2,2,2,2,1,1,1]           => 232
[2,2,2,1,1,1,1,1]         => 144
[2,2,1,1,1,1,1,1,1]       => 53
[2,1,1,1,1,1,1,1,1,1]     => 11
[1,1,1,1,1,1,1,1,1,1,1]   => 1
[12]                      => 77
[11,1]                    => 322
[10,2]                    => 838
[10,1,1]                  => 711
[9,3]                     => 1539
[9,2,1]                   => 2608
[9,1,1,1]                 => 1113
[8,4]                     => 2046
[8,3,1]                   => 5285
[8,2,2]                   => 3332
[8,2,1,1]                 => 4588
[8,1,1,1,1]               => 1350
[7,5]                     => 1840
[7,4,1]                   => 6795
[7,3,2]                   => 8210
[7,3,1,1]                 => 9237
[7,2,2,1]                 => 7554
[7,2,1,1,1]               => 5603
[7,1,1,1,1,1]             => 1292
[6,6]                     => 751
[6,5,1]                   => 4962
[6,4,2]                   => 9862
[6,4,1,1]                 => 10440
[6,3,3]                   => 5673
[6,3,2,1]                 => 17371
[6,3,1,1,1]               => 10298
[6,2,2,2]                 => 5442
[6,2,2,1,1]               => 9428
[6,2,1,1,1,1]             => 4989
[6,1,1,1,1,1,1]           => 966
[5,5,2]                   => 4543
[5,5,1,1]                 => 4716
[5,4,3]                   => 6582
[5,4,2,1]                 => 16251
[5,4,1,1,1]               => 9003
[5,3,3,1]                 => 11053
[5,3,2,2]                 => 11225
[5,3,2,1,1]               => 18277
[5,3,1,1,1,1]             => 7657
[5,2,2,2,1]               => 7804
[5,2,2,1,1,1]             => 7615
[5,2,1,1,1,1,1]           => 3228
[5,1,1,1,1,1,1,1]         => 551
[4,4,4]                   => 1314
[4,4,3,1]                 => 7466
[4,4,2,2]                 => 6303
[4,4,2,1,1]               => 10042
[4,4,1,1,1,1]             => 3942
[4,3,3,2]                 => 6738
[4,3,3,1,1]               => 8944
[4,3,2,2,1]               => 11906
[4,3,2,1,1,1]             => 10843
[4,3,1,1,1,1,1]           => 3645
[4,2,2,2,2]               => 2827
[4,2,2,2,1,1]             => 5607
[4,2,2,1,1,1,1]           => 4022
[4,2,1,1,1,1,1,1]         => 1463
[4,1,1,1,1,1,1,1,1]       => 231
[3,3,3,3]                 => 953
[3,3,3,2,1]               => 4073
[3,3,3,1,1,1]             => 2987
[3,3,2,2,2]               => 2405
[3,3,2,2,1,1]             => 4672
[3,3,2,1,1,1,1]           => 3136
[3,3,1,1,1,1,1,1]         => 920
[3,2,2,2,2,1]             => 1889
[3,2,2,2,1,1,1]           => 2187
[3,2,2,1,1,1,1,1]         => 1291
[3,2,1,1,1,1,1,1,1]       => 427
[3,1,1,1,1,1,1,1,1,1]     => 67
[2,2,2,2,2,2]             => 197
[2,2,2,2,2,1,1]           => 428
[2,2,2,2,1,1,1,1]         => 376
[2,2,2,1,1,1,1,1,1]       => 197
[2,2,1,1,1,1,1,1,1,1]     => 64
[2,1,1,1,1,1,1,1,1,1,1]   => 12
[1,1,1,1,1,1,1,1,1,1,1,1] => 1

-----------------------------------------------------------------------------
Created: May 20, 2017 at 17:26 by Martin Rubey

-----------------------------------------------------------------------------
Last Updated: May 20, 2017 at 22:43 by Martin Rubey