Identifier
Values
[(1,2)] => 1
[(1,2),(3,4)] => 1
[(1,3),(2,4)] => 1
[(1,4),(2,3)] => 1
[(1,2),(3,4),(5,6)] => 1
[(1,3),(2,4),(5,6)] => 2
[(1,4),(2,3),(5,6)] => 2
[(1,5),(2,3),(4,6)] => 2
[(1,6),(2,3),(4,5)] => 1
[(1,6),(2,4),(3,5)] => 2
[(1,5),(2,4),(3,6)] => 2
[(1,4),(2,5),(3,6)] => 1
[(1,3),(2,5),(4,6)] => 1
[(1,2),(3,5),(4,6)] => 2
[(1,2),(3,6),(4,5)] => 2
[(1,3),(2,6),(4,5)] => 2
[(1,4),(2,6),(3,5)] => 2
[(1,5),(2,6),(3,4)] => 2
[(1,6),(2,5),(3,4)] => 1
[(1,2),(3,4),(5,6),(7,8)] => 1
[(1,3),(2,4),(5,6),(7,8)] => 3
[(1,4),(2,3),(5,6),(7,8)] => 3
[(1,5),(2,3),(4,6),(7,8)] => 6
[(1,6),(2,3),(4,5),(7,8)] => 3
[(1,7),(2,3),(4,5),(6,8)] => 3
[(1,8),(2,3),(4,5),(6,7)] => 1
[(1,8),(2,4),(3,5),(6,7)] => 6
[(1,7),(2,4),(3,5),(6,8)] => 8
[(1,6),(2,4),(3,5),(7,8)] => 4
[(1,5),(2,4),(3,6),(7,8)] => 4
[(1,4),(2,5),(3,6),(7,8)] => 2
[(1,3),(2,5),(4,6),(7,8)] => 3
[(1,2),(3,5),(4,6),(7,8)] => 3
[(1,2),(3,6),(4,5),(7,8)] => 3
[(1,3),(2,6),(4,5),(7,8)] => 6
[(1,4),(2,6),(3,5),(7,8)] => 4
[(1,5),(2,6),(3,4),(7,8)] => 4
[(1,6),(2,5),(3,4),(7,8)] => 2
[(1,7),(2,5),(3,4),(6,8)] => 6
[(1,8),(2,5),(3,4),(6,7)] => 2
[(1,8),(2,6),(3,4),(5,7)] => 3
[(1,7),(2,6),(3,4),(5,8)] => 5
[(1,6),(2,7),(3,4),(5,8)] => 5
[(1,5),(2,7),(3,4),(6,8)] => 8
[(1,4),(2,7),(3,5),(6,8)] => 6
[(1,3),(2,7),(4,5),(6,8)] => 3
[(1,2),(3,7),(4,5),(6,8)] => 6
[(1,2),(3,8),(4,5),(6,7)] => 3
[(1,3),(2,8),(4,5),(6,7)] => 3
[(1,4),(2,8),(3,5),(6,7)] => 8
[(1,5),(2,8),(3,4),(6,7)] => 6
[(1,6),(2,8),(3,4),(5,7)] => 5
[(1,7),(2,8),(3,4),(5,6)] => 3
[(1,8),(2,7),(3,4),(5,6)] => 1
[(1,8),(2,7),(3,5),(4,6)] => 3
[(1,7),(2,8),(3,5),(4,6)] => 5
[(1,6),(2,8),(3,5),(4,7)] => 6
[(1,5),(2,8),(3,6),(4,7)] => 5
[(1,4),(2,8),(3,6),(5,7)] => 5
[(1,3),(2,8),(4,6),(5,7)] => 8
[(1,2),(3,8),(4,6),(5,7)] => 4
[(1,2),(3,7),(4,6),(5,8)] => 4
[(1,3),(2,7),(4,6),(5,8)] => 6
[(1,4),(2,7),(3,6),(5,8)] => 3
[(1,5),(2,7),(3,6),(4,8)] => 3
[(1,6),(2,7),(3,5),(4,8)] => 5
[(1,7),(2,6),(3,5),(4,8)] => 6
[(1,8),(2,6),(3,5),(4,7)] => 5
[(1,8),(2,5),(3,6),(4,7)] => 6
[(1,7),(2,5),(3,6),(4,8)] => 5
[(1,6),(2,5),(3,7),(4,8)] => 3
[(1,5),(2,6),(3,7),(4,8)] => 1
[(1,4),(2,6),(3,7),(5,8)] => 1
[(1,3),(2,6),(4,7),(5,8)] => 2
[(1,2),(3,6),(4,7),(5,8)] => 2
[(1,2),(3,5),(4,7),(6,8)] => 3
[(1,3),(2,5),(4,7),(6,8)] => 1
[(1,4),(2,5),(3,7),(6,8)] => 2
[(1,5),(2,4),(3,7),(6,8)] => 6
[(1,6),(2,4),(3,7),(5,8)] => 3
[(1,7),(2,4),(3,6),(5,8)] => 5
[(1,8),(2,4),(3,6),(5,7)] => 5
[(1,8),(2,3),(4,6),(5,7)] => 6
[(1,7),(2,3),(4,6),(5,8)] => 8
[(1,6),(2,3),(4,7),(5,8)] => 6
[(1,5),(2,3),(4,7),(6,8)] => 3
[(1,4),(2,3),(5,7),(6,8)] => 6
[(1,3),(2,4),(5,7),(6,8)] => 3
[(1,2),(3,4),(5,7),(6,8)] => 3
[(1,2),(3,4),(5,8),(6,7)] => 3
[(1,3),(2,4),(5,8),(6,7)] => 6
[(1,4),(2,3),(5,8),(6,7)] => 3
[(1,5),(2,3),(4,8),(6,7)] => 3
[(1,6),(2,3),(4,8),(5,7)] => 8
[(1,7),(2,3),(4,8),(5,6)] => 6
[(1,8),(2,3),(4,7),(5,6)] => 2
[(1,8),(2,4),(3,7),(5,6)] => 3
[(1,7),(2,4),(3,8),(5,6)] => 5
[(1,6),(2,4),(3,8),(5,7)] => 5
[(1,5),(2,4),(3,8),(6,7)] => 8
[(1,4),(2,5),(3,8),(6,7)] => 6
>>> Load all 1200 entries. <<<[(1,3),(2,5),(4,8),(6,7)] => 3
[(1,2),(3,5),(4,8),(6,7)] => 6
[(1,2),(3,6),(4,8),(5,7)] => 4
[(1,3),(2,6),(4,8),(5,7)] => 6
[(1,4),(2,6),(3,8),(5,7)] => 3
[(1,5),(2,6),(3,8),(4,7)] => 3
[(1,6),(2,5),(3,8),(4,7)] => 5
[(1,7),(2,5),(3,8),(4,6)] => 6
[(1,8),(2,5),(3,7),(4,6)] => 5
[(1,8),(2,6),(3,7),(4,5)] => 3
[(1,7),(2,6),(3,8),(4,5)] => 5
[(1,6),(2,7),(3,8),(4,5)] => 6
[(1,5),(2,7),(3,8),(4,6)] => 5
[(1,4),(2,7),(3,8),(5,6)] => 5
[(1,3),(2,7),(4,8),(5,6)] => 8
[(1,2),(3,7),(4,8),(5,6)] => 4
[(1,2),(3,8),(4,7),(5,6)] => 2
[(1,3),(2,8),(4,7),(5,6)] => 6
[(1,4),(2,8),(3,7),(5,6)] => 5
[(1,5),(2,8),(3,7),(4,6)] => 6
[(1,6),(2,8),(3,7),(4,5)] => 5
[(1,7),(2,8),(3,6),(4,5)] => 3
[(1,8),(2,7),(3,6),(4,5)] => 1
[(1,2),(3,4),(5,6),(7,8),(9,10)] => 1
[(1,3),(2,4),(5,6),(7,8),(9,10)] => 4
[(1,4),(2,3),(5,6),(7,8),(9,10)] => 4
[(1,5),(2,3),(4,6),(7,8),(9,10)] => 12
[(1,6),(2,3),(4,5),(7,8),(9,10)] => 6
[(1,7),(2,3),(4,5),(6,8),(9,10)] => 12
[(1,8),(2,3),(4,5),(6,7),(9,10)] => 4
[(1,9),(2,3),(4,5),(6,7),(8,10)] => 4
[(1,10),(2,3),(4,5),(6,7),(8,9)] => 1
[(1,10),(2,4),(3,5),(6,7),(8,9)] => 12
[(1,9),(2,4),(3,5),(6,7),(8,10)] => 21
[(1,8),(2,4),(3,5),(6,7),(9,10)] => 18
[(1,7),(2,4),(3,5),(6,8),(9,10)] => 24
[(1,6),(2,4),(3,5),(7,8),(9,10)] => 6
[(1,5),(2,4),(3,6),(7,8),(9,10)] => 6
[(1,4),(2,5),(3,6),(7,8),(9,10)] => 3
[(1,3),(2,5),(4,6),(7,8),(9,10)] => 6
[(1,2),(3,5),(4,6),(7,8),(9,10)] => 4
[(1,2),(3,6),(4,5),(7,8),(9,10)] => 4
[(1,3),(2,6),(4,5),(7,8),(9,10)] => 12
[(1,4),(2,6),(3,5),(7,8),(9,10)] => 6
[(1,5),(2,6),(3,4),(7,8),(9,10)] => 6
[(1,6),(2,5),(3,4),(7,8),(9,10)] => 3
[(1,7),(2,5),(3,4),(6,8),(9,10)] => 18
[(1,8),(2,5),(3,4),(6,7),(9,10)] => 6
[(1,9),(2,5),(3,4),(6,7),(8,10)] => 12
[(1,10),(2,5),(3,4),(6,7),(8,9)] => 3
[(1,10),(2,6),(3,4),(5,7),(8,9)] => 12
[(1,9),(2,6),(3,4),(5,7),(8,10)] => 24
[(1,8),(2,6),(3,4),(5,7),(9,10)] => 6
[(1,7),(2,6),(3,4),(5,8),(9,10)] => 10
[(1,6),(2,7),(3,4),(5,8),(9,10)] => 10
[(1,5),(2,7),(3,4),(6,8),(9,10)] => 24
[(1,4),(2,7),(3,5),(6,8),(9,10)] => 18
[(1,3),(2,7),(4,5),(6,8),(9,10)] => 12
[(1,2),(3,7),(4,5),(6,8),(9,10)] => 12
[(1,2),(3,8),(4,5),(6,7),(9,10)] => 6
[(1,3),(2,8),(4,5),(6,7),(9,10)] => 12
[(1,4),(2,8),(3,5),(6,7),(9,10)] => 24
[(1,5),(2,8),(3,4),(6,7),(9,10)] => 18
[(1,6),(2,8),(3,4),(5,7),(9,10)] => 10
[(1,7),(2,8),(3,4),(5,6),(9,10)] => 6
[(1,8),(2,7),(3,4),(5,6),(9,10)] => 2
[(1,9),(2,7),(3,4),(5,6),(8,10)] => 12
[(1,10),(2,7),(3,4),(5,6),(8,9)] => 3
[(1,10),(2,8),(3,4),(5,6),(7,9)] => 4
[(1,9),(2,8),(3,4),(5,6),(7,10)] => 9
[(1,8),(2,9),(3,4),(5,6),(7,10)] => 13
[(1,7),(2,9),(3,4),(5,6),(8,10)] => 24
[(1,6),(2,9),(3,4),(5,7),(8,10)] => 30
[(1,5),(2,9),(3,4),(6,7),(8,10)] => 21
[(1,4),(2,9),(3,5),(6,7),(8,10)] => 21
[(1,3),(2,9),(4,5),(6,7),(8,10)] => 6
[(1,2),(3,9),(4,5),(6,7),(8,10)] => 12
[(1,2),(3,10),(4,5),(6,7),(8,9)] => 4
[(1,3),(2,10),(4,5),(6,7),(8,9)] => 4
[(1,4),(2,10),(3,5),(6,7),(8,9)] => 21
[(1,5),(2,10),(3,4),(6,7),(8,9)] => 12
[(1,6),(2,10),(3,4),(5,7),(8,9)] => 24
[(1,7),(2,10),(3,4),(5,6),(8,9)] => 12
[(1,8),(2,10),(3,4),(5,6),(7,9)] => 9
[(1,9),(2,10),(3,4),(5,6),(7,8)] => 4
[(1,10),(2,9),(3,4),(5,6),(7,8)] => 1
[(1,10),(2,9),(3,5),(4,6),(7,8)] => 8
[(1,9),(2,10),(3,5),(4,6),(7,8)] => 18
[(1,8),(2,10),(3,5),(4,6),(7,9)] => 28
[(1,7),(2,10),(3,5),(4,6),(8,9)] => 16
[(1,6),(2,10),(3,5),(4,7),(8,9)] => 22
[(1,5),(2,10),(3,6),(4,7),(8,9)] => 22
[(1,4),(2,10),(3,6),(5,7),(8,9)] => 30
[(1,3),(2,10),(4,6),(5,7),(8,9)] => 21
[(1,2),(3,10),(4,6),(5,7),(8,9)] => 18
[(1,2),(3,9),(4,6),(5,7),(8,10)] => 24
[(1,3),(2,9),(4,6),(5,7),(8,10)] => 21
[(1,4),(2,9),(3,6),(5,7),(8,10)] => 24
[(1,5),(2,9),(3,6),(4,7),(8,10)] => 16
[(1,6),(2,9),(3,5),(4,7),(8,10)] => 22
[(1,7),(2,9),(3,5),(4,6),(8,10)] => 22
[(1,8),(2,9),(3,5),(4,6),(7,10)] => 32
[(1,9),(2,8),(3,5),(4,6),(7,10)] => 28
[(1,10),(2,8),(3,5),(4,6),(7,9)] => 18
[(1,10),(2,7),(3,5),(4,6),(8,9)] => 8
[(1,9),(2,7),(3,5),(4,6),(8,10)] => 16
[(1,8),(2,7),(3,5),(4,6),(9,10)] => 6
[(1,7),(2,8),(3,5),(4,6),(9,10)] => 10
[(1,6),(2,8),(3,5),(4,7),(9,10)] => 12
[(1,5),(2,8),(3,6),(4,7),(9,10)] => 10
[(1,4),(2,8),(3,6),(5,7),(9,10)] => 10
[(1,3),(2,8),(4,6),(5,7),(9,10)] => 24
[(1,2),(3,8),(4,6),(5,7),(9,10)] => 6
[(1,2),(3,7),(4,6),(5,8),(9,10)] => 6
[(1,3),(2,7),(4,6),(5,8),(9,10)] => 18
[(1,4),(2,7),(3,6),(5,8),(9,10)] => 6
[(1,5),(2,7),(3,6),(4,8),(9,10)] => 6
[(1,6),(2,7),(3,5),(4,8),(9,10)] => 10
[(1,7),(2,6),(3,5),(4,8),(9,10)] => 12
[(1,8),(2,6),(3,5),(4,7),(9,10)] => 10
[(1,9),(2,6),(3,5),(4,7),(8,10)] => 22
[(1,10),(2,6),(3,5),(4,7),(8,9)] => 16
[(1,10),(2,5),(3,6),(4,7),(8,9)] => 22
[(1,9),(2,5),(3,6),(4,7),(8,10)] => 22
[(1,8),(2,5),(3,6),(4,7),(9,10)] => 12
[(1,7),(2,5),(3,6),(4,8),(9,10)] => 10
[(1,6),(2,5),(3,7),(4,8),(9,10)] => 6
[(1,5),(2,6),(3,7),(4,8),(9,10)] => 2
[(1,4),(2,6),(3,7),(5,8),(9,10)] => 2
[(1,3),(2,6),(4,7),(5,8),(9,10)] => 6
[(1,2),(3,6),(4,7),(5,8),(9,10)] => 3
[(1,2),(3,5),(4,7),(6,8),(9,10)] => 6
[(1,3),(2,5),(4,7),(6,8),(9,10)] => 4
[(1,4),(2,5),(3,7),(6,8),(9,10)] => 6
[(1,5),(2,4),(3,7),(6,8),(9,10)] => 18
[(1,6),(2,4),(3,7),(5,8),(9,10)] => 6
[(1,7),(2,4),(3,6),(5,8),(9,10)] => 10
[(1,8),(2,4),(3,6),(5,7),(9,10)] => 10
[(1,9),(2,4),(3,6),(5,7),(8,10)] => 30
[(1,10),(2,4),(3,6),(5,7),(8,9)] => 24
[(1,10),(2,3),(4,6),(5,7),(8,9)] => 12
[(1,9),(2,3),(4,6),(5,7),(8,10)] => 21
[(1,8),(2,3),(4,6),(5,7),(9,10)] => 18
[(1,7),(2,3),(4,6),(5,8),(9,10)] => 24
[(1,6),(2,3),(4,7),(5,8),(9,10)] => 18
[(1,5),(2,3),(4,7),(6,8),(9,10)] => 12
[(1,4),(2,3),(5,7),(6,8),(9,10)] => 12
[(1,3),(2,4),(5,7),(6,8),(9,10)] => 6
[(1,2),(3,4),(5,7),(6,8),(9,10)] => 4
[(1,2),(3,4),(5,8),(6,7),(9,10)] => 4
[(1,3),(2,4),(5,8),(6,7),(9,10)] => 12
[(1,4),(2,3),(5,8),(6,7),(9,10)] => 6
[(1,5),(2,3),(4,8),(6,7),(9,10)] => 12
[(1,6),(2,3),(4,8),(5,7),(9,10)] => 24
[(1,7),(2,3),(4,8),(5,6),(9,10)] => 18
[(1,8),(2,3),(4,7),(5,6),(9,10)] => 6
[(1,9),(2,3),(4,7),(5,6),(8,10)] => 12
[(1,10),(2,3),(4,7),(5,6),(8,9)] => 3
[(1,10),(2,4),(3,7),(5,6),(8,9)] => 12
[(1,9),(2,4),(3,7),(5,6),(8,10)] => 24
[(1,8),(2,4),(3,7),(5,6),(9,10)] => 6
[(1,7),(2,4),(3,8),(5,6),(9,10)] => 10
[(1,6),(2,4),(3,8),(5,7),(9,10)] => 10
[(1,5),(2,4),(3,8),(6,7),(9,10)] => 24
[(1,4),(2,5),(3,8),(6,7),(9,10)] => 18
[(1,3),(2,5),(4,8),(6,7),(9,10)] => 12
[(1,2),(3,5),(4,8),(6,7),(9,10)] => 12
[(1,2),(3,6),(4,8),(5,7),(9,10)] => 6
[(1,3),(2,6),(4,8),(5,7),(9,10)] => 18
[(1,4),(2,6),(3,8),(5,7),(9,10)] => 6
[(1,5),(2,6),(3,8),(4,7),(9,10)] => 6
[(1,6),(2,5),(3,8),(4,7),(9,10)] => 10
[(1,7),(2,5),(3,8),(4,6),(9,10)] => 12
[(1,8),(2,5),(3,7),(4,6),(9,10)] => 10
[(1,9),(2,5),(3,7),(4,6),(8,10)] => 22
[(1,10),(2,5),(3,7),(4,6),(8,9)] => 16
[(1,10),(2,6),(3,7),(4,5),(8,9)] => 8
[(1,9),(2,6),(3,7),(4,5),(8,10)] => 16
[(1,8),(2,6),(3,7),(4,5),(9,10)] => 6
[(1,7),(2,6),(3,8),(4,5),(9,10)] => 10
[(1,6),(2,7),(3,8),(4,5),(9,10)] => 12
[(1,5),(2,7),(3,8),(4,6),(9,10)] => 10
[(1,4),(2,7),(3,8),(5,6),(9,10)] => 10
[(1,3),(2,7),(4,8),(5,6),(9,10)] => 24
[(1,2),(3,7),(4,8),(5,6),(9,10)] => 6
[(1,2),(3,8),(4,7),(5,6),(9,10)] => 3
[(1,3),(2,8),(4,7),(5,6),(9,10)] => 18
[(1,4),(2,8),(3,7),(5,6),(9,10)] => 10
[(1,5),(2,8),(3,7),(4,6),(9,10)] => 12
[(1,6),(2,8),(3,7),(4,5),(9,10)] => 10
[(1,7),(2,8),(3,6),(4,5),(9,10)] => 6
[(1,8),(2,7),(3,6),(4,5),(9,10)] => 2
[(1,9),(2,7),(3,6),(4,5),(8,10)] => 8
[(1,10),(2,7),(3,6),(4,5),(8,9)] => 2
[(1,10),(2,8),(3,6),(4,5),(7,9)] => 8
[(1,9),(2,8),(3,6),(4,5),(7,10)] => 18
[(1,8),(2,9),(3,6),(4,5),(7,10)] => 28
[(1,7),(2,9),(3,6),(4,5),(8,10)] => 16
[(1,6),(2,9),(3,7),(4,5),(8,10)] => 22
[(1,5),(2,9),(3,7),(4,6),(8,10)] => 22
[(1,4),(2,9),(3,7),(5,6),(8,10)] => 30
[(1,3),(2,9),(4,7),(5,6),(8,10)] => 21
[(1,2),(3,9),(4,7),(5,6),(8,10)] => 18
[(1,2),(3,10),(4,7),(5,6),(8,9)] => 6
[(1,3),(2,10),(4,7),(5,6),(8,9)] => 12
[(1,4),(2,10),(3,7),(5,6),(8,9)] => 24
[(1,5),(2,10),(3,7),(4,6),(8,9)] => 22
[(1,6),(2,10),(3,7),(4,5),(8,9)] => 16
[(1,7),(2,10),(3,6),(4,5),(8,9)] => 8
[(1,8),(2,10),(3,6),(4,5),(7,9)] => 18
[(1,9),(2,10),(3,6),(4,5),(7,8)] => 8
[(1,10),(2,9),(3,6),(4,5),(7,8)] => 2
[(1,10),(2,9),(3,7),(4,5),(6,8)] => 4
[(1,9),(2,10),(3,7),(4,5),(6,8)] => 9
[(1,8),(2,10),(3,7),(4,5),(6,9)] => 15
[(1,7),(2,10),(3,8),(4,5),(6,9)] => 19
[(1,6),(2,10),(3,8),(4,5),(7,9)] => 28
[(1,5),(2,10),(3,8),(4,6),(7,9)] => 32
[(1,4),(2,10),(3,8),(5,6),(7,9)] => 13
[(1,3),(2,10),(4,8),(5,6),(7,9)] => 24
[(1,2),(3,10),(4,8),(5,6),(7,9)] => 6
[(1,2),(3,9),(4,8),(5,6),(7,10)] => 10
[(1,3),(2,9),(4,8),(5,6),(7,10)] => 30
[(1,4),(2,9),(3,8),(5,6),(7,10)] => 13
[(1,5),(2,9),(3,8),(4,6),(7,10)] => 28
[(1,6),(2,9),(3,8),(4,5),(7,10)] => 32
[(1,7),(2,9),(3,8),(4,5),(6,10)] => 19
[(1,8),(2,9),(3,7),(4,5),(6,10)] => 19
[(1,9),(2,8),(3,7),(4,5),(6,10)] => 15
[(1,10),(2,8),(3,7),(4,5),(6,9)] => 9
[(1,10),(2,7),(3,8),(4,5),(6,9)] => 15
[(1,9),(2,7),(3,8),(4,5),(6,10)] => 19
[(1,8),(2,7),(3,9),(4,5),(6,10)] => 19
[(1,7),(2,8),(3,9),(4,5),(6,10)] => 15
[(1,6),(2,8),(3,9),(4,5),(7,10)] => 28
[(1,5),(2,8),(3,9),(4,6),(7,10)] => 18
[(1,4),(2,8),(3,9),(5,6),(7,10)] => 9
[(1,3),(2,8),(4,9),(5,6),(7,10)] => 24
[(1,2),(3,8),(4,9),(5,6),(7,10)] => 10
[(1,2),(3,7),(4,9),(5,6),(8,10)] => 24
[(1,3),(2,7),(4,9),(5,6),(8,10)] => 21
[(1,4),(2,7),(3,9),(5,6),(8,10)] => 24
[(1,5),(2,7),(3,9),(4,6),(8,10)] => 16
[(1,6),(2,7),(3,9),(4,5),(8,10)] => 22
[(1,7),(2,6),(3,9),(4,5),(8,10)] => 22
[(1,8),(2,6),(3,9),(4,5),(7,10)] => 32
[(1,9),(2,6),(3,8),(4,5),(7,10)] => 28
[(1,10),(2,6),(3,8),(4,5),(7,9)] => 18
[(1,10),(2,5),(3,8),(4,6),(7,9)] => 28
[(1,9),(2,5),(3,8),(4,6),(7,10)] => 32
[(1,8),(2,5),(3,9),(4,6),(7,10)] => 28
[(1,7),(2,5),(3,9),(4,6),(8,10)] => 22
[(1,6),(2,5),(3,9),(4,7),(8,10)] => 16
[(1,5),(2,6),(3,9),(4,7),(8,10)] => 8
[(1,4),(2,6),(3,9),(5,7),(8,10)] => 12
[(1,3),(2,6),(4,9),(5,7),(8,10)] => 12
[(1,2),(3,6),(4,9),(5,7),(8,10)] => 18
[(1,2),(3,5),(4,9),(6,7),(8,10)] => 12
[(1,3),(2,5),(4,9),(6,7),(8,10)] => 4
[(1,4),(2,5),(3,9),(6,7),(8,10)] => 12
[(1,5),(2,4),(3,9),(6,7),(8,10)] => 21
[(1,6),(2,4),(3,9),(5,7),(8,10)] => 24
[(1,7),(2,4),(3,9),(5,6),(8,10)] => 30
[(1,8),(2,4),(3,9),(5,6),(7,10)] => 13
[(1,9),(2,4),(3,8),(5,6),(7,10)] => 13
[(1,10),(2,4),(3,8),(5,6),(7,9)] => 9
[(1,10),(2,3),(4,8),(5,6),(7,9)] => 12
[(1,9),(2,3),(4,8),(5,6),(7,10)] => 24
[(1,8),(2,3),(4,9),(5,6),(7,10)] => 30
[(1,7),(2,3),(4,9),(5,6),(8,10)] => 21
[(1,6),(2,3),(4,9),(5,7),(8,10)] => 21
[(1,5),(2,3),(4,9),(6,7),(8,10)] => 6
[(1,4),(2,3),(5,9),(6,7),(8,10)] => 12
[(1,3),(2,4),(5,9),(6,7),(8,10)] => 12
[(1,2),(3,4),(5,9),(6,7),(8,10)] => 12
[(1,2),(3,4),(5,10),(6,7),(8,9)] => 6
[(1,3),(2,4),(5,10),(6,7),(8,9)] => 12
[(1,4),(2,3),(5,10),(6,7),(8,9)] => 4
[(1,5),(2,3),(4,10),(6,7),(8,9)] => 4
[(1,6),(2,3),(4,10),(5,7),(8,9)] => 21
[(1,7),(2,3),(4,10),(5,6),(8,9)] => 12
[(1,8),(2,3),(4,10),(5,6),(7,9)] => 24
[(1,9),(2,3),(4,10),(5,6),(7,8)] => 12
[(1,10),(2,3),(4,9),(5,6),(7,8)] => 3
[(1,10),(2,4),(3,9),(5,6),(7,8)] => 4
[(1,9),(2,4),(3,10),(5,6),(7,8)] => 9
[(1,8),(2,4),(3,10),(5,6),(7,9)] => 13
[(1,7),(2,4),(3,10),(5,6),(8,9)] => 24
[(1,6),(2,4),(3,10),(5,7),(8,9)] => 30
[(1,5),(2,4),(3,10),(6,7),(8,9)] => 21
[(1,4),(2,5),(3,10),(6,7),(8,9)] => 21
[(1,3),(2,5),(4,10),(6,7),(8,9)] => 6
[(1,2),(3,5),(4,10),(6,7),(8,9)] => 12
[(1,2),(3,6),(4,10),(5,7),(8,9)] => 24
[(1,3),(2,6),(4,10),(5,7),(8,9)] => 21
[(1,4),(2,6),(3,10),(5,7),(8,9)] => 24
[(1,5),(2,6),(3,10),(4,7),(8,9)] => 16
[(1,6),(2,5),(3,10),(4,7),(8,9)] => 22
[(1,7),(2,5),(3,10),(4,6),(8,9)] => 22
[(1,8),(2,5),(3,10),(4,6),(7,9)] => 32
[(1,9),(2,5),(3,10),(4,6),(7,8)] => 28
[(1,10),(2,5),(3,9),(4,6),(7,8)] => 18
[(1,10),(2,6),(3,9),(4,5),(7,8)] => 8
[(1,9),(2,6),(3,10),(4,5),(7,8)] => 18
[(1,8),(2,6),(3,10),(4,5),(7,9)] => 28
[(1,7),(2,6),(3,10),(4,5),(8,9)] => 16
[(1,6),(2,7),(3,10),(4,5),(8,9)] => 22
[(1,5),(2,7),(3,10),(4,6),(8,9)] => 22
[(1,4),(2,7),(3,10),(5,6),(8,9)] => 30
[(1,3),(2,7),(4,10),(5,6),(8,9)] => 21
[(1,2),(3,7),(4,10),(5,6),(8,9)] => 18
[(1,2),(3,8),(4,10),(5,6),(7,9)] => 10
[(1,3),(2,8),(4,10),(5,6),(7,9)] => 30
[(1,4),(2,8),(3,10),(5,6),(7,9)] => 13
[(1,5),(2,8),(3,10),(4,6),(7,9)] => 28
[(1,6),(2,8),(3,10),(4,5),(7,9)] => 32
[(1,7),(2,8),(3,10),(4,5),(6,9)] => 19
[(1,8),(2,7),(3,10),(4,5),(6,9)] => 19
[(1,9),(2,7),(3,10),(4,5),(6,8)] => 15
[(1,10),(2,7),(3,9),(4,5),(6,8)] => 9
[(1,10),(2,8),(3,9),(4,5),(6,7)] => 4
[(1,9),(2,8),(3,10),(4,5),(6,7)] => 9
[(1,8),(2,9),(3,10),(4,5),(6,7)] => 15
[(1,7),(2,9),(3,10),(4,5),(6,8)] => 19
[(1,6),(2,9),(3,10),(4,5),(7,8)] => 28
[(1,5),(2,9),(3,10),(4,6),(7,8)] => 32
[(1,4),(2,9),(3,10),(5,6),(7,8)] => 13
[(1,3),(2,9),(4,10),(5,6),(7,8)] => 24
[(1,2),(3,9),(4,10),(5,6),(7,8)] => 6
[(1,2),(3,10),(4,9),(5,6),(7,8)] => 2
[(1,3),(2,10),(4,9),(5,6),(7,8)] => 12
[(1,4),(2,10),(3,9),(5,6),(7,8)] => 9
[(1,5),(2,10),(3,9),(4,6),(7,8)] => 28
[(1,6),(2,10),(3,9),(4,5),(7,8)] => 18
[(1,7),(2,10),(3,9),(4,5),(6,8)] => 15
[(1,8),(2,10),(3,9),(4,5),(6,7)] => 9
[(1,9),(2,10),(3,8),(4,5),(6,7)] => 4
[(1,10),(2,9),(3,8),(4,5),(6,7)] => 1
[(1,10),(2,9),(3,8),(4,6),(5,7)] => 4
[(1,9),(2,10),(3,8),(4,6),(5,7)] => 9
[(1,8),(2,10),(3,9),(4,6),(5,7)] => 15
[(1,7),(2,10),(3,9),(4,6),(5,8)] => 20
[(1,6),(2,10),(3,9),(4,7),(5,8)] => 22
[(1,5),(2,10),(3,9),(4,7),(6,8)] => 19
[(1,4),(2,10),(3,9),(5,7),(6,8)] => 28
[(1,3),(2,10),(4,9),(5,7),(6,8)] => 16
[(1,2),(3,10),(4,9),(5,7),(6,8)] => 6
[(1,2),(3,9),(4,10),(5,7),(6,8)] => 10
[(1,3),(2,9),(4,10),(5,7),(6,8)] => 22
[(1,4),(2,9),(3,10),(5,7),(6,8)] => 32
[(1,5),(2,9),(3,10),(4,7),(6,8)] => 19
[(1,6),(2,9),(3,10),(4,7),(5,8)] => 20
[(1,7),(2,9),(3,10),(4,6),(5,8)] => 22
[(1,8),(2,9),(3,10),(4,6),(5,7)] => 20
[(1,9),(2,8),(3,10),(4,6),(5,7)] => 15
[(1,10),(2,8),(3,9),(4,6),(5,7)] => 9
[(1,10),(2,7),(3,9),(4,6),(5,8)] => 15
[(1,9),(2,7),(3,10),(4,6),(5,8)] => 20
[(1,8),(2,7),(3,10),(4,6),(5,9)] => 22
[(1,7),(2,8),(3,10),(4,6),(5,9)] => 20
[(1,6),(2,8),(3,10),(4,7),(5,9)] => 15
[(1,5),(2,8),(3,10),(4,7),(6,9)] => 15
[(1,4),(2,8),(3,10),(5,7),(6,9)] => 28
[(1,3),(2,8),(4,10),(5,7),(6,9)] => 22
[(1,2),(3,8),(4,10),(5,7),(6,9)] => 12
[(1,2),(3,7),(4,10),(5,8),(6,9)] => 10
[(1,3),(2,7),(4,10),(5,8),(6,9)] => 16
[(1,4),(2,7),(3,10),(5,8),(6,9)] => 18
[(1,5),(2,7),(3,10),(4,8),(6,9)] => 9
[(1,6),(2,7),(3,10),(4,8),(5,9)] => 9
[(1,7),(2,6),(3,10),(4,8),(5,9)] => 15
[(1,8),(2,6),(3,10),(4,7),(5,9)] => 20
[(1,9),(2,6),(3,10),(4,7),(5,8)] => 22
[(1,10),(2,6),(3,9),(4,7),(5,8)] => 20
[(1,10),(2,5),(3,9),(4,7),(6,8)] => 15
[(1,9),(2,5),(3,10),(4,7),(6,8)] => 19
[(1,8),(2,5),(3,10),(4,7),(6,9)] => 19
[(1,7),(2,5),(3,10),(4,8),(6,9)] => 15
[(1,6),(2,5),(3,10),(4,8),(7,9)] => 28
[(1,5),(2,6),(3,10),(4,8),(7,9)] => 18
[(1,4),(2,6),(3,10),(5,8),(7,9)] => 9
[(1,3),(2,6),(4,10),(5,8),(7,9)] => 24
[(1,2),(3,6),(4,10),(5,8),(7,9)] => 10
[(1,2),(3,5),(4,10),(6,8),(7,9)] => 24
[(1,3),(2,5),(4,10),(6,8),(7,9)] => 21
[(1,4),(2,5),(3,10),(6,8),(7,9)] => 24
[(1,5),(2,4),(3,10),(6,8),(7,9)] => 30
[(1,6),(2,4),(3,10),(5,8),(7,9)] => 13
[(1,7),(2,4),(3,10),(5,8),(6,9)] => 28
[(1,8),(2,4),(3,10),(5,7),(6,9)] => 32
[(1,9),(2,4),(3,10),(5,7),(6,8)] => 28
[(1,10),(2,4),(3,9),(5,7),(6,8)] => 18
[(1,10),(2,3),(4,9),(5,7),(6,8)] => 8
[(1,9),(2,3),(4,10),(5,7),(6,8)] => 16
[(1,8),(2,3),(4,10),(5,7),(6,9)] => 22
[(1,7),(2,3),(4,10),(5,8),(6,9)] => 22
[(1,6),(2,3),(4,10),(5,8),(7,9)] => 30
[(1,5),(2,3),(4,10),(6,8),(7,9)] => 21
[(1,4),(2,3),(5,10),(6,8),(7,9)] => 18
[(1,3),(2,4),(5,10),(6,8),(7,9)] => 24
[(1,2),(3,4),(5,10),(6,8),(7,9)] => 6
[(1,2),(3,4),(5,9),(6,8),(7,10)] => 6
[(1,3),(2,4),(5,9),(6,8),(7,10)] => 18
[(1,4),(2,3),(5,9),(6,8),(7,10)] => 24
[(1,5),(2,3),(4,9),(6,8),(7,10)] => 21
[(1,6),(2,3),(4,9),(5,8),(7,10)] => 24
[(1,7),(2,3),(4,9),(5,8),(6,10)] => 16
[(1,8),(2,3),(4,9),(5,7),(6,10)] => 22
[(1,9),(2,3),(4,8),(5,7),(6,10)] => 22
[(1,10),(2,3),(4,8),(5,7),(6,9)] => 16
[(1,10),(2,4),(3,8),(5,7),(6,9)] => 28
[(1,9),(2,4),(3,8),(5,7),(6,10)] => 32
[(1,8),(2,4),(3,9),(5,7),(6,10)] => 28
[(1,7),(2,4),(3,9),(5,8),(6,10)] => 18
[(1,6),(2,4),(3,9),(5,8),(7,10)] => 9
[(1,5),(2,4),(3,9),(6,8),(7,10)] => 24
[(1,4),(2,5),(3,9),(6,8),(7,10)] => 12
[(1,3),(2,5),(4,9),(6,8),(7,10)] => 12
[(1,2),(3,5),(4,9),(6,8),(7,10)] => 18
[(1,2),(3,6),(4,9),(5,8),(7,10)] => 6
[(1,3),(2,6),(4,9),(5,8),(7,10)] => 12
[(1,4),(2,6),(3,9),(5,8),(7,10)] => 4
[(1,5),(2,6),(3,9),(4,8),(7,10)] => 8
[(1,6),(2,5),(3,9),(4,8),(7,10)] => 18
[(1,7),(2,5),(3,9),(4,8),(6,10)] => 9
[(1,8),(2,5),(3,9),(4,7),(6,10)] => 15
[(1,9),(2,5),(3,8),(4,7),(6,10)] => 19
[(1,10),(2,5),(3,8),(4,7),(6,9)] => 19
[(1,10),(2,6),(3,8),(4,7),(5,9)] => 22
[(1,9),(2,6),(3,8),(4,7),(5,10)] => 20
[(1,8),(2,6),(3,9),(4,7),(5,10)] => 15
[(1,7),(2,6),(3,9),(4,8),(5,10)] => 9
[(1,6),(2,7),(3,9),(4,8),(5,10)] => 4
[(1,5),(2,7),(3,9),(4,8),(6,10)] => 4
[(1,4),(2,7),(3,9),(5,8),(6,10)] => 8
[(1,3),(2,7),(4,9),(5,8),(6,10)] => 8
[(1,2),(3,7),(4,9),(5,8),(6,10)] => 6
[(1,2),(3,8),(4,9),(5,7),(6,10)] => 10
[(1,3),(2,8),(4,9),(5,7),(6,10)] => 16
[(1,4),(2,8),(3,9),(5,7),(6,10)] => 18
[(1,5),(2,8),(3,9),(4,7),(6,10)] => 9
[(1,6),(2,8),(3,9),(4,7),(5,10)] => 9
[(1,7),(2,8),(3,9),(4,6),(5,10)] => 15
[(1,8),(2,7),(3,9),(4,6),(5,10)] => 20
[(1,9),(2,7),(3,8),(4,6),(5,10)] => 22
[(1,10),(2,7),(3,8),(4,6),(5,9)] => 20
[(1,10),(2,8),(3,7),(4,6),(5,9)] => 15
[(1,9),(2,8),(3,7),(4,6),(5,10)] => 20
[(1,8),(2,9),(3,7),(4,6),(5,10)] => 22
[(1,7),(2,9),(3,8),(4,6),(5,10)] => 20
[(1,6),(2,9),(3,8),(4,7),(5,10)] => 15
[(1,5),(2,9),(3,8),(4,7),(6,10)] => 15
[(1,4),(2,9),(3,8),(5,7),(6,10)] => 28
[(1,3),(2,9),(4,8),(5,7),(6,10)] => 22
[(1,2),(3,9),(4,8),(5,7),(6,10)] => 12
[(1,2),(3,10),(4,8),(5,7),(6,9)] => 10
[(1,3),(2,10),(4,8),(5,7),(6,9)] => 22
[(1,4),(2,10),(3,8),(5,7),(6,9)] => 32
[(1,5),(2,10),(3,8),(4,7),(6,9)] => 19
[(1,6),(2,10),(3,8),(4,7),(5,9)] => 20
[(1,7),(2,10),(3,8),(4,6),(5,9)] => 22
[(1,8),(2,10),(3,7),(4,6),(5,9)] => 20
[(1,9),(2,10),(3,7),(4,6),(5,8)] => 15
[(1,10),(2,9),(3,7),(4,6),(5,8)] => 9
[(1,10),(2,9),(3,6),(4,7),(5,8)] => 15
[(1,9),(2,10),(3,6),(4,7),(5,8)] => 20
[(1,8),(2,10),(3,6),(4,7),(5,9)] => 22
[(1,7),(2,10),(3,6),(4,8),(5,9)] => 20
[(1,6),(2,10),(3,7),(4,8),(5,9)] => 15
[(1,5),(2,10),(3,7),(4,8),(6,9)] => 15
[(1,4),(2,10),(3,7),(5,8),(6,9)] => 28
[(1,3),(2,10),(4,7),(5,8),(6,9)] => 22
[(1,2),(3,10),(4,7),(5,8),(6,9)] => 12
[(1,2),(3,9),(4,7),(5,8),(6,10)] => 10
[(1,3),(2,9),(4,7),(5,8),(6,10)] => 16
[(1,4),(2,9),(3,7),(5,8),(6,10)] => 18
[(1,5),(2,9),(3,7),(4,8),(6,10)] => 9
[(1,6),(2,9),(3,7),(4,8),(5,10)] => 9
[(1,7),(2,9),(3,6),(4,8),(5,10)] => 15
[(1,8),(2,9),(3,6),(4,7),(5,10)] => 20
[(1,9),(2,8),(3,6),(4,7),(5,10)] => 22
[(1,10),(2,8),(3,6),(4,7),(5,9)] => 20
[(1,10),(2,7),(3,6),(4,8),(5,9)] => 22
[(1,9),(2,7),(3,6),(4,8),(5,10)] => 20
[(1,8),(2,7),(3,6),(4,9),(5,10)] => 15
[(1,7),(2,8),(3,6),(4,9),(5,10)] => 9
[(1,6),(2,8),(3,7),(4,9),(5,10)] => 4
[(1,5),(2,8),(3,7),(4,9),(6,10)] => 4
[(1,4),(2,8),(3,7),(5,9),(6,10)] => 8
[(1,3),(2,8),(4,7),(5,9),(6,10)] => 8
[(1,2),(3,8),(4,7),(5,9),(6,10)] => 6
[(1,2),(3,7),(4,8),(5,9),(6,10)] => 2
[(1,3),(2,7),(4,8),(5,9),(6,10)] => 2
[(1,4),(2,7),(3,8),(5,9),(6,10)] => 2
[(1,5),(2,7),(3,8),(4,9),(6,10)] => 1
[(1,6),(2,7),(3,8),(4,9),(5,10)] => 1
[(1,7),(2,6),(3,8),(4,9),(5,10)] => 4
[(1,8),(2,6),(3,7),(4,9),(5,10)] => 9
[(1,9),(2,6),(3,7),(4,8),(5,10)] => 15
[(1,10),(2,6),(3,7),(4,8),(5,9)] => 20
[(1,10),(2,5),(3,7),(4,8),(6,9)] => 19
[(1,9),(2,5),(3,7),(4,8),(6,10)] => 15
[(1,8),(2,5),(3,7),(4,9),(6,10)] => 9
[(1,7),(2,5),(3,8),(4,9),(6,10)] => 4
[(1,6),(2,5),(3,8),(4,9),(7,10)] => 8
[(1,5),(2,6),(3,8),(4,9),(7,10)] => 2
[(1,4),(2,6),(3,8),(5,9),(7,10)] => 1
[(1,3),(2,6),(4,8),(5,9),(7,10)] => 3
[(1,2),(3,6),(4,8),(5,9),(7,10)] => 2
[(1,2),(3,5),(4,8),(6,9),(7,10)] => 6
[(1,3),(2,5),(4,8),(6,9),(7,10)] => 3
[(1,4),(2,5),(3,8),(6,9),(7,10)] => 3
[(1,5),(2,4),(3,8),(6,9),(7,10)] => 12
[(1,6),(2,4),(3,8),(5,9),(7,10)] => 4
[(1,7),(2,4),(3,8),(5,9),(6,10)] => 8
[(1,8),(2,4),(3,7),(5,9),(6,10)] => 18
[(1,9),(2,4),(3,7),(5,8),(6,10)] => 28
[(1,10),(2,4),(3,7),(5,8),(6,9)] => 32
[(1,10),(2,3),(4,7),(5,8),(6,9)] => 22
[(1,9),(2,3),(4,7),(5,8),(6,10)] => 22
[(1,8),(2,3),(4,7),(5,9),(6,10)] => 16
[(1,7),(2,3),(4,8),(5,9),(6,10)] => 8
[(1,6),(2,3),(4,8),(5,9),(7,10)] => 12
[(1,5),(2,3),(4,8),(6,9),(7,10)] => 12
[(1,4),(2,3),(5,8),(6,9),(7,10)] => 18
[(1,3),(2,4),(5,8),(6,9),(7,10)] => 6
[(1,2),(3,4),(5,8),(6,9),(7,10)] => 3
[(1,2),(3,4),(5,7),(6,9),(8,10)] => 6
[(1,3),(2,4),(5,7),(6,9),(8,10)] => 4
[(1,4),(2,3),(5,7),(6,9),(8,10)] => 12
[(1,5),(2,3),(4,7),(6,9),(8,10)] => 4
[(1,6),(2,3),(4,7),(5,9),(8,10)] => 12
[(1,7),(2,3),(4,6),(5,9),(8,10)] => 21
[(1,8),(2,3),(4,6),(5,9),(7,10)] => 24
[(1,9),(2,3),(4,6),(5,8),(7,10)] => 30
[(1,10),(2,3),(4,6),(5,8),(7,9)] => 24
[(1,10),(2,4),(3,6),(5,8),(7,9)] => 13
[(1,9),(2,4),(3,6),(5,8),(7,10)] => 13
[(1,8),(2,4),(3,6),(5,9),(7,10)] => 9
[(1,7),(2,4),(3,6),(5,9),(8,10)] => 24
[(1,6),(2,4),(3,7),(5,9),(8,10)] => 12
[(1,5),(2,4),(3,7),(6,9),(8,10)] => 12
[(1,4),(2,5),(3,7),(6,9),(8,10)] => 3
[(1,3),(2,5),(4,7),(6,9),(8,10)] => 1
[(1,2),(3,5),(4,7),(6,9),(8,10)] => 4
[(1,2),(3,6),(4,7),(5,9),(8,10)] => 6
[(1,3),(2,6),(4,7),(5,9),(8,10)] => 3
[(1,4),(2,6),(3,7),(5,9),(8,10)] => 3
[(1,5),(2,6),(3,7),(4,9),(8,10)] => 2
[(1,6),(2,5),(3,7),(4,9),(8,10)] => 8
[(1,7),(2,5),(3,6),(4,9),(8,10)] => 16
[(1,8),(2,5),(3,6),(4,9),(7,10)] => 18
[(1,9),(2,5),(3,6),(4,8),(7,10)] => 28
[(1,10),(2,5),(3,6),(4,8),(7,9)] => 32
[(1,10),(2,6),(3,5),(4,8),(7,9)] => 28
[(1,9),(2,6),(3,5),(4,8),(7,10)] => 32
[(1,8),(2,6),(3,5),(4,9),(7,10)] => 28
[(1,7),(2,6),(3,5),(4,9),(8,10)] => 22
[(1,6),(2,7),(3,5),(4,9),(8,10)] => 16
[(1,5),(2,7),(3,6),(4,9),(8,10)] => 8
[(1,4),(2,7),(3,6),(5,9),(8,10)] => 12
[(1,3),(2,7),(4,6),(5,9),(8,10)] => 12
[(1,2),(3,7),(4,6),(5,9),(8,10)] => 18
[(1,2),(3,8),(4,6),(5,9),(7,10)] => 6
[(1,3),(2,8),(4,6),(5,9),(7,10)] => 12
[(1,4),(2,8),(3,6),(5,9),(7,10)] => 4
[(1,5),(2,8),(3,6),(4,9),(7,10)] => 8
[(1,6),(2,8),(3,5),(4,9),(7,10)] => 18
[(1,7),(2,8),(3,5),(4,9),(6,10)] => 9
[(1,8),(2,7),(3,5),(4,9),(6,10)] => 15
[(1,9),(2,7),(3,5),(4,8),(6,10)] => 19
[(1,10),(2,7),(3,5),(4,8),(6,9)] => 19
[(1,10),(2,8),(3,5),(4,7),(6,9)] => 15
[(1,9),(2,8),(3,5),(4,7),(6,10)] => 19
[(1,8),(2,9),(3,5),(4,7),(6,10)] => 19
[(1,7),(2,9),(3,5),(4,8),(6,10)] => 15
[(1,6),(2,9),(3,5),(4,8),(7,10)] => 28
[(1,5),(2,9),(3,6),(4,8),(7,10)] => 18
[(1,4),(2,9),(3,6),(5,8),(7,10)] => 9
[(1,3),(2,9),(4,6),(5,8),(7,10)] => 24
[(1,2),(3,9),(4,6),(5,8),(7,10)] => 10
[(1,2),(3,10),(4,6),(5,8),(7,9)] => 10
[(1,3),(2,10),(4,6),(5,8),(7,9)] => 30
[(1,4),(2,10),(3,6),(5,8),(7,9)] => 13
[(1,5),(2,10),(3,6),(4,8),(7,9)] => 28
[(1,6),(2,10),(3,5),(4,8),(7,9)] => 32
[(1,7),(2,10),(3,5),(4,8),(6,9)] => 19
[(1,8),(2,10),(3,5),(4,7),(6,9)] => 19
[(1,9),(2,10),(3,5),(4,7),(6,8)] => 15
[(1,10),(2,9),(3,5),(4,7),(6,8)] => 9
[(1,10),(2,9),(3,4),(5,7),(6,8)] => 8
[(1,9),(2,10),(3,4),(5,7),(6,8)] => 18
[(1,8),(2,10),(3,4),(5,7),(6,9)] => 28
[(1,7),(2,10),(3,4),(5,8),(6,9)] => 32
[(1,6),(2,10),(3,4),(5,8),(7,9)] => 13
[(1,5),(2,10),(3,4),(6,8),(7,9)] => 24
[(1,4),(2,10),(3,5),(6,8),(7,9)] => 30
[(1,3),(2,10),(4,5),(6,8),(7,9)] => 21
[(1,2),(3,10),(4,5),(6,8),(7,9)] => 18
[(1,2),(3,9),(4,5),(6,8),(7,10)] => 24
[(1,3),(2,9),(4,5),(6,8),(7,10)] => 21
[(1,4),(2,9),(3,5),(6,8),(7,10)] => 24
[(1,5),(2,9),(3,4),(6,8),(7,10)] => 30
[(1,6),(2,9),(3,4),(5,8),(7,10)] => 13
[(1,7),(2,9),(3,4),(5,8),(6,10)] => 28
[(1,8),(2,9),(3,4),(5,7),(6,10)] => 32
[(1,9),(2,8),(3,4),(5,7),(6,10)] => 28
[(1,10),(2,8),(3,4),(5,7),(6,9)] => 18
[(1,10),(2,7),(3,4),(5,8),(6,9)] => 28
[(1,9),(2,7),(3,4),(5,8),(6,10)] => 32
[(1,8),(2,7),(3,4),(5,9),(6,10)] => 28
[(1,7),(2,8),(3,4),(5,9),(6,10)] => 18
[(1,6),(2,8),(3,4),(5,9),(7,10)] => 9
[(1,5),(2,8),(3,4),(6,9),(7,10)] => 24
[(1,4),(2,8),(3,5),(6,9),(7,10)] => 12
[(1,3),(2,8),(4,5),(6,9),(7,10)] => 12
[(1,2),(3,8),(4,5),(6,9),(7,10)] => 18
[(1,2),(3,7),(4,5),(6,9),(8,10)] => 12
[(1,3),(2,7),(4,5),(6,9),(8,10)] => 4
[(1,4),(2,7),(3,5),(6,9),(8,10)] => 12
[(1,5),(2,7),(3,4),(6,9),(8,10)] => 21
[(1,6),(2,7),(3,4),(5,9),(8,10)] => 24
[(1,7),(2,6),(3,4),(5,9),(8,10)] => 30
[(1,8),(2,6),(3,4),(5,9),(7,10)] => 13
[(1,9),(2,6),(3,4),(5,8),(7,10)] => 13
[(1,10),(2,6),(3,4),(5,8),(7,9)] => 9
[(1,10),(2,5),(3,4),(6,8),(7,9)] => 12
[(1,9),(2,5),(3,4),(6,8),(7,10)] => 24
[(1,8),(2,5),(3,4),(6,9),(7,10)] => 30
[(1,7),(2,5),(3,4),(6,9),(8,10)] => 21
[(1,6),(2,5),(3,4),(7,9),(8,10)] => 18
[(1,5),(2,6),(3,4),(7,9),(8,10)] => 24
[(1,4),(2,6),(3,5),(7,9),(8,10)] => 18
[(1,3),(2,6),(4,5),(7,9),(8,10)] => 12
[(1,2),(3,6),(4,5),(7,9),(8,10)] => 12
[(1,2),(3,5),(4,6),(7,9),(8,10)] => 6
[(1,3),(2,5),(4,6),(7,9),(8,10)] => 4
[(1,4),(2,5),(3,6),(7,9),(8,10)] => 6
[(1,5),(2,4),(3,6),(7,9),(8,10)] => 18
[(1,6),(2,4),(3,5),(7,9),(8,10)] => 24
[(1,7),(2,4),(3,5),(6,9),(8,10)] => 21
[(1,8),(2,4),(3,5),(6,9),(7,10)] => 24
[(1,9),(2,4),(3,5),(6,8),(7,10)] => 30
[(1,10),(2,4),(3,5),(6,8),(7,9)] => 24
[(1,10),(2,3),(4,5),(6,8),(7,9)] => 12
[(1,9),(2,3),(4,5),(6,8),(7,10)] => 21
[(1,8),(2,3),(4,5),(6,9),(7,10)] => 21
[(1,7),(2,3),(4,5),(6,9),(8,10)] => 6
[(1,6),(2,3),(4,5),(7,9),(8,10)] => 12
[(1,5),(2,3),(4,6),(7,9),(8,10)] => 12
[(1,4),(2,3),(5,6),(7,9),(8,10)] => 12
[(1,3),(2,4),(5,6),(7,9),(8,10)] => 6
[(1,2),(3,4),(5,6),(7,9),(8,10)] => 4
[(1,2),(3,4),(5,6),(7,10),(8,9)] => 4
[(1,3),(2,4),(5,6),(7,10),(8,9)] => 12
[(1,4),(2,3),(5,6),(7,10),(8,9)] => 6
[(1,5),(2,3),(4,6),(7,10),(8,9)] => 12
[(1,6),(2,3),(4,5),(7,10),(8,9)] => 4
[(1,7),(2,3),(4,5),(6,10),(8,9)] => 4
[(1,8),(2,3),(4,5),(6,10),(7,9)] => 21
[(1,9),(2,3),(4,5),(6,10),(7,8)] => 12
[(1,10),(2,3),(4,5),(6,9),(7,8)] => 3
[(1,10),(2,4),(3,5),(6,9),(7,8)] => 12
[(1,9),(2,4),(3,5),(6,10),(7,8)] => 24
[(1,8),(2,4),(3,5),(6,10),(7,9)] => 30
[(1,7),(2,4),(3,5),(6,10),(8,9)] => 21
[(1,6),(2,4),(3,5),(7,10),(8,9)] => 18
[(1,5),(2,4),(3,6),(7,10),(8,9)] => 24
[(1,4),(2,5),(3,6),(7,10),(8,9)] => 18
[(1,3),(2,5),(4,6),(7,10),(8,9)] => 12
[(1,2),(3,5),(4,6),(7,10),(8,9)] => 12
[(1,2),(3,6),(4,5),(7,10),(8,9)] => 6
[(1,3),(2,6),(4,5),(7,10),(8,9)] => 12
[(1,4),(2,6),(3,5),(7,10),(8,9)] => 24
[(1,5),(2,6),(3,4),(7,10),(8,9)] => 18
[(1,6),(2,5),(3,4),(7,10),(8,9)] => 6
[(1,7),(2,5),(3,4),(6,10),(8,9)] => 12
[(1,8),(2,5),(3,4),(6,10),(7,9)] => 24
[(1,9),(2,5),(3,4),(6,10),(7,8)] => 12
[(1,10),(2,5),(3,4),(6,9),(7,8)] => 3
[(1,10),(2,6),(3,4),(5,9),(7,8)] => 4
[(1,9),(2,6),(3,4),(5,10),(7,8)] => 9
[(1,8),(2,6),(3,4),(5,10),(7,9)] => 13
[(1,7),(2,6),(3,4),(5,10),(8,9)] => 24
[(1,6),(2,7),(3,4),(5,10),(8,9)] => 30
[(1,5),(2,7),(3,4),(6,10),(8,9)] => 21
[(1,4),(2,7),(3,5),(6,10),(8,9)] => 21
[(1,3),(2,7),(4,5),(6,10),(8,9)] => 6
[(1,2),(3,7),(4,5),(6,10),(8,9)] => 12
[(1,2),(3,8),(4,5),(6,10),(7,9)] => 24
[(1,3),(2,8),(4,5),(6,10),(7,9)] => 21
[(1,4),(2,8),(3,5),(6,10),(7,9)] => 24
[(1,5),(2,8),(3,4),(6,10),(7,9)] => 30
[(1,6),(2,8),(3,4),(5,10),(7,9)] => 13
[(1,7),(2,8),(3,4),(5,10),(6,9)] => 28
[(1,8),(2,7),(3,4),(5,10),(6,9)] => 32
[(1,9),(2,7),(3,4),(5,10),(6,8)] => 28
[(1,10),(2,7),(3,4),(5,9),(6,8)] => 18
[(1,10),(2,8),(3,4),(5,9),(6,7)] => 8
[(1,9),(2,8),(3,4),(5,10),(6,7)] => 18
[(1,8),(2,9),(3,4),(5,10),(6,7)] => 28
[(1,7),(2,9),(3,4),(5,10),(6,8)] => 32
[(1,6),(2,9),(3,4),(5,10),(7,8)] => 13
[(1,5),(2,9),(3,4),(6,10),(7,8)] => 24
[(1,4),(2,9),(3,5),(6,10),(7,8)] => 30
[(1,3),(2,9),(4,5),(6,10),(7,8)] => 21
[(1,2),(3,9),(4,5),(6,10),(7,8)] => 18
[(1,2),(3,10),(4,5),(6,9),(7,8)] => 6
[(1,3),(2,10),(4,5),(6,9),(7,8)] => 12
[(1,4),(2,10),(3,5),(6,9),(7,8)] => 24
[(1,5),(2,10),(3,4),(6,9),(7,8)] => 12
[(1,6),(2,10),(3,4),(5,9),(7,8)] => 9
[(1,7),(2,10),(3,4),(5,9),(6,8)] => 28
[(1,8),(2,10),(3,4),(5,9),(6,7)] => 18
[(1,9),(2,10),(3,4),(5,8),(6,7)] => 8
[(1,10),(2,9),(3,4),(5,8),(6,7)] => 2
[(1,10),(2,9),(3,5),(4,8),(6,7)] => 4
[(1,9),(2,10),(3,5),(4,8),(6,7)] => 9
[(1,8),(2,10),(3,5),(4,9),(6,7)] => 15
[(1,7),(2,10),(3,5),(4,9),(6,8)] => 19
[(1,6),(2,10),(3,5),(4,9),(7,8)] => 28
[(1,5),(2,10),(3,6),(4,9),(7,8)] => 32
[(1,4),(2,10),(3,6),(5,9),(7,8)] => 13
[(1,3),(2,10),(4,6),(5,9),(7,8)] => 24
[(1,2),(3,10),(4,6),(5,9),(7,8)] => 6
[(1,2),(3,9),(4,6),(5,10),(7,8)] => 10
[(1,3),(2,9),(4,6),(5,10),(7,8)] => 30
[(1,4),(2,9),(3,6),(5,10),(7,8)] => 13
[(1,5),(2,9),(3,6),(4,10),(7,8)] => 28
[(1,6),(2,9),(3,5),(4,10),(7,8)] => 32
[(1,7),(2,9),(3,5),(4,10),(6,8)] => 19
[(1,8),(2,9),(3,5),(4,10),(6,7)] => 19
[(1,9),(2,8),(3,5),(4,10),(6,7)] => 15
[(1,10),(2,8),(3,5),(4,9),(6,7)] => 9
[(1,10),(2,7),(3,5),(4,9),(6,8)] => 15
[(1,9),(2,7),(3,5),(4,10),(6,8)] => 19
[(1,8),(2,7),(3,5),(4,10),(6,9)] => 19
[(1,7),(2,8),(3,5),(4,10),(6,9)] => 15
[(1,6),(2,8),(3,5),(4,10),(7,9)] => 28
[(1,5),(2,8),(3,6),(4,10),(7,9)] => 18
[(1,4),(2,8),(3,6),(5,10),(7,9)] => 9
[(1,3),(2,8),(4,6),(5,10),(7,9)] => 24
[(1,2),(3,8),(4,6),(5,10),(7,9)] => 10
[(1,2),(3,7),(4,6),(5,10),(8,9)] => 24
[(1,3),(2,7),(4,6),(5,10),(8,9)] => 21
[(1,4),(2,7),(3,6),(5,10),(8,9)] => 24
[(1,5),(2,7),(3,6),(4,10),(8,9)] => 16
[(1,6),(2,7),(3,5),(4,10),(8,9)] => 22
[(1,7),(2,6),(3,5),(4,10),(8,9)] => 22
[(1,8),(2,6),(3,5),(4,10),(7,9)] => 32
[(1,9),(2,6),(3,5),(4,10),(7,8)] => 28
[(1,10),(2,6),(3,5),(4,9),(7,8)] => 18
[(1,10),(2,5),(3,6),(4,9),(7,8)] => 28
[(1,9),(2,5),(3,6),(4,10),(7,8)] => 32
[(1,8),(2,5),(3,6),(4,10),(7,9)] => 28
[(1,7),(2,5),(3,6),(4,10),(8,9)] => 22
[(1,6),(2,5),(3,7),(4,10),(8,9)] => 16
[(1,5),(2,6),(3,7),(4,10),(8,9)] => 8
[(1,4),(2,6),(3,7),(5,10),(8,9)] => 12
[(1,3),(2,6),(4,7),(5,10),(8,9)] => 12
[(1,2),(3,6),(4,7),(5,10),(8,9)] => 18
[(1,2),(3,5),(4,7),(6,10),(8,9)] => 12
[(1,3),(2,5),(4,7),(6,10),(8,9)] => 4
[(1,4),(2,5),(3,7),(6,10),(8,9)] => 12
[(1,5),(2,4),(3,7),(6,10),(8,9)] => 21
[(1,6),(2,4),(3,7),(5,10),(8,9)] => 24
[(1,7),(2,4),(3,6),(5,10),(8,9)] => 30
[(1,8),(2,4),(3,6),(5,10),(7,9)] => 13
[(1,9),(2,4),(3,6),(5,10),(7,8)] => 13
[(1,10),(2,4),(3,6),(5,9),(7,8)] => 9
[(1,10),(2,3),(4,6),(5,9),(7,8)] => 12
[(1,9),(2,3),(4,6),(5,10),(7,8)] => 24
[(1,8),(2,3),(4,6),(5,10),(7,9)] => 30
[(1,7),(2,3),(4,6),(5,10),(8,9)] => 21
[(1,6),(2,3),(4,7),(5,10),(8,9)] => 21
[(1,5),(2,3),(4,7),(6,10),(8,9)] => 6
[(1,4),(2,3),(5,7),(6,10),(8,9)] => 12
[(1,3),(2,4),(5,7),(6,10),(8,9)] => 12
[(1,2),(3,4),(5,7),(6,10),(8,9)] => 12
[(1,2),(3,4),(5,8),(6,10),(7,9)] => 6
[(1,3),(2,4),(5,8),(6,10),(7,9)] => 18
[(1,4),(2,3),(5,8),(6,10),(7,9)] => 24
[(1,5),(2,3),(4,8),(6,10),(7,9)] => 21
[(1,6),(2,3),(4,8),(5,10),(7,9)] => 24
[(1,7),(2,3),(4,8),(5,10),(6,9)] => 16
[(1,8),(2,3),(4,7),(5,10),(6,9)] => 22
[(1,9),(2,3),(4,7),(5,10),(6,8)] => 22
[(1,10),(2,3),(4,7),(5,9),(6,8)] => 16
[(1,10),(2,4),(3,7),(5,9),(6,8)] => 28
[(1,9),(2,4),(3,7),(5,10),(6,8)] => 32
[(1,8),(2,4),(3,7),(5,10),(6,9)] => 28
[(1,7),(2,4),(3,8),(5,10),(6,9)] => 18
[(1,6),(2,4),(3,8),(5,10),(7,9)] => 9
[(1,5),(2,4),(3,8),(6,10),(7,9)] => 24
[(1,4),(2,5),(3,8),(6,10),(7,9)] => 12
[(1,3),(2,5),(4,8),(6,10),(7,9)] => 12
[(1,2),(3,5),(4,8),(6,10),(7,9)] => 18
[(1,2),(3,6),(4,8),(5,10),(7,9)] => 6
[(1,3),(2,6),(4,8),(5,10),(7,9)] => 12
[(1,4),(2,6),(3,8),(5,10),(7,9)] => 4
[(1,5),(2,6),(3,8),(4,10),(7,9)] => 8
[(1,6),(2,5),(3,8),(4,10),(7,9)] => 18
[(1,7),(2,5),(3,8),(4,10),(6,9)] => 9
[(1,8),(2,5),(3,7),(4,10),(6,9)] => 15
[(1,9),(2,5),(3,7),(4,10),(6,8)] => 19
[(1,10),(2,5),(3,7),(4,9),(6,8)] => 19
[(1,10),(2,6),(3,7),(4,9),(5,8)] => 22
[(1,9),(2,6),(3,7),(4,10),(5,8)] => 20
[(1,8),(2,6),(3,7),(4,10),(5,9)] => 15
[(1,7),(2,6),(3,8),(4,10),(5,9)] => 9
[(1,6),(2,7),(3,8),(4,10),(5,9)] => 4
[(1,5),(2,7),(3,8),(4,10),(6,9)] => 4
[(1,4),(2,7),(3,8),(5,10),(6,9)] => 8
[(1,3),(2,7),(4,8),(5,10),(6,9)] => 8
[(1,2),(3,7),(4,8),(5,10),(6,9)] => 6
[(1,2),(3,8),(4,7),(5,10),(6,9)] => 10
[(1,3),(2,8),(4,7),(5,10),(6,9)] => 16
[(1,4),(2,8),(3,7),(5,10),(6,9)] => 18
[(1,5),(2,8),(3,7),(4,10),(6,9)] => 9
[(1,6),(2,8),(3,7),(4,10),(5,9)] => 9
[(1,7),(2,8),(3,6),(4,10),(5,9)] => 15
[(1,8),(2,7),(3,6),(4,10),(5,9)] => 20
[(1,9),(2,7),(3,6),(4,10),(5,8)] => 22
[(1,10),(2,7),(3,6),(4,9),(5,8)] => 20
[(1,10),(2,8),(3,6),(4,9),(5,7)] => 15
[(1,9),(2,8),(3,6),(4,10),(5,7)] => 20
[(1,8),(2,9),(3,6),(4,10),(5,7)] => 22
[(1,7),(2,9),(3,6),(4,10),(5,8)] => 20
[(1,6),(2,9),(3,7),(4,10),(5,8)] => 15
[(1,5),(2,9),(3,7),(4,10),(6,8)] => 15
[(1,4),(2,9),(3,7),(5,10),(6,8)] => 28
[(1,3),(2,9),(4,7),(5,10),(6,8)] => 22
[(1,2),(3,9),(4,7),(5,10),(6,8)] => 12
[(1,2),(3,10),(4,7),(5,9),(6,8)] => 10
[(1,3),(2,10),(4,7),(5,9),(6,8)] => 22
[(1,4),(2,10),(3,7),(5,9),(6,8)] => 32
[(1,5),(2,10),(3,7),(4,9),(6,8)] => 19
[(1,6),(2,10),(3,7),(4,9),(5,8)] => 20
[(1,7),(2,10),(3,6),(4,9),(5,8)] => 22
[(1,8),(2,10),(3,6),(4,9),(5,7)] => 20
[(1,9),(2,10),(3,6),(4,8),(5,7)] => 15
[(1,10),(2,9),(3,6),(4,8),(5,7)] => 9
[(1,10),(2,9),(3,7),(4,8),(5,6)] => 4
[(1,9),(2,10),(3,7),(4,8),(5,6)] => 9
[(1,8),(2,10),(3,7),(4,9),(5,6)] => 15
[(1,7),(2,10),(3,8),(4,9),(5,6)] => 20
[(1,6),(2,10),(3,8),(4,9),(5,7)] => 22
[(1,5),(2,10),(3,8),(4,9),(6,7)] => 19
[(1,4),(2,10),(3,8),(5,9),(6,7)] => 28
[(1,3),(2,10),(4,8),(5,9),(6,7)] => 16
[(1,2),(3,10),(4,8),(5,9),(6,7)] => 6
[(1,2),(3,9),(4,8),(5,10),(6,7)] => 10
[(1,3),(2,9),(4,8),(5,10),(6,7)] => 22
[(1,4),(2,9),(3,8),(5,10),(6,7)] => 32
[(1,5),(2,9),(3,8),(4,10),(6,7)] => 19
[(1,6),(2,9),(3,8),(4,10),(5,7)] => 20
[(1,7),(2,9),(3,8),(4,10),(5,6)] => 22
[(1,8),(2,9),(3,7),(4,10),(5,6)] => 20
[(1,9),(2,8),(3,7),(4,10),(5,6)] => 15
[(1,10),(2,8),(3,7),(4,9),(5,6)] => 9
[(1,10),(2,7),(3,8),(4,9),(5,6)] => 15
[(1,9),(2,7),(3,8),(4,10),(5,6)] => 20
[(1,8),(2,7),(3,9),(4,10),(5,6)] => 22
[(1,7),(2,8),(3,9),(4,10),(5,6)] => 20
[(1,6),(2,8),(3,9),(4,10),(5,7)] => 15
[(1,5),(2,8),(3,9),(4,10),(6,7)] => 15
[(1,4),(2,8),(3,9),(5,10),(6,7)] => 28
[(1,3),(2,8),(4,9),(5,10),(6,7)] => 22
[(1,2),(3,8),(4,9),(5,10),(6,7)] => 12
[(1,2),(3,7),(4,9),(5,10),(6,8)] => 10
[(1,3),(2,7),(4,9),(5,10),(6,8)] => 16
[(1,4),(2,7),(3,9),(5,10),(6,8)] => 18
[(1,5),(2,7),(3,9),(4,10),(6,8)] => 9
[(1,6),(2,7),(3,9),(4,10),(5,8)] => 9
[(1,7),(2,6),(3,9),(4,10),(5,8)] => 15
[(1,8),(2,6),(3,9),(4,10),(5,7)] => 20
[(1,9),(2,6),(3,8),(4,10),(5,7)] => 22
[(1,10),(2,6),(3,8),(4,9),(5,7)] => 20
[(1,10),(2,5),(3,8),(4,9),(6,7)] => 15
[(1,9),(2,5),(3,8),(4,10),(6,7)] => 19
[(1,8),(2,5),(3,9),(4,10),(6,7)] => 19
[(1,7),(2,5),(3,9),(4,10),(6,8)] => 15
[(1,6),(2,5),(3,9),(4,10),(7,8)] => 28
[(1,5),(2,6),(3,9),(4,10),(7,8)] => 18
[(1,4),(2,6),(3,9),(5,10),(7,8)] => 9
[(1,3),(2,6),(4,9),(5,10),(7,8)] => 24
[(1,2),(3,6),(4,9),(5,10),(7,8)] => 10
[(1,2),(3,5),(4,9),(6,10),(7,8)] => 24
[(1,3),(2,5),(4,9),(6,10),(7,8)] => 21
[(1,4),(2,5),(3,9),(6,10),(7,8)] => 24
[(1,5),(2,4),(3,9),(6,10),(7,8)] => 30
[(1,6),(2,4),(3,9),(5,10),(7,8)] => 13
[(1,7),(2,4),(3,9),(5,10),(6,8)] => 28
[(1,8),(2,4),(3,9),(5,10),(6,7)] => 32
[(1,9),(2,4),(3,8),(5,10),(6,7)] => 28
[(1,10),(2,4),(3,8),(5,9),(6,7)] => 18
[(1,10),(2,3),(4,8),(5,9),(6,7)] => 8
[(1,9),(2,3),(4,8),(5,10),(6,7)] => 16
[(1,8),(2,3),(4,9),(5,10),(6,7)] => 22
[(1,7),(2,3),(4,9),(5,10),(6,8)] => 22
[(1,6),(2,3),(4,9),(5,10),(7,8)] => 30
[(1,5),(2,3),(4,9),(6,10),(7,8)] => 21
[(1,4),(2,3),(5,9),(6,10),(7,8)] => 18
[(1,3),(2,4),(5,9),(6,10),(7,8)] => 24
[(1,2),(3,4),(5,9),(6,10),(7,8)] => 6
[(1,2),(3,4),(5,10),(6,9),(7,8)] => 3
[(1,3),(2,4),(5,10),(6,9),(7,8)] => 18
[(1,4),(2,3),(5,10),(6,9),(7,8)] => 6
[(1,5),(2,3),(4,10),(6,9),(7,8)] => 12
[(1,6),(2,3),(4,10),(5,9),(7,8)] => 24
[(1,7),(2,3),(4,10),(5,9),(6,8)] => 22
[(1,8),(2,3),(4,10),(5,9),(6,7)] => 16
[(1,9),(2,3),(4,10),(5,8),(6,7)] => 8
[(1,10),(2,3),(4,9),(5,8),(6,7)] => 2
[(1,10),(2,4),(3,9),(5,8),(6,7)] => 8
[(1,9),(2,4),(3,10),(5,8),(6,7)] => 18
[(1,8),(2,4),(3,10),(5,9),(6,7)] => 28
[(1,7),(2,4),(3,10),(5,9),(6,8)] => 32
[(1,6),(2,4),(3,10),(5,9),(7,8)] => 13
[(1,5),(2,4),(3,10),(6,9),(7,8)] => 24
[(1,4),(2,5),(3,10),(6,9),(7,8)] => 30
[(1,3),(2,5),(4,10),(6,9),(7,8)] => 21
[(1,2),(3,5),(4,10),(6,9),(7,8)] => 18
[(1,2),(3,6),(4,10),(5,9),(7,8)] => 10
[(1,3),(2,6),(4,10),(5,9),(7,8)] => 30
[(1,4),(2,6),(3,10),(5,9),(7,8)] => 13
[(1,5),(2,6),(3,10),(4,9),(7,8)] => 28
[(1,6),(2,5),(3,10),(4,9),(7,8)] => 32
[(1,7),(2,5),(3,10),(4,9),(6,8)] => 19
[(1,8),(2,5),(3,10),(4,9),(6,7)] => 19
[(1,9),(2,5),(3,10),(4,8),(6,7)] => 15
[(1,10),(2,5),(3,9),(4,8),(6,7)] => 9
[(1,10),(2,6),(3,9),(4,8),(5,7)] => 15
[(1,9),(2,6),(3,10),(4,8),(5,7)] => 20
[(1,8),(2,6),(3,10),(4,9),(5,7)] => 22
[(1,7),(2,6),(3,10),(4,9),(5,8)] => 20
[(1,6),(2,7),(3,10),(4,9),(5,8)] => 15
[(1,5),(2,7),(3,10),(4,9),(6,8)] => 15
[(1,4),(2,7),(3,10),(5,9),(6,8)] => 28
[(1,3),(2,7),(4,10),(5,9),(6,8)] => 22
[(1,2),(3,7),(4,10),(5,9),(6,8)] => 12
[(1,2),(3,8),(4,10),(5,9),(6,7)] => 10
[(1,3),(2,8),(4,10),(5,9),(6,7)] => 22
[(1,4),(2,8),(3,10),(5,9),(6,7)] => 32
[(1,5),(2,8),(3,10),(4,9),(6,7)] => 19
[(1,6),(2,8),(3,10),(4,9),(5,7)] => 20
[(1,7),(2,8),(3,10),(4,9),(5,6)] => 22
[(1,8),(2,7),(3,10),(4,9),(5,6)] => 20
[(1,9),(2,7),(3,10),(4,8),(5,6)] => 15
[(1,10),(2,7),(3,9),(4,8),(5,6)] => 9
[(1,10),(2,8),(3,9),(4,7),(5,6)] => 4
[(1,9),(2,8),(3,10),(4,7),(5,6)] => 9
[(1,8),(2,9),(3,10),(4,7),(5,6)] => 15
[(1,7),(2,9),(3,10),(4,8),(5,6)] => 20
[(1,6),(2,9),(3,10),(4,8),(5,7)] => 22
[(1,5),(2,9),(3,10),(4,8),(6,7)] => 19
[(1,4),(2,9),(3,10),(5,8),(6,7)] => 28
[(1,3),(2,9),(4,10),(5,8),(6,7)] => 16
[(1,2),(3,9),(4,10),(5,8),(6,7)] => 6
[(1,2),(3,10),(4,9),(5,8),(6,7)] => 2
[(1,3),(2,10),(4,9),(5,8),(6,7)] => 8
[(1,4),(2,10),(3,9),(5,8),(6,7)] => 18
[(1,5),(2,10),(3,9),(4,8),(6,7)] => 15
[(1,6),(2,10),(3,9),(4,8),(5,7)] => 20
[(1,7),(2,10),(3,9),(4,8),(5,6)] => 15
[(1,8),(2,10),(3,9),(4,7),(5,6)] => 9
[(1,9),(2,10),(3,8),(4,7),(5,6)] => 4
[(1,10),(2,9),(3,8),(4,7),(5,6)] => 1
[(1,2),(3,4),(5,8),(6,7),(9,10),(11,12)] => 5
[(1,2),(3,4),(5,8),(6,7),(9,12),(10,11)] => 10
[(1,2),(3,4),(5,10),(6,7),(8,9),(11,12)] => 10
[(1,2),(3,4),(5,12),(6,7),(8,9),(10,11)] => 10
[(1,2),(3,4),(5,12),(6,7),(8,11),(9,10)] => 12
[(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)] => 1
[(1,2),(3,4),(5,6),(7,8),(9,12),(10,11)] => 5
[(1,2),(3,4),(5,10),(6,9),(7,8),(11,12)] => 4
[(1,2),(3,4),(5,12),(6,9),(7,8),(10,11)] => 12
[(1,2),(3,4),(5,12),(6,11),(7,8),(9,10)] => 3
[(1,2),(3,4),(5,6),(7,10),(8,9),(11,12)] => 5
[(1,2),(3,4),(5,6),(7,12),(8,9),(10,11)] => 10
[(1,2),(3,4),(5,6),(7,12),(8,11),(9,10)] => 4
[(1,2),(3,4),(5,12),(6,11),(7,10),(8,9)] => 3
[(1,2),(3,4),(5,6),(7,8),(9,11),(10,12)] => 5
[(1,2),(3,4),(5,6),(7,9),(8,10),(11,12)] => 5
[(1,2),(3,4),(5,6),(7,9),(8,11),(10,12)] => 10
[(1,2),(3,4),(5,6),(7,10),(8,11),(9,12)] => 4
[(1,2),(3,4),(5,7),(6,8),(9,10),(11,12)] => 5
[(1,2),(3,4),(5,7),(6,8),(9,11),(10,12)] => 10
[(1,2),(3,4),(5,7),(6,9),(8,10),(11,12)] => 10
[(1,2),(3,4),(5,7),(6,9),(8,11),(10,12)] => 10
[(1,2),(3,4),(5,7),(6,10),(8,11),(9,12)] => 12
[(1,2),(3,4),(5,8),(6,9),(7,10),(11,12)] => 4
[(1,2),(3,4),(5,8),(6,9),(7,11),(10,12)] => 12
[(1,2),(3,4),(5,8),(6,10),(7,11),(9,12)] => 3
[(1,2),(3,4),(5,9),(6,10),(7,11),(8,12)] => 3
[(1,2),(3,5),(4,6),(7,8),(9,10),(11,12)] => 5
[(1,2),(3,5),(4,6),(7,8),(9,11),(10,12)] => 10
[(1,2),(3,5),(4,6),(7,9),(8,10),(11,12)] => 10
[(1,2),(3,5),(4,6),(7,9),(8,11),(10,12)] => 10
[(1,2),(3,5),(4,6),(7,10),(8,11),(9,12)] => 12
[(1,2),(3,5),(4,7),(6,8),(9,10),(11,12)] => 10
[(1,2),(3,5),(4,7),(6,8),(9,11),(10,12)] => 10
[(1,2),(3,5),(4,7),(6,9),(8,10),(11,12)] => 10
[(1,2),(3,5),(4,7),(6,9),(8,11),(10,12)] => 5
[(1,2),(3,5),(4,7),(6,10),(8,11),(9,12)] => 12
[(1,2),(3,4),(5,6),(7,9),(8,12),(10,11)] => 20
[(1,2),(3,4),(5,6),(7,10),(8,12),(9,11)] => 8
[(1,2),(3,4),(5,6),(7,11),(8,9),(10,12)] => 20
[(1,2),(3,4),(5,6),(7,11),(8,10),(9,12)] => 8
[(1,2),(3,4),(5,6),(7,11),(8,12),(9,10)] => 8
[(1,2),(3,4),(5,6),(7,12),(8,10),(9,11)] => 8
[(1,2),(3,4),(5,7),(6,8),(9,12),(10,11)] => 20
[(1,2),(3,4),(5,7),(6,9),(8,12),(10,11)] => 30
[(1,2),(3,4),(5,7),(6,10),(8,9),(11,12)] => 20
[(1,2),(3,4),(5,7),(6,10),(8,12),(9,11)] => 36
[(1,2),(3,4),(5,7),(6,11),(8,9),(10,12)] => 30
[(1,2),(3,4),(5,7),(6,11),(8,10),(9,12)] => 36
[(1,2),(3,4),(5,7),(6,11),(8,12),(9,10)] => 48
[(1,2),(3,4),(5,7),(6,12),(8,9),(10,11)] => 30
[(1,2),(3,4),(5,7),(6,12),(8,10),(9,11)] => 48
[(1,2),(3,4),(5,7),(6,12),(8,11),(9,10)] => 36
[(1,2),(3,4),(5,8),(6,7),(9,11),(10,12)] => 20
[(1,2),(3,4),(5,8),(6,9),(7,12),(10,11)] => 36
[(1,2),(3,4),(5,8),(6,10),(7,12),(9,11)] => 9
[(1,2),(3,4),(5,8),(6,10),(7,9),(11,12)] => 8
[(1,2),(3,4),(5,8),(6,11),(7,12),(9,10)] => 15
[(1,2),(3,4),(5,8),(6,11),(7,10),(9,12)] => 9
[(1,2),(3,4),(5,8),(6,11),(7,9),(10,12)] => 36
[(1,2),(3,4),(5,8),(6,12),(7,11),(9,10)] => 15
[(1,2),(3,4),(5,8),(6,12),(7,10),(9,11)] => 15
[(1,2),(3,4),(5,8),(6,12),(7,9),(10,11)] => 48
[(1,2),(3,4),(5,9),(6,7),(8,10),(11,12)] => 20
[(1,2),(3,4),(5,9),(6,7),(8,11),(10,12)] => 30
[(1,2),(3,4),(5,9),(6,7),(8,12),(10,11)] => 30
[(1,2),(3,4),(5,9),(6,8),(7,12),(10,11)] => 48
[(1,2),(3,4),(5,9),(6,8),(7,11),(10,12)] => 36
[(1,2),(3,4),(5,9),(6,8),(7,10),(11,12)] => 8
[(1,2),(3,4),(5,9),(6,10),(7,12),(8,11)] => 9
[(1,2),(3,4),(5,9),(6,10),(7,8),(11,12)] => 8
[(1,2),(3,4),(5,9),(6,11),(7,12),(8,10)] => 15
[(1,2),(3,4),(5,9),(6,11),(7,10),(8,12)] => 9
[(1,2),(3,4),(5,9),(6,11),(7,8),(10,12)] => 48
[(1,2),(3,4),(5,9),(6,12),(7,11),(8,10)] => 18
[(1,2),(3,4),(5,9),(6,12),(7,10),(8,11)] => 15
[(1,2),(3,4),(5,9),(6,12),(7,8),(10,11)] => 36
[(1,2),(3,4),(5,10),(6,7),(8,11),(9,12)] => 36
[(1,2),(3,4),(5,10),(6,7),(8,12),(9,11)] => 48
[(1,2),(3,4),(5,10),(6,8),(7,12),(9,11)] => 15
[(1,2),(3,4),(5,10),(6,8),(7,11),(9,12)] => 9
[(1,2),(3,4),(5,10),(6,8),(7,9),(11,12)] => 8
[(1,2),(3,4),(5,10),(6,9),(7,12),(8,11)] => 15
[(1,2),(3,4),(5,10),(6,9),(7,11),(8,12)] => 9
[(1,2),(3,4),(5,10),(6,11),(7,12),(8,9)] => 18
[(1,2),(3,4),(5,10),(6,11),(7,9),(8,12)] => 15
[(1,2),(3,4),(5,10),(6,11),(7,8),(9,12)] => 15
[(1,2),(3,4),(5,10),(6,12),(7,11),(8,9)] => 15
[(1,2),(3,4),(5,10),(6,12),(7,9),(8,11)] => 18
[(1,2),(3,4),(5,10),(6,12),(7,8),(9,11)] => 15
[(1,2),(3,4),(5,11),(6,7),(8,9),(10,12)] => 30
[(1,2),(3,4),(5,11),(6,7),(8,10),(9,12)] => 48
[(1,2),(3,4),(5,11),(6,7),(8,12),(9,10)] => 36
[(1,2),(3,4),(5,11),(6,8),(7,12),(9,10)] => 15
[(1,2),(3,4),(5,11),(6,8),(7,10),(9,12)] => 15
[(1,2),(3,4),(5,11),(6,8),(7,9),(10,12)] => 48
[(1,2),(3,4),(5,11),(6,9),(7,12),(8,10)] => 18
[(1,2),(3,4),(5,11),(6,9),(7,10),(8,12)] => 15
[(1,2),(3,4),(5,11),(6,9),(7,8),(10,12)] => 36
[(1,2),(3,4),(5,11),(6,10),(7,12),(8,9)] => 15
[(1,2),(3,4),(5,11),(6,10),(7,9),(8,12)] => 18
[(1,2),(3,4),(5,11),(6,10),(7,8),(9,12)] => 15
[(1,2),(3,4),(5,11),(6,12),(7,10),(8,9)] => 9
[(1,2),(3,4),(5,11),(6,12),(7,9),(8,10)] => 15
[(1,2),(3,4),(5,11),(6,12),(7,8),(9,10)] => 9
[(1,2),(3,4),(5,12),(6,7),(8,10),(9,11)] => 36
[(1,2),(3,4),(5,12),(6,8),(7,11),(9,10)] => 9
[(1,2),(3,4),(5,12),(6,8),(7,10),(9,11)] => 15
[(1,2),(3,4),(5,12),(6,8),(7,9),(10,11)] => 36
[(1,2),(3,4),(5,12),(6,9),(7,11),(8,10)] => 15
[(1,2),(3,4),(5,12),(6,9),(7,10),(8,11)] => 18
[(1,2),(3,4),(5,12),(6,10),(7,11),(8,9)] => 9
[(1,2),(3,4),(5,12),(6,10),(7,9),(8,11)] => 15
[(1,2),(3,4),(5,12),(6,10),(7,8),(9,11)] => 9
[(1,2),(3,4),(5,12),(6,11),(7,9),(8,10)] => 9
[(1,2),(3,5),(4,6),(7,8),(9,12),(10,11)] => 20
[(1,2),(3,5),(4,6),(7,9),(8,12),(10,11)] => 30
[(1,2),(3,5),(4,6),(7,10),(8,9),(11,12)] => 20
[(1,2),(3,5),(4,6),(7,10),(8,12),(9,11)] => 36
[(1,2),(3,5),(4,6),(7,11),(8,9),(10,12)] => 30
[(1,2),(3,5),(4,6),(7,11),(8,10),(9,12)] => 36
[(1,2),(3,5),(4,6),(7,11),(8,12),(9,10)] => 48
[(1,2),(3,5),(4,6),(7,12),(8,9),(10,11)] => 30
[(1,2),(3,5),(4,6),(7,12),(8,10),(9,11)] => 48
[(1,2),(3,5),(4,6),(7,12),(8,11),(9,10)] => 36
[(1,2),(3,5),(4,7),(6,8),(9,12),(10,11)] => 30
[(1,2),(3,5),(4,7),(6,9),(8,12),(10,11)] => 20
[(1,2),(3,5),(4,7),(6,10),(8,9),(11,12)] => 30
[(1,2),(3,5),(4,7),(6,10),(8,12),(9,11)] => 48
[(1,2),(3,5),(4,7),(6,11),(8,9),(10,12)] => 20
[(1,2),(3,5),(4,7),(6,11),(8,10),(9,12)] => 48
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Generating function
click to show known generating functions
Search the OEIS for these generating functions
Search the Online Encyclopedia of Integer
Sequences for the coefficients of a few of the
first generating functions, in the case at hand:
5,10 7,8,30,8,20,24,0,8 9,16,18,48,0,66,0,32,54,40,0,96,26,0,60,32,0,72,38,40,42,66,0,72,0,0,0,56,0,30,0,32
$F_{2} = q$
$F_{4} = 3\ q$
$F_{6} = 5\ q + 10\ q^{2}$
$F_{8} = 7\ q + 8\ q^{2} + 30\ q^{3} + 8\ q^{4} + 20\ q^{5} + 24\ q^{6} + 8\ q^{8}$
$F_{10} = 9\ q + 16\ q^{2} + 18\ q^{3} + 48\ q^{4} + 66\ q^{6} + 32\ q^{8} + 54\ q^{9} + 40\ q^{10} + 96\ q^{12} + 26\ q^{13} + 60\ q^{15} + 32\ q^{16} + 72\ q^{18} + 38\ q^{19} + 40\ q^{20} + 42\ q^{21} + 66\ q^{22} + 72\ q^{24} + 56\ q^{28} + 30\ q^{30} + 32\ q^{32}$
Description
The number of crossing-similar perfect matchings of a perfect matching.
Consider the infinite tree $T$ defined in [1] as follows. $T$ has the perfect matchings on $\{1,\dots,2n\}$ on level $n$, with children obtained by inserting an arc with opener $1$. For example, the matching $[(1,2)]$ has the three children $[(1,2),(3,4)]$, $[(1,3),(2,4)]$ and $[(1,4),(2,3)]$.
Two perfect matchings $M$ and $N$ on $\{1,\dots,2n\}$ are nesting-similar, if the distribution of the number of crossings agrees on all levels of the subtrees of $T$ rooted at $M$ and $N$.
[thm 1.2, 1] shows that to find out whether $M$ and $N$ are crossing-similar, it is enough to check that $M$ and $N$ have the same number of crossings, and that the distribution of crossings agrees for their direct children.
[thm 3.3, 1], see also [2], gives the number of equivalence classes of crossing-similar matchings with $n$ arcs as $$2^{n-2}\left(\binom{n}{2}+2\right).$$
Consider the infinite tree $T$ defined in [1] as follows. $T$ has the perfect matchings on $\{1,\dots,2n\}$ on level $n$, with children obtained by inserting an arc with opener $1$. For example, the matching $[(1,2)]$ has the three children $[(1,2),(3,4)]$, $[(1,3),(2,4)]$ and $[(1,4),(2,3)]$.
Two perfect matchings $M$ and $N$ on $\{1,\dots,2n\}$ are nesting-similar, if the distribution of the number of crossings agrees on all levels of the subtrees of $T$ rooted at $M$ and $N$.
[thm 1.2, 1] shows that to find out whether $M$ and $N$ are crossing-similar, it is enough to check that $M$ and $N$ have the same number of crossings, and that the distribution of crossings agrees for their direct children.
[thm 3.3, 1], see also [2], gives the number of equivalence classes of crossing-similar matchings with $n$ arcs as $$2^{n-2}\left(\binom{n}{2}+2\right).$$
References
[1] Klazar, M. On identities concerning the numbers of crossings and nestings of two edges in matchings MathSciNet:2272241 arXiv:math/0503012
[2] a(n) = 2^(n-2)*(C(n,2)+2). OEIS:A104270
[2] a(n) = 2^(n-2)*(C(n,2)+2). OEIS:A104270
Code
def KlazarTM1(m):
"""
For a matching m return T(m,1) of Klazar's tree.
sage: [m for m in KlazarTM1(PerfectMatching([(1,2)]))]
[[(1, 2), (3, 4)], [(1, 3), (2, 4)], [(1, 4), (2, 3)]]
"""
for i in range(m.size()+1):
m_new = [(e+1 if e < 1+i else e+2,
f+1 if f < 1+i else f+2) for (e,f) in m]
m_new.append((1,2+i))
yield PerfectMatching(sorted(m_new))
@cached_function
def crossing_similar_classes(n):
"""Return a set partition of the matchings with 2n arcs that are
crossing_similar. """
d = dict()
for m in PerfectMatchings(n):
dist = (m.number_of_crossings(),
tuple(sorted(k.number_of_crossings() for k in KlazarTM1(m))))
d[dist] = d.get(dist, []) + [m]
return d
def statistic(m):
dist = (m.number_of_crossings(),
tuple(sorted(k.number_of_crossings() for k in KlazarTM1(m))))
return len(crossing_similar_classes(m.size())[dist])
Created
Apr 23, 2017 at 09:53 by Martin Rubey
Updated
Apr 23, 2017 at 10:48 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!