*****************************************************************************
*       www.FindStat.org - The Combinatorial Statistic Finder               *
*                                                                           *
*       Copyright (C) 2019 The FindStatCrew <info@findstat.org>             *
*                                                                           *
*    This information is distributed in the hope that it will be useful,    *
*    but WITHOUT ANY WARRANTY; without even the implied warranty of         *
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                   *
*****************************************************************************

-----------------------------------------------------------------------------
Statistic identifier: St000811

-----------------------------------------------------------------------------
Collection: Integer partitions

-----------------------------------------------------------------------------
Description: The sum of the entries in the column specified by the partition of the change of basis matrix from powersum symmetric functions to Schur symmetric functions.

For example, $p_{22} = s_{1111} - s_{211} + 2s_{22} - s_{31} + s_4$, so the statistic on the partition $22$ is 2.

This is also the sum of the character values at the given conjugacy class over all irreducible characters of the symmetric group. [2]

For a permutation $\pi$ of given cycle type, this is also the number of permutations whose square equals $\pi$. [2]

-----------------------------------------------------------------------------
References: [1]   Sum of all entries in character table of the symmetric group S_n. [[OEIS:A082733]]
[2]   Petrov, F. Roots of permutations [[MathOverflow:41784]]

-----------------------------------------------------------------------------
Code:
def statistic(mu):
    s = SymmetricFunctions(ZZ).s()
    p = SymmetricFunctions(ZZ).p()
    return sum(coeff for _, coeff in s(p(mu)))

-----------------------------------------------------------------------------
Statistic values:

[]                        => 1
[1]                       => 1
[2]                       => 0
[1,1]                     => 2
[3]                       => 1
[2,1]                     => 0
[1,1,1]                   => 4
[4]                       => 0
[3,1]                     => 1
[2,2]                     => 2
[2,1,1]                   => 0
[1,1,1,1]                 => 10
[5]                       => 1
[4,1]                     => 0
[3,2]                     => 0
[3,1,1]                   => 2
[2,2,1]                   => 2
[2,1,1,1]                 => 0
[1,1,1,1,1]               => 26
[6]                       => 0
[5,1]                     => 1
[4,2]                     => 0
[4,1,1]                   => 0
[3,3]                     => 4
[3,2,1]                   => 0
[3,1,1,1]                 => 4
[2,2,2]                   => 0
[2,2,1,1]                 => 4
[2,1,1,1,1]               => 0
[1,1,1,1,1,1]             => 76
[7]                       => 1
[6,1]                     => 0
[5,2]                     => 0
[5,1,1]                   => 2
[4,3]                     => 0
[4,2,1]                   => 0
[4,1,1,1]                 => 0
[3,3,1]                   => 4
[3,2,2]                   => 2
[3,2,1,1]                 => 0
[3,1,1,1,1]               => 10
[2,2,2,1]                 => 0
[2,2,1,1,1]               => 8
[2,1,1,1,1,1]             => 0
[1,1,1,1,1,1,1]           => 232
[8]                       => 0
[7,1]                     => 1
[6,2]                     => 0
[6,1,1]                   => 0
[5,3]                     => 1
[5,2,1]                   => 0
[5,1,1,1]                 => 4
[4,4]                     => 4
[4,3,1]                   => 0
[4,2,2]                   => 0
[4,2,1,1]                 => 0
[4,1,1,1,1]               => 0
[3,3,2]                   => 0
[3,3,1,1]                 => 8
[3,2,2,1]                 => 2
[3,2,1,1,1]               => 0
[3,1,1,1,1,1]             => 26
[2,2,2,2]                 => 12
[2,2,2,1,1]               => 0
[2,2,1,1,1,1]             => 20
[2,1,1,1,1,1,1]           => 0
[1,1,1,1,1,1,1,1]         => 764
[9]                       => 1
[8,1]                     => 0
[7,2]                     => 0
[7,1,1]                   => 2
[6,3]                     => 0
[6,2,1]                   => 0
[6,1,1,1]                 => 0
[5,4]                     => 0
[5,3,1]                   => 1
[5,2,2]                   => 2
[5,2,1,1]                 => 0
[5,1,1,1,1]               => 10
[4,4,1]                   => 4
[4,3,2]                   => 0
[4,3,1,1]                 => 0
[4,2,2,1]                 => 0
[4,2,1,1,1]               => 0
[4,1,1,1,1,1]             => 0
[3,3,3]                   => 10
[3,3,2,1]                 => 0
[3,3,1,1,1]               => 16
[3,2,2,2]                 => 0
[3,2,2,1,1]               => 4
[3,2,1,1,1,1]             => 0
[3,1,1,1,1,1,1]           => 76
[2,2,2,2,1]               => 12
[2,2,2,1,1,1]             => 0
[2,2,1,1,1,1,1]           => 52
[2,1,1,1,1,1,1,1]         => 0
[1,1,1,1,1,1,1,1,1]       => 2620
[10]                      => 0
[9,1]                     => 1
[8,2]                     => 0
[8,1,1]                   => 0
[7,3]                     => 1
[7,2,1]                   => 0
[7,1,1,1]                 => 4
[6,4]                     => 0
[6,3,1]                   => 0
[6,2,2]                   => 0
[6,2,1,1]                 => 0
[6,1,1,1,1]               => 0
[5,5]                     => 6
[5,4,1]                   => 0
[5,3,2]                   => 0
[5,3,1,1]                 => 2
[5,2,2,1]                 => 2
[5,2,1,1,1]               => 0
[5,1,1,1,1,1]             => 26
[4,4,2]                   => 0
[4,4,1,1]                 => 8
[4,3,3]                   => 0
[4,3,2,1]                 => 0
[4,3,1,1,1]               => 0
[4,2,2,2]                 => 0
[4,2,2,1,1]               => 0
[4,2,1,1,1,1]             => 0
[4,1,1,1,1,1,1]           => 0
[3,3,3,1]                 => 10
[3,3,2,2]                 => 8
[3,3,2,1,1]               => 0
[3,3,1,1,1,1]             => 40
[3,2,2,2,1]               => 0
[3,2,2,1,1,1]             => 8
[3,2,1,1,1,1,1]           => 0
[3,1,1,1,1,1,1,1]         => 232
[2,2,2,2,2]               => 0
[2,2,2,2,1,1]             => 24
[2,2,2,1,1,1,1]           => 0
[2,2,1,1,1,1,1,1]         => 152
[2,1,1,1,1,1,1,1,1]       => 0
[1,1,1,1,1,1,1,1,1,1]     => 9496
[11]                      => 1
[10,1]                    => 0
[9,2]                     => 0
[9,1,1]                   => 2
[8,3]                     => 0
[8,2,1]                   => 0
[8,1,1,1]                 => 0
[7,4]                     => 0
[7,3,1]                   => 1
[7,2,2]                   => 2
[7,2,1,1]                 => 0
[7,1,1,1,1]               => 10
[6,5]                     => 0
[6,4,1]                   => 0
[6,3,2]                   => 0
[6,3,1,1]                 => 0
[6,2,2,1]                 => 0
[6,2,1,1,1]               => 0
[6,1,1,1,1,1]             => 0
[5,5,1]                   => 6
[5,4,2]                   => 0
[5,4,1,1]                 => 0
[5,3,3]                   => 4
[5,3,2,1]                 => 0
[5,3,1,1,1]               => 4
[5,2,2,2]                 => 0
[5,2,2,1,1]               => 4
[5,2,1,1,1,1]             => 0
[5,1,1,1,1,1,1]           => 76
[4,4,3]                   => 4
[4,4,2,1]                 => 0
[4,4,1,1,1]               => 16
[4,3,3,1]                 => 0
[4,3,2,2]                 => 0
[4,3,2,1,1]               => 0
[4,3,1,1,1,1]             => 0
[4,2,2,2,1]               => 0
[4,2,2,1,1,1]             => 0
[4,2,1,1,1,1,1]           => 0
[4,1,1,1,1,1,1,1]         => 0
[3,3,3,2]                 => 0
[3,3,3,1,1]               => 20
[3,3,2,2,1]               => 8
[3,3,2,1,1,1]             => 0
[3,3,1,1,1,1,1]           => 104
[3,2,2,2,2]               => 12
[3,2,2,2,1,1]             => 0
[3,2,2,1,1,1,1]           => 20
[3,2,1,1,1,1,1,1]         => 0
[3,1,1,1,1,1,1,1,1]       => 764
[2,2,2,2,2,1]             => 0
[2,2,2,2,1,1,1]           => 48
[2,2,2,1,1,1,1,1]         => 0
[2,2,1,1,1,1,1,1,1]       => 464
[2,1,1,1,1,1,1,1,1,1]     => 0
[1,1,1,1,1,1,1,1,1,1,1]   => 35696
[12]                      => 0
[11,1]                    => 1
[10,2]                    => 0
[10,1,1]                  => 0
[9,3]                     => 1
[9,2,1]                   => 0
[9,1,1,1]                 => 4
[8,4]                     => 0
[8,3,1]                   => 0
[8,2,2]                   => 0
[8,2,1,1]                 => 0
[8,1,1,1,1]               => 0
[7,5]                     => 1
[7,4,1]                   => 0
[7,3,2]                   => 0
[7,3,1,1]                 => 2
[7,2,2,1]                 => 2
[7,2,1,1,1]               => 0
[7,1,1,1,1,1]             => 26
[6,6]                     => 6
[6,5,1]                   => 0
[6,4,2]                   => 0
[6,4,1,1]                 => 0
[6,3,3]                   => 0
[6,3,2,1]                 => 0
[6,3,1,1,1]               => 0
[6,2,2,2]                 => 0
[6,2,2,1,1]               => 0
[6,2,1,1,1,1]             => 0
[6,1,1,1,1,1,1]           => 0
[5,5,2]                   => 0
[5,5,1,1]                 => 12
[5,4,3]                   => 0
[5,4,2,1]                 => 0
[5,4,1,1,1]               => 0
[5,3,3,1]                 => 4
[5,3,2,2]                 => 2
[5,3,2,1,1]               => 0
[5,3,1,1,1,1]             => 10
[5,2,2,2,1]               => 0
[5,2,2,1,1,1]             => 8
[5,2,1,1,1,1,1]           => 0
[5,1,1,1,1,1,1,1]         => 232
[4,4,4]                   => 0
[4,4,3,1]                 => 4
[4,4,2,2]                 => 8
[4,4,2,1,1]               => 0
[4,4,1,1,1,1]             => 40
[4,3,3,2]                 => 0
[4,3,3,1,1]               => 0
[4,3,2,2,1]               => 0
[4,3,2,1,1,1]             => 0
[4,3,1,1,1,1,1]           => 0
[4,2,2,2,2]               => 0
[4,2,2,2,1,1]             => 0
[4,2,2,1,1,1,1]           => 0
[4,2,1,1,1,1,1,1]         => 0
[4,1,1,1,1,1,1,1,1]       => 0
[3,3,3,3]                 => 46
[3,3,3,2,1]               => 0
[3,3,3,1,1,1]             => 40
[3,3,2,2,2]               => 0
[3,3,2,2,1,1]             => 16
[3,3,2,1,1,1,1]           => 0
[3,3,1,1,1,1,1,1]         => 304
[3,2,2,2,2,1]             => 12
[3,2,2,2,1,1,1]           => 0
[3,2,2,1,1,1,1,1]         => 52
[3,2,1,1,1,1,1,1,1]       => 0
[3,1,1,1,1,1,1,1,1,1]     => 2620
[2,2,2,2,2,2]             => 120
[2,2,2,2,2,1,1]           => 0
[2,2,2,2,1,1,1,1]         => 120
[2,2,2,1,1,1,1,1,1]       => 0
[2,2,1,1,1,1,1,1,1,1]     => 1528
[2,1,1,1,1,1,1,1,1,1,1]   => 0
[1,1,1,1,1,1,1,1,1,1,1,1] => 140152
[5,4,3,1]                 => 0
[5,4,2,2]                 => 0
[5,4,2,1,1]               => 0
[5,3,3,2]                 => 0
[5,3,3,1,1]               => 8
[5,3,2,2,1]               => 2
[4,4,3,2]                 => 0
[4,4,3,1,1]               => 8
[4,4,2,2,1]               => 8
[4,3,3,2,1]               => 0
[5,4,3,2]                 => 0
[5,4,3,1,1]               => 0
[5,4,2,2,1]               => 0
[5,3,3,2,1]               => 0
[4,4,3,2,1]               => 0
[5,4,3,2,1]               => 0

-----------------------------------------------------------------------------
Created: May 20, 2017 at 17:50 by Martin Rubey

-----------------------------------------------------------------------------
Last Updated: Mar 15, 2019 at 20:01 by Martin Rubey