*****************************************************************************
*       www.FindStat.org - The Combinatorial Statistic Finder               *
*                                                                           *
*       Copyright (C) 2019 The FindStatCrew <info@findstat.org>             *
*                                                                           *
*    This information is distributed in the hope that it will be useful,    *
*    but WITHOUT ANY WARRANTY; without even the implied warranty of         *
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                   *
*****************************************************************************

-----------------------------------------------------------------------------
Statistic identifier: St000813

-----------------------------------------------------------------------------
Collection: Integer partitions

-----------------------------------------------------------------------------
Description: The number of zero-one matrices with weakly decreasing column sums and row sums given by  the partition.

This is also the sum of the entries in the column specified by the partition of the change of basis matrix from elementary symmetric functions to monomial symmetric functions.

-----------------------------------------------------------------------------
References: [1]   Number of different 0-1 matrices in which the number of 1's is n, with at least one 1 in each row and column. [[OEIS:A068313]]

-----------------------------------------------------------------------------
Code:
def statistic(mu):
    m = SymmetricFunctions(ZZ).m()
    e = SymmetricFunctions(ZZ).e()
    return sum(coeff for _, coeff in m(e(mu)))

-----------------------------------------------------------------------------
Statistic values:

[2]                       => 1
[1,1]                     => 3
[3]                       => 1
[2,1]                     => 4
[1,1,1]                   => 10
[4]                       => 1
[3,1]                     => 5
[2,2]                     => 9
[2,1,1]                   => 20
[1,1,1,1]                 => 47
[5]                       => 1
[4,1]                     => 6
[3,2]                     => 14
[3,1,1]                   => 30
[2,2,1]                   => 50
[2,1,1,1]                 => 110
[1,1,1,1,1]               => 246
[6]                       => 1
[5,1]                     => 7
[4,2]                     => 20
[4,1,1]                   => 42
[3,3]                     => 29
[3,2,1]                   => 97
[3,1,1,1]                 => 206
[2,2,2]                   => 157
[2,2,1,1]                 => 338
[2,1,1,1,1]               => 732
[1,1,1,1,1,1]             => 1602
[7]                       => 1
[6,1]                     => 8
[5,2]                     => 27
[5,1,1]                   => 56
[4,3]                     => 49
[4,2,1]                   => 159
[4,1,1,1]                 => 332
[3,3,1]                   => 224
[3,2,2]                   => 353
[3,2,1,1]                 => 743
[3,1,1,1,1]               => 1568
[2,2,2,1]                 => 1184
[2,2,1,1,1]               => 2513
[2,1,1,1,1,1]             => 5357
[1,1,1,1,1,1,1]           => 11481
[8]                       => 1
[7,1]                     => 9
[6,2]                     => 35
[6,1,1]                   => 72
[5,3]                     => 76
[5,2,1]                   => 242
[5,1,1,1]                 => 500
[4,4]                     => 99
[4,3,1]                   => 436
[4,2,2]                   => 677
[4,2,1,1]                 => 1405
[4,1,1,1,1]               => 2920
[3,3,2]                   => 943
[3,3,1,1]                 => 1965
[3,2,2,1]                 => 3078
[3,2,1,1,1]               => 6437
[3,1,1,1,1,1]             => 13487
[2,2,2,2]                 => 4845
[2,2,2,1,1]               => 10163
[2,2,1,1,1,1]             => 21378
[2,1,1,1,1,1,1]           => 45104
[1,1,1,1,1,1,1,1]         => 95503
[9]                       => 1
[8,1]                     => 10
[7,2]                     => 44
[7,1,1]                   => 90
[6,3]                     => 111
[6,2,1]                   => 349
[6,1,1,1]                 => 716
[5,4]                     => 175
[5,3,1]                   => 754
[5,2,2]                   => 1161
[5,2,1,1]                 => 2389
[5,1,1,1,1]               => 4920
[4,4,1]                   => 972
[4,3,2]                   => 2059
[4,3,1,1]                 => 4249
[4,2,2,1]                 => 6577
[4,2,1,1,1]               => 13599
[4,1,1,1,1,1]             => 28147
[3,3,3]                   => 2836
[3,3,2,1]                 => 9095
[3,3,1,1,1]               => 18843
[3,2,2,2]                 => 14139
[3,2,2,1,1]               => 29338
[3,2,1,1,1,1]             => 60962
[3,1,1,1,1,1,1]           => 126866
[2,2,2,2,1]               => 45796
[2,2,2,1,1,1]             => 95359
[2,2,1,1,1,1,1]           => 198920
[2,1,1,1,1,1,1,1]         => 415781
[1,1,1,1,1,1,1,1,1]       => 871030
[10]                      => 1
[9,1]                     => 11
[8,2]                     => 54
[8,1,1]                   => 110
[7,3]                     => 155
[7,2,1]                   => 483
[7,1,1,1]                 => 986
[6,4]                     => 286
[6,3,1]                   => 1214
[6,2,2]                   => 1859
[6,2,1,1]                 => 3803
[6,1,1,1,1]               => 7784
[5,5]                     => 351
[5,4,1]                   => 1906
[5,3,2]                   => 3984
[5,3,1,1]                 => 8166
[5,2,2,1]                 => 12546
[5,2,1,1,1]               => 25746
[5,1,1,1,1,1]             => 52867
[4,4,2]                   => 5111
[4,4,1,1]                 => 10490
[4,3,3]                   => 6986
[4,3,2,1]                 => 22101
[4,3,1,1,1]               => 45457
[4,2,2,2]                 => 34071
[4,2,2,1,1]               => 70132
[4,2,1,1,1,1]             => 144471
[4,1,1,1,1,1,1]           => 297848
[3,3,3,1]                 => 30326
[3,3,2,2]                 => 46830
[3,3,2,1,1]               => 96519
[3,3,1,1,1,1]             => 199122
[3,2,2,2,1]               => 149384
[3,2,2,1,1,1]             => 308537
[3,2,1,1,1,1,1]           => 637937
[3,1,1,1,1,1,1,1]         => 1320510
[2,2,2,2,2]               => 231571
[2,2,2,2,1,1]             => 478940
[2,2,2,1,1,1,1]           => 991743
[2,2,1,1,1,1,1,1]         => 2056300
[2,1,1,1,1,1,1,1,1]       => 4269680
[1,1,1,1,1,1,1,1,1,1]     => 8879558
[11]                      => 1
[10,1]                    => 12
[9,2]                     => 65
[9,1,1]                   => 132
[8,3]                     => 209
[8,2,1]                   => 647
[8,1,1,1]                 => 1316
[7,4]                     => 441
[7,3,1]                   => 1852
[7,2,2]                   => 2825
[7,2,1,1]                 => 5755
[7,1,1,1,1]               => 11728
[6,5]                     => 637
[6,4,1]                   => 3406
[6,3,2]                   => 7057
[6,3,1,1]                 => 14397
[6,2,2,1]                 => 22011
[6,2,1,1,1]               => 44939
[6,1,1,1,1,1]             => 91787
[5,5,1]                   => 4164
[5,4,2]                   => 11005
[5,4,1,1]                 => 22477
[5,3,3]                   => 14960
[5,3,2,1]                 => 46819
[5,3,1,1,1]               => 95749
[5,2,2,2]                 => 71745
[5,2,2,1,1]               => 146794
[5,2,1,1,1,1]             => 300490
[5,1,1,1,1,1,1]           => 615410
[4,4,3]                   => 19096
[4,4,2,1]                 => 59855
[4,4,1,1,1]               => 122503
[4,3,3,1]                 => 81601
[4,3,2,2]                 => 125256
[4,3,2,1,1]               => 256659
[4,3,1,1,1,1]             => 526216
[4,2,2,2,1]               => 394463
[4,2,2,1,1,1]             => 809266
[4,2,1,1,1,1,1]           => 1661295
[4,1,1,1,1,1,1,1]         => 3412586
[3,3,3,2]                 => 171090
[3,3,3,1,1]               => 350840
[3,3,2,2,1]               => 539778
[3,3,2,1,1,1]             => 1108391
[3,3,1,1,1,1,1]           => 2277586
[3,2,2,2,2]               => 831191
[3,2,2,2,1,1]             => 1708151
[3,2,2,1,1,1,1]           => 3512988
[3,2,1,1,1,1,1,1]         => 7230549
[3,1,1,1,1,1,1,1,1]       => 14894660
[2,2,2,2,2,1]             => 2635257
[2,2,2,2,1,1,1]           => 5424814
[2,2,2,1,1,1,1,1]         => 11176952
[2,2,1,1,1,1,1,1,1]       => 23049690
[2,1,1,1,1,1,1,1,1,1]     => 47581727
[1,1,1,1,1,1,1,1,1,1,1]   => 98329551
[12]                      => 1
[11,1]                    => 13
[10,2]                    => 77
[10,1,1]                  => 156
[9,3]                     => 274
[9,2,1]                   => 844
[9,1,1,1]                 => 1712
[8,4]                     => 650
[8,3,1]                   => 2708
[8,2,2]                   => 4119
[8,2,1,1]                 => 8365
[8,1,1,1,1]               => 16992
[7,5]                     => 1078
[7,4,1]                   => 5699
[7,3,2]                   => 11734
[7,3,1,1]                 => 23856
[7,2,2,1]                 => 36346
[7,2,1,1,1]               => 73932
[7,1,1,1,1,1]             => 150427
[6,6]                     => 1275
[6,5,1]                   => 8213
[6,4,2]                   => 21483
[6,4,1,1]                 => 43716
[6,3,3]                   => 29094
[6,3,2,1]                 => 90344
[6,3,1,1,1]               => 183999
[6,2,2,2]                 => 137868
[6,2,2,1,1]               => 280874
[6,2,1,1,1,1]             => 572393
[6,1,1,1,1,1,1]           => 1166852
[5,5,2]                   => 26205
[5,5,1,1]                 => 53351
[5,4,3]                   => 45124
[5,4,2,1]                 => 140381
[5,4,1,1,1]               => 286170
[5,3,3,1]                 => 190523
[5,3,2,2]                 => 291162
[5,3,2,1,1]               => 593962
[5,3,1,1,1,1]             => 1212100
[5,2,2,2,1]               => 908387
[5,2,2,1,1,1]             => 1854456
[5,2,1,1,1,1,1]           => 3787285
[5,1,1,1,1,1,1,1]         => 7737676
[4,4,4]                   => 57385
[4,4,3,1]                 => 242689
[4,4,2,2]                 => 371122
[4,4,2,1,1]               => 757490
[4,4,1,1,1,1]             => 1546726
[4,3,3,2]                 => 504587
[4,3,3,1,1]               => 1030376
[4,3,2,2,1]               => 1577875
[4,3,2,1,1,1]             => 3224913
[4,3,1,1,1,1,1]           => 6594182
[4,2,2,2,2]               => 2417525
[4,2,2,2,1,1]             => 4943420
[4,2,2,1,1,1,1]           => 10113232
[4,2,1,1,1,1,1,1]         => 20699788
[4,1,1,1,1,1,1,1,1]       => 42390004
[3,3,3,3]                 => 686557
[3,3,3,2,1]               => 2149402
[3,3,3,1,1,1]             => 4395584
[3,3,2,2,2]               => 3295560
[3,3,2,2,1,1]             => 6743185
[3,3,2,1,1,1,1]           => 13804634
[3,3,1,1,1,1,1,1]         => 28276134
[3,2,2,2,2,1]             => 10351471
[3,2,2,2,1,1,1]           => 21204493
[3,2,2,1,1,1,1,1]         => 43461404
[3,2,1,1,1,1,1,1,1]       => 89133888
[3,1,1,1,1,1,1,1,1,1]     => 182919233
[2,2,2,2,2,2]             => 15902253
[2,2,2,2,2,1,1]           => 32596683
[2,2,2,2,1,1,1,1]         => 66858586
[2,2,2,1,1,1,1,1,1]       => 137222522
[2,2,1,1,1,1,1,1,1,1]     => 281835366
[2,1,1,1,1,1,1,1,1,1,1]   => 579278088
[1,1,1,1,1,1,1,1,1,1,1,1] => 1191578522

-----------------------------------------------------------------------------
Created: May 20, 2017 at 17:37 by Martin Rubey

-----------------------------------------------------------------------------
Last Updated: May 20, 2017 at 22:45 by Martin Rubey