*****************************************************************************
*       www.FindStat.org - The Combinatorial Statistic Finder               *
*                                                                           *
*       Copyright (C) 2019 The FindStatCrew <info@findstat.org>             *
*                                                                           *
*    This information is distributed in the hope that it will be useful,    *
*    but WITHOUT ANY WARRANTY; without even the implied warranty of         *
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                   *
*****************************************************************************

-----------------------------------------------------------------------------
Statistic identifier: St000814

-----------------------------------------------------------------------------
Collection: Integer partitions

-----------------------------------------------------------------------------
Description: The sum of the entries in the column specified by the partition of the change of basis matrix from elementary symmetric functions to Schur symmetric functions.

For example, $e_{22} = s_{1111} + s_{211} + s_{22}$, so the statistic on the partition $22$ is $3$.

-----------------------------------------------------------------------------
References: [1]   a(n)= sum of entries of n-th Kostka matrix for the partitions of n. [[OEIS:A178718]]

-----------------------------------------------------------------------------
Code:
def statistic(mu):
    s = SymmetricFunctions(ZZ).s()
    e = SymmetricFunctions(ZZ).e()
    return sum(coeff for _, coeff in s(e(mu)))

-----------------------------------------------------------------------------
Statistic values:

[]                        => 1
[1]                       => 1
[2]                       => 1
[1,1]                     => 2
[3]                       => 1
[2,1]                     => 2
[1,1,1]                   => 4
[4]                       => 1
[3,1]                     => 2
[2,2]                     => 3
[2,1,1]                   => 5
[1,1,1,1]                 => 10
[5]                       => 1
[4,1]                     => 2
[3,2]                     => 3
[3,1,1]                   => 5
[2,2,1]                   => 7
[2,1,1,1]                 => 13
[1,1,1,1,1]               => 26
[6]                       => 1
[5,1]                     => 2
[4,2]                     => 3
[4,1,1]                   => 5
[3,3]                     => 4
[3,2,1]                   => 8
[3,1,1,1]                 => 14
[2,2,2]                   => 11
[2,2,1,1]                 => 20
[2,1,1,1,1]               => 38
[1,1,1,1,1,1]             => 76
[7]                       => 1
[6,1]                     => 2
[5,2]                     => 3
[5,1,1]                   => 5
[4,3]                     => 4
[4,2,1]                   => 8
[4,1,1,1]                 => 14
[3,3,1]                   => 10
[3,2,2]                   => 13
[3,2,1,1]                 => 23
[3,1,1,1,1]               => 42
[2,2,2,1]                 => 32
[2,2,1,1,1]               => 60
[2,1,1,1,1,1]             => 116
[1,1,1,1,1,1,1]           => 232
[8]                       => 1
[7,1]                     => 2
[6,2]                     => 3
[6,1,1]                   => 5
[5,3]                     => 4
[5,2,1]                   => 8
[5,1,1,1]                 => 14
[4,4]                     => 5
[4,3,1]                   => 11
[4,2,2]                   => 14
[4,2,1,1]                 => 24
[4,1,1,1,1]               => 43
[3,3,2]                   => 17
[3,3,1,1]                 => 30
[3,2,2,1]                 => 40
[3,2,1,1,1]               => 73
[3,1,1,1,1,1]             => 136
[2,2,2,2]                 => 56
[2,2,2,1,1]               => 103
[2,2,1,1,1,1]             => 196
[2,1,1,1,1,1,1]           => 382
[1,1,1,1,1,1,1,1]         => 764
[9]                       => 1
[8,1]                     => 2
[7,2]                     => 3
[7,1,1]                   => 5
[6,3]                     => 4
[6,2,1]                   => 8
[6,1,1,1]                 => 14
[5,4]                     => 5
[5,3,1]                   => 11
[5,2,2]                   => 14
[5,2,1,1]                 => 24
[5,1,1,1,1]               => 43
[4,4,1]                   => 13
[4,3,2]                   => 19
[4,3,1,1]                 => 33
[4,2,2,1]                 => 43
[4,2,1,1,1]               => 77
[4,1,1,1,1,1]             => 141
[3,3,3]                   => 23
[3,3,2,1]                 => 53
[3,3,1,1,1]               => 96
[3,2,2,2]                 => 72
[3,2,2,1,1]               => 131
[3,2,1,1,1,1]             => 244
[3,1,1,1,1,1,1]           => 462
[2,2,2,2,1]               => 184
[2,2,2,1,1,1]             => 347
[2,2,1,1,1,1,1]           => 668
[2,1,1,1,1,1,1,1]         => 1310
[1,1,1,1,1,1,1,1,1]       => 2620
[10]                      => 1
[9,1]                     => 2
[8,2]                     => 3
[8,1,1]                   => 5
[7,3]                     => 4
[7,2,1]                   => 8
[7,1,1,1]                 => 14
[6,4]                     => 5
[6,3,1]                   => 11
[6,2,2]                   => 14
[6,2,1,1]                 => 24
[6,1,1,1,1]               => 43
[5,5]                     => 6
[5,4,1]                   => 14
[5,3,2]                   => 20
[5,3,1,1]                 => 34
[5,2,2,1]                 => 44
[5,2,1,1,1]               => 78
[5,1,1,1,1,1]             => 142
[4,4,2]                   => 23
[4,4,1,1]                 => 40
[4,3,3]                   => 27
[4,3,2,1]                 => 61
[4,3,1,1,1]               => 109
[4,2,2,2]                 => 81
[4,2,2,1,1]               => 145
[4,2,1,1,1,1]             => 265
[4,1,1,1,1,1,1]           => 492
[3,3,3,1]                 => 74
[3,3,2,2]                 => 100
[3,3,2,1,1]               => 180
[3,3,1,1,1,1]             => 332
[3,2,2,2,1]               => 248
[3,2,2,1,1,1]             => 460
[3,2,1,1,1,1,1]           => 868
[3,1,1,1,1,1,1,1]         => 1660
[2,2,2,2,2]               => 348
[2,2,2,2,1,1]             => 652
[2,2,2,1,1,1,1]           => 1244
[2,2,1,1,1,1,1,1]         => 2412
[2,1,1,1,1,1,1,1,1]       => 4748
[1,1,1,1,1,1,1,1,1,1]     => 9496
[11]                      => 1
[10,1]                    => 2
[9,2]                     => 3
[9,1,1]                   => 5
[8,3]                     => 4
[8,2,1]                   => 8
[8,1,1,1]                 => 14
[7,4]                     => 5
[7,3,1]                   => 11
[7,2,2]                   => 14
[7,2,1,1]                 => 24
[7,1,1,1,1]               => 43
[6,5]                     => 6
[6,4,1]                   => 14
[6,3,2]                   => 20
[6,3,1,1]                 => 34
[6,2,2,1]                 => 44
[6,2,1,1,1]               => 78
[6,1,1,1,1,1]             => 142
[5,5,1]                   => 16
[5,4,2]                   => 25
[5,4,1,1]                 => 43
[5,3,3]                   => 29
[5,3,2,1]                 => 64
[5,3,1,1,1]               => 113
[5,2,2,2]                 => 84
[5,2,2,1,1]               => 149
[5,2,1,1,1,1]             => 270
[5,1,1,1,1,1,1]           => 498
[4,4,3]                   => 33
[4,4,2,1]                 => 74
[4,4,1,1,1]               => 132
[4,3,3,1]                 => 88
[4,3,2,2]                 => 117
[4,3,2,1,1]               => 209
[4,3,1,1,1,1]             => 381
[4,2,2,2,1]               => 282
[4,2,2,1,1,1]             => 516
[4,2,1,1,1,1,1]           => 958
[4,1,1,1,1,1,1,1]         => 1800
[3,3,3,2]                 => 143
[3,3,3,1,1]               => 256
[3,3,2,2,1]               => 350
[3,3,2,1,1,1]             => 644
[3,3,1,1,1,1,1]           => 1204
[3,2,2,2,2]               => 484
[3,2,2,2,1,1]             => 897
[3,2,2,1,1,1,1]           => 1688
[3,2,1,1,1,1,1,1]         => 3218
[3,1,1,1,1,1,1,1,1]       => 6204
[2,2,2,2,2,1]             => 1268
[2,2,2,2,1,1,1]           => 2408
[2,2,2,1,1,1,1,1]         => 4636
[2,2,1,1,1,1,1,1,1]       => 9040
[2,1,1,1,1,1,1,1,1,1]     => 17848
[1,1,1,1,1,1,1,1,1,1,1]   => 35696
[12]                      => 1
[11,1]                    => 2
[10,2]                    => 3
[10,1,1]                  => 5
[9,3]                     => 4
[9,2,1]                   => 8
[9,1,1,1]                 => 14
[8,4]                     => 5
[8,3,1]                   => 11
[8,2,2]                   => 14
[8,2,1,1]                 => 24
[8,1,1,1,1]               => 43
[7,5]                     => 6
[7,4,1]                   => 14
[7,3,2]                   => 20
[7,3,1,1]                 => 34
[7,2,2,1]                 => 44
[7,2,1,1,1]               => 78
[7,1,1,1,1,1]             => 142
[6,6]                     => 7
[6,5,1]                   => 17
[6,4,2]                   => 26
[6,4,1,1]                 => 44
[6,3,3]                   => 30
[6,3,2,1]                 => 65
[6,3,1,1,1]               => 114
[6,2,2,2]                 => 85
[6,2,2,1,1]               => 150
[6,2,1,1,1,1]             => 271
[6,1,1,1,1,1,1]           => 499
[5,5,2]                   => 29
[5,5,1,1]                 => 50
[5,4,3]                   => 37
[5,4,2,1]                 => 82
[5,4,1,1,1]               => 145
[5,3,3,1]                 => 96
[5,3,2,2]                 => 126
[5,3,2,1,1]               => 223
[5,3,1,1,1,1]             => 402
[5,2,2,2,1]               => 297
[5,2,2,1,1,1]             => 538
[5,2,1,1,1,1,1]           => 989
[5,1,1,1,1,1,1,1]         => 1842
[4,4,4]                   => 42
[4,4,3,1]                 => 110
[4,4,2,2]                 => 146
[4,4,2,1,1]               => 259
[4,4,1,1,1,1]             => 470
[4,3,3,2]                 => 175
[4,3,3,1,1]               => 311
[4,3,2,2,1]               => 420
[4,3,2,1,1,1]             => 765
[4,3,1,1,1,1,1]           => 1414
[4,2,2,2,2]               => 572
[4,2,2,2,1,1]             => 1046
[4,2,2,1,1,1,1]           => 1941
[4,2,1,1,1,1,1,1]         => 3643
[4,1,1,1,1,1,1,1,1]       => 6904
[3,3,3,3]                 => 214
[3,3,3,2,1]               => 517
[3,3,3,1,1,1]             => 944
[3,3,2,2,2]               => 710
[3,3,2,2,1,1]             => 1306
[3,3,2,1,1,1,1]           => 2436
[3,3,1,1,1,1,1,1]         => 4600
[3,2,2,2,2,1]             => 1824
[3,2,2,2,1,1,1]           => 3425
[3,2,2,1,1,1,1,1]         => 6508
[3,2,1,1,1,1,1,1,1]       => 12498
[3,1,1,1,1,1,1,1,1,1]     => 24232
[2,2,2,2,2,2]             => 2578
[2,2,2,2,2,1,1]           => 4876
[2,2,2,2,1,1,1,1]         => 9340
[2,2,2,1,1,1,1,1,1]       => 18092
[2,2,1,1,1,1,1,1,1,1]     => 35420
[2,1,1,1,1,1,1,1,1,1,1]   => 70076
[1,1,1,1,1,1,1,1,1,1,1,1] => 140152

-----------------------------------------------------------------------------
Created: May 20, 2017 at 17:44 by Martin Rubey

-----------------------------------------------------------------------------
Last Updated: Oct 31, 2017 at 08:10 by Martin Rubey