*****************************************************************************
*       www.FindStat.org - The Combinatorial Statistic Finder               *
*                                                                           *
*       Copyright (C) 2019 The FindStatCrew <info@findstat.org>             *
*                                                                           *
*    This information is distributed in the hope that it will be useful,    *
*    but WITHOUT ANY WARRANTY; without even the implied warranty of         *
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                   *
*****************************************************************************

-----------------------------------------------------------------------------
Statistic identifier: St000788

-----------------------------------------------------------------------------
Collection: Perfect matchings

-----------------------------------------------------------------------------
Description: The number of nesting-similar perfect matchings of a perfect matching.

Consider the infinite tree $T$ defined in [1] as follows.  $T$ has the perfect matchings on $\{1,\dots,2n\}$ on level $n$, with children obtained by inserting an arc with opener $1$.  For example, the matching $[(1,2)]$ has the three children $[(1,2),(3,4)]$, $[(1,3),(2,4)]$ and $[(1,4),(2,3)]$.

Two perfect matchings $M$ and $N$ on $\{1,\dots,2n\}$ are nesting-similar, if the distribution of the number of nestings agrees on all levels of the subtrees of $T$ rooted at $M$ and $N$.

[thm 1.2, 1] shows that to find out whether $M$ and $N$ are nesting-similar, it is enough to check that $M$ and $N$ have the same number of nestings, and that the distribution of nestings agrees for their direct children.

[thm 3.5, 1], see also [2], gives the number of equivalence classes of nesting-similar matchings with $n$ arcs as $$2\cdot 4^{n-1} - \frac{3n-1}{2n+2}\binom{2n}{n}.$$ [prop 3.6, 1] has further interpretations of this number.

-----------------------------------------------------------------------------
References: [1]   Klazar, M. On identities concerning the numbers of crossings and nestings of two edges in matchings [[MathSciNet:2272241]] [[arXiv:math/0503012]]
[2]   2*4^(n-1) - (3n-1)/(2n+2)*C(2n,n). [[OEIS:A104268]]

-----------------------------------------------------------------------------
Code:
def KlazarTM1(m):
    """
    For a matching m return T(m,1) of Klazar's tree.

    sage: [m for m in KlazarTM1(PerfectMatching([(1,2)]))]
    [[(1, 2), (3, 4)], [(1, 3), (2, 4)], [(1, 4), (2, 3)]]

    """
    for i in range(m.size()+1):
        m_new = [(e+1 if e < 1+i else e+2,
                  f+1 if f < 1+i else f+2) for (e,f) in m]
        m_new.append((1,2+i))
        yield PerfectMatching(sorted(m_new))

@cached_function
def nesting_similar_classes(n):
    """Return a set partition of the matchings with 2n arcs that are
    nesting_similar.  """
    d = dict()
    for m in PerfectMatchings(n):
        dist = (m.number_of_nestings(),
                tuple(sorted(k.number_of_nestings() for k in KlazarTM1(m))))
        d[dist] = d.get(dist, []) + [m]
    return d

def statistic(m):
    dist = (m.number_of_nestings(),
            tuple(sorted(k.number_of_nestings() for k in KlazarTM1(m))))
    return len(nesting_similar_classes(m.size())[dist])


-----------------------------------------------------------------------------
Statistic values:

[(1,2)]                                  => 1
[(1,2),(3,4)]                            => 1
[(1,3),(2,4)]                            => 1
[(1,4),(2,3)]                            => 1
[(1,2),(3,4),(5,6)]                      => 1
[(1,3),(2,4),(5,6)]                      => 1
[(1,4),(2,3),(5,6)]                      => 1
[(1,5),(2,3),(4,6)]                      => 2
[(1,6),(2,3),(4,5)]                      => 1
[(1,6),(2,4),(3,5)]                      => 2
[(1,5),(2,4),(3,6)]                      => 2
[(1,4),(2,5),(3,6)]                      => 1
[(1,3),(2,5),(4,6)]                      => 1
[(1,2),(3,5),(4,6)]                      => 1
[(1,2),(3,6),(4,5)]                      => 1
[(1,3),(2,6),(4,5)]                      => 2
[(1,4),(2,6),(3,5)]                      => 2
[(1,5),(2,6),(3,4)]                      => 2
[(1,6),(2,5),(3,4)]                      => 1
[(1,2),(3,4),(5,6),(7,8)]                => 1
[(1,3),(2,4),(5,6),(7,8)]                => 1
[(1,4),(2,3),(5,6),(7,8)]                => 1
[(1,5),(2,3),(4,6),(7,8)]                => 2
[(1,6),(2,3),(4,5),(7,8)]                => 1
[(1,7),(2,3),(4,5),(6,8)]                => 3
[(1,8),(2,3),(4,5),(6,7)]                => 1
[(1,8),(2,4),(3,5),(6,7)]                => 3
[(1,7),(2,4),(3,5),(6,8)]                => 4
[(1,6),(2,4),(3,5),(7,8)]                => 2
[(1,5),(2,4),(3,6),(7,8)]                => 2
[(1,4),(2,5),(3,6),(7,8)]                => 1
[(1,3),(2,5),(4,6),(7,8)]                => 1
[(1,2),(3,5),(4,6),(7,8)]                => 1
[(1,2),(3,6),(4,5),(7,8)]                => 1
[(1,3),(2,6),(4,5),(7,8)]                => 2
[(1,4),(2,6),(3,5),(7,8)]                => 2
[(1,5),(2,6),(3,4),(7,8)]                => 2
[(1,6),(2,5),(3,4),(7,8)]                => 1
[(1,7),(2,5),(3,4),(6,8)]                => 3
[(1,8),(2,5),(3,4),(6,7)]                => 1
[(1,8),(2,6),(3,4),(5,7)]                => 3
[(1,7),(2,6),(3,4),(5,8)]                => 5
[(1,6),(2,7),(3,4),(5,8)]                => 5
[(1,5),(2,7),(3,4),(6,8)]                => 4
[(1,4),(2,7),(3,5),(6,8)]                => 3
[(1,3),(2,7),(4,5),(6,8)]                => 3
[(1,2),(3,7),(4,5),(6,8)]                => 2
[(1,2),(3,8),(4,5),(6,7)]                => 1
[(1,3),(2,8),(4,5),(6,7)]                => 3
[(1,4),(2,8),(3,5),(6,7)]                => 4
[(1,5),(2,8),(3,4),(6,7)]                => 3
[(1,6),(2,8),(3,4),(5,7)]                => 5
[(1,7),(2,8),(3,4),(5,6)]                => 3
[(1,8),(2,7),(3,4),(5,6)]                => 1
[(1,8),(2,7),(3,5),(4,6)]                => 3
[(1,7),(2,8),(3,5),(4,6)]                => 5
[(1,6),(2,8),(3,5),(4,7)]                => 6
[(1,5),(2,8),(3,6),(4,7)]                => 5
[(1,4),(2,8),(3,6),(5,7)]                => 5
[(1,3),(2,8),(4,6),(5,7)]                => 4
[(1,2),(3,8),(4,6),(5,7)]                => 2
[(1,2),(3,7),(4,6),(5,8)]                => 2
[(1,3),(2,7),(4,6),(5,8)]                => 3
[(1,4),(2,7),(3,6),(5,8)]                => 3
[(1,5),(2,7),(3,6),(4,8)]                => 3
[(1,6),(2,7),(3,5),(4,8)]                => 5
[(1,7),(2,6),(3,5),(4,8)]                => 6
[(1,8),(2,6),(3,5),(4,7)]                => 5
[(1,8),(2,5),(3,6),(4,7)]                => 6
[(1,7),(2,5),(3,6),(4,8)]                => 5
[(1,6),(2,5),(3,7),(4,8)]                => 3
[(1,5),(2,6),(3,7),(4,8)]                => 1
[(1,4),(2,6),(3,7),(5,8)]                => 1
[(1,3),(2,6),(4,7),(5,8)]                => 1
[(1,2),(3,6),(4,7),(5,8)]                => 1
[(1,2),(3,5),(4,7),(6,8)]                => 1
[(1,3),(2,5),(4,7),(6,8)]                => 1
[(1,4),(2,5),(3,7),(6,8)]                => 1
[(1,5),(2,4),(3,7),(6,8)]                => 3
[(1,6),(2,4),(3,7),(5,8)]                => 3
[(1,7),(2,4),(3,6),(5,8)]                => 5
[(1,8),(2,4),(3,6),(5,7)]                => 5
[(1,8),(2,3),(4,6),(5,7)]                => 3
[(1,7),(2,3),(4,6),(5,8)]                => 4
[(1,6),(2,3),(4,7),(5,8)]                => 3
[(1,5),(2,3),(4,7),(6,8)]                => 3
[(1,4),(2,3),(5,7),(6,8)]                => 2
[(1,3),(2,4),(5,7),(6,8)]                => 1
[(1,2),(3,4),(5,7),(6,8)]                => 1
[(1,2),(3,4),(5,8),(6,7)]                => 1
[(1,3),(2,4),(5,8),(6,7)]                => 2
[(1,4),(2,3),(5,8),(6,7)]                => 1
[(1,5),(2,3),(4,8),(6,7)]                => 3
[(1,6),(2,3),(4,8),(5,7)]                => 4
[(1,7),(2,3),(4,8),(5,6)]                => 3
[(1,8),(2,3),(4,7),(5,6)]                => 1
[(1,8),(2,4),(3,7),(5,6)]                => 3
[(1,7),(2,4),(3,8),(5,6)]                => 5
[(1,6),(2,4),(3,8),(5,7)]                => 5
[(1,5),(2,4),(3,8),(6,7)]                => 4
[(1,4),(2,5),(3,8),(6,7)]                => 3
[(1,3),(2,5),(4,8),(6,7)]                => 3
[(1,2),(3,5),(4,8),(6,7)]                => 2
[(1,2),(3,6),(4,8),(5,7)]                => 2
[(1,3),(2,6),(4,8),(5,7)]                => 3
[(1,4),(2,6),(3,8),(5,7)]                => 3
[(1,5),(2,6),(3,8),(4,7)]                => 3
[(1,6),(2,5),(3,8),(4,7)]                => 5
[(1,7),(2,5),(3,8),(4,6)]                => 6
[(1,8),(2,5),(3,7),(4,6)]                => 5
[(1,8),(2,6),(3,7),(4,5)]                => 3
[(1,7),(2,6),(3,8),(4,5)]                => 5
[(1,6),(2,7),(3,8),(4,5)]                => 6
[(1,5),(2,7),(3,8),(4,6)]                => 5
[(1,4),(2,7),(3,8),(5,6)]                => 5
[(1,3),(2,7),(4,8),(5,6)]                => 4
[(1,2),(3,7),(4,8),(5,6)]                => 2
[(1,2),(3,8),(4,7),(5,6)]                => 1
[(1,3),(2,8),(4,7),(5,6)]                => 3
[(1,4),(2,8),(3,7),(5,6)]                => 5
[(1,5),(2,8),(3,7),(4,6)]                => 6
[(1,6),(2,8),(3,7),(4,5)]                => 5
[(1,7),(2,8),(3,6),(4,5)]                => 3
[(1,8),(2,7),(3,6),(4,5)]                => 1
[(1,2),(3,4),(5,6),(7,8),(9,10)]         => 1
[(1,3),(2,4),(5,6),(7,8),(9,10)]         => 1
[(1,4),(2,3),(5,6),(7,8),(9,10)]         => 1
[(1,5),(2,3),(4,6),(7,8),(9,10)]         => 2
[(1,6),(2,3),(4,5),(7,8),(9,10)]         => 1
[(1,7),(2,3),(4,5),(6,8),(9,10)]         => 3
[(1,8),(2,3),(4,5),(6,7),(9,10)]         => 1
[(1,9),(2,3),(4,5),(6,7),(8,10)]         => 4
[(1,10),(2,3),(4,5),(6,7),(8,9)]         => 1
[(1,10),(2,4),(3,5),(6,7),(8,9)]         => 4
[(1,9),(2,4),(3,5),(6,7),(8,10)]         => 7
[(1,8),(2,4),(3,5),(6,7),(9,10)]         => 3
[(1,7),(2,4),(3,5),(6,8),(9,10)]         => 4
[(1,6),(2,4),(3,5),(7,8),(9,10)]         => 2
[(1,5),(2,4),(3,6),(7,8),(9,10)]         => 2
[(1,4),(2,5),(3,6),(7,8),(9,10)]         => 1
[(1,3),(2,5),(4,6),(7,8),(9,10)]         => 1
[(1,2),(3,5),(4,6),(7,8),(9,10)]         => 1
[(1,2),(3,6),(4,5),(7,8),(9,10)]         => 1
[(1,3),(2,6),(4,5),(7,8),(9,10)]         => 2
[(1,4),(2,6),(3,5),(7,8),(9,10)]         => 2
[(1,5),(2,6),(3,4),(7,8),(9,10)]         => 2
[(1,6),(2,5),(3,4),(7,8),(9,10)]         => 1
[(1,7),(2,5),(3,4),(6,8),(9,10)]         => 3
[(1,8),(2,5),(3,4),(6,7),(9,10)]         => 1
[(1,9),(2,5),(3,4),(6,7),(8,10)]         => 4
[(1,10),(2,5),(3,4),(6,7),(8,9)]         => 1
[(1,10),(2,6),(3,4),(5,7),(8,9)]         => 4
[(1,9),(2,6),(3,4),(5,7),(8,10)]         => 8
[(1,8),(2,6),(3,4),(5,7),(9,10)]         => 3
[(1,7),(2,6),(3,4),(5,8),(9,10)]         => 5
[(1,6),(2,7),(3,4),(5,8),(9,10)]         => 5
[(1,5),(2,7),(3,4),(6,8),(9,10)]         => 4
[(1,4),(2,7),(3,5),(6,8),(9,10)]         => 3
[(1,3),(2,7),(4,5),(6,8),(9,10)]         => 3
[(1,2),(3,7),(4,5),(6,8),(9,10)]         => 2
[(1,2),(3,8),(4,5),(6,7),(9,10)]         => 1
[(1,3),(2,8),(4,5),(6,7),(9,10)]         => 3
[(1,4),(2,8),(3,5),(6,7),(9,10)]         => 4
[(1,5),(2,8),(3,4),(6,7),(9,10)]         => 3
[(1,6),(2,8),(3,4),(5,7),(9,10)]         => 5
[(1,7),(2,8),(3,4),(5,6),(9,10)]         => 3
[(1,8),(2,7),(3,4),(5,6),(9,10)]         => 1
[(1,9),(2,7),(3,4),(5,6),(8,10)]         => 4
[(1,10),(2,7),(3,4),(5,6),(8,9)]         => 1
[(1,10),(2,8),(3,4),(5,6),(7,9)]         => 4
[(1,9),(2,8),(3,4),(5,6),(7,10)]         => 9
[(1,8),(2,9),(3,4),(5,6),(7,10)]         => 13
[(1,7),(2,9),(3,4),(5,6),(8,10)]         => 8
[(1,6),(2,9),(3,4),(5,7),(8,10)]         => 10
[(1,5),(2,9),(3,4),(6,7),(8,10)]         => 7
[(1,4),(2,9),(3,5),(6,7),(8,10)]         => 7
[(1,3),(2,9),(4,5),(6,7),(8,10)]         => 6
[(1,2),(3,9),(4,5),(6,7),(8,10)]         => 3
[(1,2),(3,10),(4,5),(6,7),(8,9)]         => 1
[(1,3),(2,10),(4,5),(6,7),(8,9)]         => 4
[(1,4),(2,10),(3,5),(6,7),(8,9)]         => 7
[(1,5),(2,10),(3,4),(6,7),(8,9)]         => 4
[(1,6),(2,10),(3,4),(5,7),(8,9)]         => 8
[(1,7),(2,10),(3,4),(5,6),(8,9)]         => 4
[(1,8),(2,10),(3,4),(5,6),(7,9)]         => 9
[(1,9),(2,10),(3,4),(5,6),(7,8)]         => 4
[(1,10),(2,9),(3,4),(5,6),(7,8)]         => 1
[(1,10),(2,9),(3,5),(4,6),(7,8)]         => 4
[(1,9),(2,10),(3,5),(4,6),(7,8)]         => 9
[(1,8),(2,10),(3,5),(4,6),(7,9)]         => 14
[(1,7),(2,10),(3,5),(4,6),(8,9)]         => 8
[(1,6),(2,10),(3,5),(4,7),(8,9)]         => 11
[(1,5),(2,10),(3,6),(4,7),(8,9)]         => 11
[(1,4),(2,10),(3,6),(5,7),(8,9)]         => 10
[(1,3),(2,10),(4,6),(5,7),(8,9)]         => 7
[(1,2),(3,10),(4,6),(5,7),(8,9)]         => 3
[(1,2),(3,9),(4,6),(5,7),(8,10)]         => 4
[(1,3),(2,9),(4,6),(5,7),(8,10)]         => 7
[(1,4),(2,9),(3,6),(5,7),(8,10)]         => 8
[(1,5),(2,9),(3,6),(4,7),(8,10)]         => 8
[(1,6),(2,9),(3,5),(4,7),(8,10)]         => 11
[(1,7),(2,9),(3,5),(4,6),(8,10)]         => 11
[(1,8),(2,9),(3,5),(4,6),(7,10)]         => 16
[(1,9),(2,8),(3,5),(4,6),(7,10)]         => 14
[(1,10),(2,8),(3,5),(4,6),(7,9)]         => 9
[(1,10),(2,7),(3,5),(4,6),(8,9)]         => 4
[(1,9),(2,7),(3,5),(4,6),(8,10)]         => 8
[(1,8),(2,7),(3,5),(4,6),(9,10)]         => 3
[(1,7),(2,8),(3,5),(4,6),(9,10)]         => 5
[(1,6),(2,8),(3,5),(4,7),(9,10)]         => 6
[(1,5),(2,8),(3,6),(4,7),(9,10)]         => 5
[(1,4),(2,8),(3,6),(5,7),(9,10)]         => 5
[(1,3),(2,8),(4,6),(5,7),(9,10)]         => 4
[(1,2),(3,8),(4,6),(5,7),(9,10)]         => 2
[(1,2),(3,7),(4,6),(5,8),(9,10)]         => 2
[(1,3),(2,7),(4,6),(5,8),(9,10)]         => 3
[(1,4),(2,7),(3,6),(5,8),(9,10)]         => 3
[(1,5),(2,7),(3,6),(4,8),(9,10)]         => 3
[(1,6),(2,7),(3,5),(4,8),(9,10)]         => 5
[(1,7),(2,6),(3,5),(4,8),(9,10)]         => 6
[(1,8),(2,6),(3,5),(4,7),(9,10)]         => 5
[(1,9),(2,6),(3,5),(4,7),(8,10)]         => 11
[(1,10),(2,6),(3,5),(4,7),(8,9)]         => 8
[(1,10),(2,5),(3,6),(4,7),(8,9)]         => 11
[(1,9),(2,5),(3,6),(4,7),(8,10)]         => 11
[(1,8),(2,5),(3,6),(4,7),(9,10)]         => 6
[(1,7),(2,5),(3,6),(4,8),(9,10)]         => 5
[(1,6),(2,5),(3,7),(4,8),(9,10)]         => 3
[(1,5),(2,6),(3,7),(4,8),(9,10)]         => 1
[(1,4),(2,6),(3,7),(5,8),(9,10)]         => 1
[(1,3),(2,6),(4,7),(5,8),(9,10)]         => 1
[(1,2),(3,6),(4,7),(5,8),(9,10)]         => 1
[(1,2),(3,5),(4,7),(6,8),(9,10)]         => 1
[(1,3),(2,5),(4,7),(6,8),(9,10)]         => 1
[(1,4),(2,5),(3,7),(6,8),(9,10)]         => 1
[(1,5),(2,4),(3,7),(6,8),(9,10)]         => 3
[(1,6),(2,4),(3,7),(5,8),(9,10)]         => 3
[(1,7),(2,4),(3,6),(5,8),(9,10)]         => 5
[(1,8),(2,4),(3,6),(5,7),(9,10)]         => 5
[(1,9),(2,4),(3,6),(5,7),(8,10)]         => 10
[(1,10),(2,4),(3,6),(5,7),(8,9)]         => 8
[(1,10),(2,3),(4,6),(5,7),(8,9)]         => 4
[(1,9),(2,3),(4,6),(5,7),(8,10)]         => 7
[(1,8),(2,3),(4,6),(5,7),(9,10)]         => 3
[(1,7),(2,3),(4,6),(5,8),(9,10)]         => 4
[(1,6),(2,3),(4,7),(5,8),(9,10)]         => 3
[(1,5),(2,3),(4,7),(6,8),(9,10)]         => 3
[(1,4),(2,3),(5,7),(6,8),(9,10)]         => 2
[(1,3),(2,4),(5,7),(6,8),(9,10)]         => 1
[(1,2),(3,4),(5,7),(6,8),(9,10)]         => 1
[(1,2),(3,4),(5,8),(6,7),(9,10)]         => 1
[(1,3),(2,4),(5,8),(6,7),(9,10)]         => 2
[(1,4),(2,3),(5,8),(6,7),(9,10)]         => 1
[(1,5),(2,3),(4,8),(6,7),(9,10)]         => 3
[(1,6),(2,3),(4,8),(5,7),(9,10)]         => 4
[(1,7),(2,3),(4,8),(5,6),(9,10)]         => 3
[(1,8),(2,3),(4,7),(5,6),(9,10)]         => 1
[(1,9),(2,3),(4,7),(5,6),(8,10)]         => 4
[(1,10),(2,3),(4,7),(5,6),(8,9)]         => 1
[(1,10),(2,4),(3,7),(5,6),(8,9)]         => 4
[(1,9),(2,4),(3,7),(5,6),(8,10)]         => 8
[(1,8),(2,4),(3,7),(5,6),(9,10)]         => 3
[(1,7),(2,4),(3,8),(5,6),(9,10)]         => 5
[(1,6),(2,4),(3,8),(5,7),(9,10)]         => 5
[(1,5),(2,4),(3,8),(6,7),(9,10)]         => 4
[(1,4),(2,5),(3,8),(6,7),(9,10)]         => 3
[(1,3),(2,5),(4,8),(6,7),(9,10)]         => 3
[(1,2),(3,5),(4,8),(6,7),(9,10)]         => 2
[(1,2),(3,6),(4,8),(5,7),(9,10)]         => 2
[(1,3),(2,6),(4,8),(5,7),(9,10)]         => 3
[(1,4),(2,6),(3,8),(5,7),(9,10)]         => 3
[(1,5),(2,6),(3,8),(4,7),(9,10)]         => 3
[(1,6),(2,5),(3,8),(4,7),(9,10)]         => 5
[(1,7),(2,5),(3,8),(4,6),(9,10)]         => 6
[(1,8),(2,5),(3,7),(4,6),(9,10)]         => 5
[(1,9),(2,5),(3,7),(4,6),(8,10)]         => 11
[(1,10),(2,5),(3,7),(4,6),(8,9)]         => 8
[(1,10),(2,6),(3,7),(4,5),(8,9)]         => 4
[(1,9),(2,6),(3,7),(4,5),(8,10)]         => 8
[(1,8),(2,6),(3,7),(4,5),(9,10)]         => 3
[(1,7),(2,6),(3,8),(4,5),(9,10)]         => 5
[(1,6),(2,7),(3,8),(4,5),(9,10)]         => 6
[(1,5),(2,7),(3,8),(4,6),(9,10)]         => 5
[(1,4),(2,7),(3,8),(5,6),(9,10)]         => 5
[(1,3),(2,7),(4,8),(5,6),(9,10)]         => 4
[(1,2),(3,7),(4,8),(5,6),(9,10)]         => 2
[(1,2),(3,8),(4,7),(5,6),(9,10)]         => 1
[(1,3),(2,8),(4,7),(5,6),(9,10)]         => 3
[(1,4),(2,8),(3,7),(5,6),(9,10)]         => 5
[(1,5),(2,8),(3,7),(4,6),(9,10)]         => 6
[(1,6),(2,8),(3,7),(4,5),(9,10)]         => 5
[(1,7),(2,8),(3,6),(4,5),(9,10)]         => 3
[(1,8),(2,7),(3,6),(4,5),(9,10)]         => 1
[(1,9),(2,7),(3,6),(4,5),(8,10)]         => 4
[(1,10),(2,7),(3,6),(4,5),(8,9)]         => 1
[(1,10),(2,8),(3,6),(4,5),(7,9)]         => 4
[(1,9),(2,8),(3,6),(4,5),(7,10)]         => 9
[(1,8),(2,9),(3,6),(4,5),(7,10)]         => 14
[(1,7),(2,9),(3,6),(4,5),(8,10)]         => 8
[(1,6),(2,9),(3,7),(4,5),(8,10)]         => 11
[(1,5),(2,9),(3,7),(4,6),(8,10)]         => 11
[(1,4),(2,9),(3,7),(5,6),(8,10)]         => 10
[(1,3),(2,9),(4,7),(5,6),(8,10)]         => 7
[(1,2),(3,9),(4,7),(5,6),(8,10)]         => 3
[(1,2),(3,10),(4,7),(5,6),(8,9)]         => 1
[(1,3),(2,10),(4,7),(5,6),(8,9)]         => 4
[(1,4),(2,10),(3,7),(5,6),(8,9)]         => 8
[(1,5),(2,10),(3,7),(4,6),(8,9)]         => 11
[(1,6),(2,10),(3,7),(4,5),(8,9)]         => 8
[(1,7),(2,10),(3,6),(4,5),(8,9)]         => 4
[(1,8),(2,10),(3,6),(4,5),(7,9)]         => 9
[(1,9),(2,10),(3,6),(4,5),(7,8)]         => 4
[(1,10),(2,9),(3,6),(4,5),(7,8)]         => 1
[(1,10),(2,9),(3,7),(4,5),(6,8)]         => 4
[(1,9),(2,10),(3,7),(4,5),(6,8)]         => 9
[(1,8),(2,10),(3,7),(4,5),(6,9)]         => 15
[(1,7),(2,10),(3,8),(4,5),(6,9)]         => 19
[(1,6),(2,10),(3,8),(4,5),(7,9)]         => 14
[(1,5),(2,10),(3,8),(4,6),(7,9)]         => 16
[(1,4),(2,10),(3,8),(5,6),(7,9)]         => 13
[(1,3),(2,10),(4,8),(5,6),(7,9)]         => 8
[(1,2),(3,10),(4,8),(5,6),(7,9)]         => 3
[(1,2),(3,9),(4,8),(5,6),(7,10)]         => 5
[(1,3),(2,9),(4,8),(5,6),(7,10)]         => 10
[(1,4),(2,9),(3,8),(5,6),(7,10)]         => 13
[(1,5),(2,9),(3,8),(4,6),(7,10)]         => 14
[(1,6),(2,9),(3,8),(4,5),(7,10)]         => 16
[(1,7),(2,9),(3,8),(4,5),(6,10)]         => 19
[(1,8),(2,9),(3,7),(4,5),(6,10)]         => 19
[(1,9),(2,8),(3,7),(4,5),(6,10)]         => 15
[(1,10),(2,8),(3,7),(4,5),(6,9)]         => 9
[(1,10),(2,7),(3,8),(4,5),(6,9)]         => 15
[(1,9),(2,7),(3,8),(4,5),(6,10)]         => 19
[(1,8),(2,7),(3,9),(4,5),(6,10)]         => 19
[(1,7),(2,8),(3,9),(4,5),(6,10)]         => 15
[(1,6),(2,8),(3,9),(4,5),(7,10)]         => 14
[(1,5),(2,8),(3,9),(4,6),(7,10)]         => 9
[(1,4),(2,8),(3,9),(5,6),(7,10)]         => 9
[(1,3),(2,8),(4,9),(5,6),(7,10)]         => 8
[(1,2),(3,8),(4,9),(5,6),(7,10)]         => 5
[(1,2),(3,7),(4,9),(5,6),(8,10)]         => 4
[(1,3),(2,7),(4,9),(5,6),(8,10)]         => 7
[(1,4),(2,7),(3,9),(5,6),(8,10)]         => 8
[(1,5),(2,7),(3,9),(4,6),(8,10)]         => 8
[(1,6),(2,7),(3,9),(4,5),(8,10)]         => 11
[(1,7),(2,6),(3,9),(4,5),(8,10)]         => 11
[(1,8),(2,6),(3,9),(4,5),(7,10)]         => 16
[(1,9),(2,6),(3,8),(4,5),(7,10)]         => 14
[(1,10),(2,6),(3,8),(4,5),(7,9)]         => 9
[(1,10),(2,5),(3,8),(4,6),(7,9)]         => 14
[(1,9),(2,5),(3,8),(4,6),(7,10)]         => 16
[(1,8),(2,5),(3,9),(4,6),(7,10)]         => 14
[(1,7),(2,5),(3,9),(4,6),(8,10)]         => 11
[(1,6),(2,5),(3,9),(4,7),(8,10)]         => 8
[(1,5),(2,6),(3,9),(4,7),(8,10)]         => 4
[(1,4),(2,6),(3,9),(5,7),(8,10)]         => 4
[(1,3),(2,6),(4,9),(5,7),(8,10)]         => 4
[(1,2),(3,6),(4,9),(5,7),(8,10)]         => 3
[(1,2),(3,5),(4,9),(6,7),(8,10)]         => 3
[(1,3),(2,5),(4,9),(6,7),(8,10)]         => 4
[(1,4),(2,5),(3,9),(6,7),(8,10)]         => 4
[(1,5),(2,4),(3,9),(6,7),(8,10)]         => 7
[(1,6),(2,4),(3,9),(5,7),(8,10)]         => 8
[(1,7),(2,4),(3,9),(5,6),(8,10)]         => 10
[(1,8),(2,4),(3,9),(5,6),(7,10)]         => 13
[(1,9),(2,4),(3,8),(5,6),(7,10)]         => 13
[(1,10),(2,4),(3,8),(5,6),(7,9)]         => 9
[(1,10),(2,3),(4,8),(5,6),(7,9)]         => 4
[(1,9),(2,3),(4,8),(5,6),(7,10)]         => 8
[(1,8),(2,3),(4,9),(5,6),(7,10)]         => 10
[(1,7),(2,3),(4,9),(5,6),(8,10)]         => 7
[(1,6),(2,3),(4,9),(5,7),(8,10)]         => 7
[(1,5),(2,3),(4,9),(6,7),(8,10)]         => 6
[(1,4),(2,3),(5,9),(6,7),(8,10)]         => 3
[(1,3),(2,4),(5,9),(6,7),(8,10)]         => 3
[(1,2),(3,4),(5,9),(6,7),(8,10)]         => 2
[(1,2),(3,4),(5,10),(6,7),(8,9)]         => 1
[(1,3),(2,4),(5,10),(6,7),(8,9)]         => 3
[(1,4),(2,3),(5,10),(6,7),(8,9)]         => 1
[(1,5),(2,3),(4,10),(6,7),(8,9)]         => 4
[(1,6),(2,3),(4,10),(5,7),(8,9)]         => 7
[(1,7),(2,3),(4,10),(5,6),(8,9)]         => 4
[(1,8),(2,3),(4,10),(5,6),(7,9)]         => 8
[(1,9),(2,3),(4,10),(5,6),(7,8)]         => 4
[(1,10),(2,3),(4,9),(5,6),(7,8)]         => 1
[(1,10),(2,4),(3,9),(5,6),(7,8)]         => 4
[(1,9),(2,4),(3,10),(5,6),(7,8)]         => 9
[(1,8),(2,4),(3,10),(5,6),(7,9)]         => 13
[(1,7),(2,4),(3,10),(5,6),(8,9)]         => 8
[(1,6),(2,4),(3,10),(5,7),(8,9)]         => 10
[(1,5),(2,4),(3,10),(6,7),(8,9)]         => 7
[(1,4),(2,5),(3,10),(6,7),(8,9)]         => 7
[(1,3),(2,5),(4,10),(6,7),(8,9)]         => 6
[(1,2),(3,5),(4,10),(6,7),(8,9)]         => 3
[(1,2),(3,6),(4,10),(5,7),(8,9)]         => 4
[(1,3),(2,6),(4,10),(5,7),(8,9)]         => 7
[(1,4),(2,6),(3,10),(5,7),(8,9)]         => 8
[(1,5),(2,6),(3,10),(4,7),(8,9)]         => 8
[(1,6),(2,5),(3,10),(4,7),(8,9)]         => 11
[(1,7),(2,5),(3,10),(4,6),(8,9)]         => 11
[(1,8),(2,5),(3,10),(4,6),(7,9)]         => 16
[(1,9),(2,5),(3,10),(4,6),(7,8)]         => 14
[(1,10),(2,5),(3,9),(4,6),(7,8)]         => 9
[(1,10),(2,6),(3,9),(4,5),(7,8)]         => 4
[(1,9),(2,6),(3,10),(4,5),(7,8)]         => 9
[(1,8),(2,6),(3,10),(4,5),(7,9)]         => 14
[(1,7),(2,6),(3,10),(4,5),(8,9)]         => 8
[(1,6),(2,7),(3,10),(4,5),(8,9)]         => 11
[(1,5),(2,7),(3,10),(4,6),(8,9)]         => 11
[(1,4),(2,7),(3,10),(5,6),(8,9)]         => 10
[(1,3),(2,7),(4,10),(5,6),(8,9)]         => 7
[(1,2),(3,7),(4,10),(5,6),(8,9)]         => 3
[(1,2),(3,8),(4,10),(5,6),(7,9)]         => 5
[(1,3),(2,8),(4,10),(5,6),(7,9)]         => 10
[(1,4),(2,8),(3,10),(5,6),(7,9)]         => 13
[(1,5),(2,8),(3,10),(4,6),(7,9)]         => 14
[(1,6),(2,8),(3,10),(4,5),(7,9)]         => 16
[(1,7),(2,8),(3,10),(4,5),(6,9)]         => 19
[(1,8),(2,7),(3,10),(4,5),(6,9)]         => 19
[(1,9),(2,7),(3,10),(4,5),(6,8)]         => 15
[(1,10),(2,7),(3,9),(4,5),(6,8)]         => 9
[(1,10),(2,8),(3,9),(4,5),(6,7)]         => 4
[(1,9),(2,8),(3,10),(4,5),(6,7)]         => 9
[(1,8),(2,9),(3,10),(4,5),(6,7)]         => 15
[(1,7),(2,9),(3,10),(4,5),(6,8)]         => 19
[(1,6),(2,9),(3,10),(4,5),(7,8)]         => 14
[(1,5),(2,9),(3,10),(4,6),(7,8)]         => 16
[(1,4),(2,9),(3,10),(5,6),(7,8)]         => 13
[(1,3),(2,9),(4,10),(5,6),(7,8)]         => 8
[(1,2),(3,9),(4,10),(5,6),(7,8)]         => 3
[(1,2),(3,10),(4,9),(5,6),(7,8)]         => 1
[(1,3),(2,10),(4,9),(5,6),(7,8)]         => 4
[(1,4),(2,10),(3,9),(5,6),(7,8)]         => 9
[(1,5),(2,10),(3,9),(4,6),(7,8)]         => 14
[(1,6),(2,10),(3,9),(4,5),(7,8)]         => 9
[(1,7),(2,10),(3,9),(4,5),(6,8)]         => 15
[(1,8),(2,10),(3,9),(4,5),(6,7)]         => 9
[(1,9),(2,10),(3,8),(4,5),(6,7)]         => 4
[(1,10),(2,9),(3,8),(4,5),(6,7)]         => 1
[(1,10),(2,9),(3,8),(4,6),(5,7)]         => 4
[(1,9),(2,10),(3,8),(4,6),(5,7)]         => 9
[(1,8),(2,10),(3,9),(4,6),(5,7)]         => 15
[(1,7),(2,10),(3,9),(4,6),(5,8)]         => 20
[(1,6),(2,10),(3,9),(4,7),(5,8)]         => 22
[(1,5),(2,10),(3,9),(4,7),(6,8)]         => 19
[(1,4),(2,10),(3,9),(5,7),(6,8)]         => 14
[(1,3),(2,10),(4,9),(5,7),(6,8)]         => 8
[(1,2),(3,10),(4,9),(5,7),(6,8)]         => 3
[(1,2),(3,9),(4,10),(5,7),(6,8)]         => 5
[(1,3),(2,9),(4,10),(5,7),(6,8)]         => 11
[(1,4),(2,9),(3,10),(5,7),(6,8)]         => 16
[(1,5),(2,9),(3,10),(4,7),(6,8)]         => 19
[(1,6),(2,9),(3,10),(4,7),(5,8)]         => 20
[(1,7),(2,9),(3,10),(4,6),(5,8)]         => 22
[(1,8),(2,9),(3,10),(4,6),(5,7)]         => 20
[(1,9),(2,8),(3,10),(4,6),(5,7)]         => 15
[(1,10),(2,8),(3,9),(4,6),(5,7)]         => 9
[(1,10),(2,7),(3,9),(4,6),(5,8)]         => 15
[(1,9),(2,7),(3,10),(4,6),(5,8)]         => 20
[(1,8),(2,7),(3,10),(4,6),(5,9)]         => 22
[(1,7),(2,8),(3,10),(4,6),(5,9)]         => 20
[(1,6),(2,8),(3,10),(4,7),(5,9)]         => 15
[(1,5),(2,8),(3,10),(4,7),(6,9)]         => 15
[(1,4),(2,8),(3,10),(5,7),(6,9)]         => 14
[(1,3),(2,8),(4,10),(5,7),(6,9)]         => 11
[(1,2),(3,8),(4,10),(5,7),(6,9)]         => 6
[(1,2),(3,7),(4,10),(5,8),(6,9)]         => 5
[(1,3),(2,7),(4,10),(5,8),(6,9)]         => 8
[(1,4),(2,7),(3,10),(5,8),(6,9)]         => 9
[(1,5),(2,7),(3,10),(4,8),(6,9)]         => 9
[(1,6),(2,7),(3,10),(4,8),(5,9)]         => 9
[(1,7),(2,6),(3,10),(4,8),(5,9)]         => 15
[(1,8),(2,6),(3,10),(4,7),(5,9)]         => 20
[(1,9),(2,6),(3,10),(4,7),(5,8)]         => 22
[(1,10),(2,6),(3,9),(4,7),(5,8)]         => 20
[(1,10),(2,5),(3,9),(4,7),(6,8)]         => 15
[(1,9),(2,5),(3,10),(4,7),(6,8)]         => 19
[(1,8),(2,5),(3,10),(4,7),(6,9)]         => 19
[(1,7),(2,5),(3,10),(4,8),(6,9)]         => 15
[(1,6),(2,5),(3,10),(4,8),(7,9)]         => 14
[(1,5),(2,6),(3,10),(4,8),(7,9)]         => 9
[(1,4),(2,6),(3,10),(5,8),(7,9)]         => 9
[(1,3),(2,6),(4,10),(5,8),(7,9)]         => 8
[(1,2),(3,6),(4,10),(5,8),(7,9)]         => 5
[(1,2),(3,5),(4,10),(6,8),(7,9)]         => 4
[(1,3),(2,5),(4,10),(6,8),(7,9)]         => 7
[(1,4),(2,5),(3,10),(6,8),(7,9)]         => 8
[(1,5),(2,4),(3,10),(6,8),(7,9)]         => 10
[(1,6),(2,4),(3,10),(5,8),(7,9)]         => 13
[(1,7),(2,4),(3,10),(5,8),(6,9)]         => 14
[(1,8),(2,4),(3,10),(5,7),(6,9)]         => 16
[(1,9),(2,4),(3,10),(5,7),(6,8)]         => 14
[(1,10),(2,4),(3,9),(5,7),(6,8)]         => 9
[(1,10),(2,3),(4,9),(5,7),(6,8)]         => 4
[(1,9),(2,3),(4,10),(5,7),(6,8)]         => 8
[(1,8),(2,3),(4,10),(5,7),(6,9)]         => 11
[(1,7),(2,3),(4,10),(5,8),(6,9)]         => 11
[(1,6),(2,3),(4,10),(5,8),(7,9)]         => 10
[(1,5),(2,3),(4,10),(6,8),(7,9)]         => 7
[(1,4),(2,3),(5,10),(6,8),(7,9)]         => 3
[(1,3),(2,4),(5,10),(6,8),(7,9)]         => 4
[(1,2),(3,4),(5,10),(6,8),(7,9)]         => 2
[(1,2),(3,4),(5,9),(6,8),(7,10)]         => 2
[(1,3),(2,4),(5,9),(6,8),(7,10)]         => 3
[(1,4),(2,3),(5,9),(6,8),(7,10)]         => 4
[(1,5),(2,3),(4,9),(6,8),(7,10)]         => 7
[(1,6),(2,3),(4,9),(5,8),(7,10)]         => 8
[(1,7),(2,3),(4,9),(5,8),(6,10)]         => 8
[(1,8),(2,3),(4,9),(5,7),(6,10)]         => 11
[(1,9),(2,3),(4,8),(5,7),(6,10)]         => 11
[(1,10),(2,3),(4,8),(5,7),(6,9)]         => 8
[(1,10),(2,4),(3,8),(5,7),(6,9)]         => 14
[(1,9),(2,4),(3,8),(5,7),(6,10)]         => 16
[(1,8),(2,4),(3,9),(5,7),(6,10)]         => 14
[(1,7),(2,4),(3,9),(5,8),(6,10)]         => 9
[(1,6),(2,4),(3,9),(5,8),(7,10)]         => 9
[(1,5),(2,4),(3,9),(6,8),(7,10)]         => 8
[(1,4),(2,5),(3,9),(6,8),(7,10)]         => 4
[(1,3),(2,5),(4,9),(6,8),(7,10)]         => 4
[(1,2),(3,5),(4,9),(6,8),(7,10)]         => 3
[(1,2),(3,6),(4,9),(5,8),(7,10)]         => 3
[(1,3),(2,6),(4,9),(5,8),(7,10)]         => 4
[(1,4),(2,6),(3,9),(5,8),(7,10)]         => 4
[(1,5),(2,6),(3,9),(4,8),(7,10)]         => 4
[(1,6),(2,5),(3,9),(4,8),(7,10)]         => 9
[(1,7),(2,5),(3,9),(4,8),(6,10)]         => 9
[(1,8),(2,5),(3,9),(4,7),(6,10)]         => 15
[(1,9),(2,5),(3,8),(4,7),(6,10)]         => 19
[(1,10),(2,5),(3,8),(4,7),(6,9)]         => 19
[(1,10),(2,6),(3,8),(4,7),(5,9)]         => 22
[(1,9),(2,6),(3,8),(4,7),(5,10)]         => 20
[(1,8),(2,6),(3,9),(4,7),(5,10)]         => 15
[(1,7),(2,6),(3,9),(4,8),(5,10)]         => 9
[(1,6),(2,7),(3,9),(4,8),(5,10)]         => 4
[(1,5),(2,7),(3,9),(4,8),(6,10)]         => 4
[(1,4),(2,7),(3,9),(5,8),(6,10)]         => 4
[(1,3),(2,7),(4,9),(5,8),(6,10)]         => 4
[(1,2),(3,7),(4,9),(5,8),(6,10)]         => 3
[(1,2),(3,8),(4,9),(5,7),(6,10)]         => 5
[(1,3),(2,8),(4,9),(5,7),(6,10)]         => 8
[(1,4),(2,8),(3,9),(5,7),(6,10)]         => 9
[(1,5),(2,8),(3,9),(4,7),(6,10)]         => 9
[(1,6),(2,8),(3,9),(4,7),(5,10)]         => 9
[(1,7),(2,8),(3,9),(4,6),(5,10)]         => 15
[(1,8),(2,7),(3,9),(4,6),(5,10)]         => 20
[(1,9),(2,7),(3,8),(4,6),(5,10)]         => 22
[(1,10),(2,7),(3,8),(4,6),(5,9)]         => 20
[(1,10),(2,8),(3,7),(4,6),(5,9)]         => 15
[(1,9),(2,8),(3,7),(4,6),(5,10)]         => 20
[(1,8),(2,9),(3,7),(4,6),(5,10)]         => 22
[(1,7),(2,9),(3,8),(4,6),(5,10)]         => 20
[(1,6),(2,9),(3,8),(4,7),(5,10)]         => 15
[(1,5),(2,9),(3,8),(4,7),(6,10)]         => 15
[(1,4),(2,9),(3,8),(5,7),(6,10)]         => 14
[(1,3),(2,9),(4,8),(5,7),(6,10)]         => 11
[(1,2),(3,9),(4,8),(5,7),(6,10)]         => 6
[(1,2),(3,10),(4,8),(5,7),(6,9)]         => 5
[(1,3),(2,10),(4,8),(5,7),(6,9)]         => 11
[(1,4),(2,10),(3,8),(5,7),(6,9)]         => 16
[(1,5),(2,10),(3,8),(4,7),(6,9)]         => 19
[(1,6),(2,10),(3,8),(4,7),(5,9)]         => 20
[(1,7),(2,10),(3,8),(4,6),(5,9)]         => 22
[(1,8),(2,10),(3,7),(4,6),(5,9)]         => 20
[(1,9),(2,10),(3,7),(4,6),(5,8)]         => 15
[(1,10),(2,9),(3,7),(4,6),(5,8)]         => 9
[(1,10),(2,9),(3,6),(4,7),(5,8)]         => 15
[(1,9),(2,10),(3,6),(4,7),(5,8)]         => 20
[(1,8),(2,10),(3,6),(4,7),(5,9)]         => 22
[(1,7),(2,10),(3,6),(4,8),(5,9)]         => 20
[(1,6),(2,10),(3,7),(4,8),(5,9)]         => 15
[(1,5),(2,10),(3,7),(4,8),(6,9)]         => 15
[(1,4),(2,10),(3,7),(5,8),(6,9)]         => 14
[(1,3),(2,10),(4,7),(5,8),(6,9)]         => 11
[(1,2),(3,10),(4,7),(5,8),(6,9)]         => 6
[(1,2),(3,9),(4,7),(5,8),(6,10)]         => 5
[(1,3),(2,9),(4,7),(5,8),(6,10)]         => 8
[(1,4),(2,9),(3,7),(5,8),(6,10)]         => 9
[(1,5),(2,9),(3,7),(4,8),(6,10)]         => 9
[(1,6),(2,9),(3,7),(4,8),(5,10)]         => 9
[(1,7),(2,9),(3,6),(4,8),(5,10)]         => 15
[(1,8),(2,9),(3,6),(4,7),(5,10)]         => 20
[(1,9),(2,8),(3,6),(4,7),(5,10)]         => 22
[(1,10),(2,8),(3,6),(4,7),(5,9)]         => 20
[(1,10),(2,7),(3,6),(4,8),(5,9)]         => 22
[(1,9),(2,7),(3,6),(4,8),(5,10)]         => 20
[(1,8),(2,7),(3,6),(4,9),(5,10)]         => 15
[(1,7),(2,8),(3,6),(4,9),(5,10)]         => 9
[(1,6),(2,8),(3,7),(4,9),(5,10)]         => 4
[(1,5),(2,8),(3,7),(4,9),(6,10)]         => 4
[(1,4),(2,8),(3,7),(5,9),(6,10)]         => 4
[(1,3),(2,8),(4,7),(5,9),(6,10)]         => 4
[(1,2),(3,8),(4,7),(5,9),(6,10)]         => 3
[(1,2),(3,7),(4,8),(5,9),(6,10)]         => 1
[(1,3),(2,7),(4,8),(5,9),(6,10)]         => 1
[(1,4),(2,7),(3,8),(5,9),(6,10)]         => 1
[(1,5),(2,7),(3,8),(4,9),(6,10)]         => 1
[(1,6),(2,7),(3,8),(4,9),(5,10)]         => 1
[(1,7),(2,6),(3,8),(4,9),(5,10)]         => 4
[(1,8),(2,6),(3,7),(4,9),(5,10)]         => 9
[(1,9),(2,6),(3,7),(4,8),(5,10)]         => 15
[(1,10),(2,6),(3,7),(4,8),(5,9)]         => 20
[(1,10),(2,5),(3,7),(4,8),(6,9)]         => 19
[(1,9),(2,5),(3,7),(4,8),(6,10)]         => 15
[(1,8),(2,5),(3,7),(4,9),(6,10)]         => 9
[(1,7),(2,5),(3,8),(4,9),(6,10)]         => 4
[(1,6),(2,5),(3,8),(4,9),(7,10)]         => 4
[(1,5),(2,6),(3,8),(4,9),(7,10)]         => 1
[(1,4),(2,6),(3,8),(5,9),(7,10)]         => 1
[(1,3),(2,6),(4,8),(5,9),(7,10)]         => 1
[(1,2),(3,6),(4,8),(5,9),(7,10)]         => 1
[(1,2),(3,5),(4,8),(6,9),(7,10)]         => 1
[(1,3),(2,5),(4,8),(6,9),(7,10)]         => 1
[(1,4),(2,5),(3,8),(6,9),(7,10)]         => 1
[(1,5),(2,4),(3,8),(6,9),(7,10)]         => 4
[(1,6),(2,4),(3,8),(5,9),(7,10)]         => 4
[(1,7),(2,4),(3,8),(5,9),(6,10)]         => 4
[(1,8),(2,4),(3,7),(5,9),(6,10)]         => 9
[(1,9),(2,4),(3,7),(5,8),(6,10)]         => 14
[(1,10),(2,4),(3,7),(5,8),(6,9)]         => 16
[(1,10),(2,3),(4,7),(5,8),(6,9)]         => 11
[(1,9),(2,3),(4,7),(5,8),(6,10)]         => 11
[(1,8),(2,3),(4,7),(5,9),(6,10)]         => 8
[(1,7),(2,3),(4,8),(5,9),(6,10)]         => 4
[(1,6),(2,3),(4,8),(5,9),(7,10)]         => 4
[(1,5),(2,3),(4,8),(6,9),(7,10)]         => 4
[(1,4),(2,3),(5,8),(6,9),(7,10)]         => 3
[(1,3),(2,4),(5,8),(6,9),(7,10)]         => 1
[(1,2),(3,4),(5,8),(6,9),(7,10)]         => 1
[(1,2),(3,4),(5,7),(6,9),(8,10)]         => 1
[(1,3),(2,4),(5,7),(6,9),(8,10)]         => 1
[(1,4),(2,3),(5,7),(6,9),(8,10)]         => 3
[(1,5),(2,3),(4,7),(6,9),(8,10)]         => 4
[(1,6),(2,3),(4,7),(5,9),(8,10)]         => 4
[(1,7),(2,3),(4,6),(5,9),(8,10)]         => 7
[(1,8),(2,3),(4,6),(5,9),(7,10)]         => 8
[(1,9),(2,3),(4,6),(5,8),(7,10)]         => 10
[(1,10),(2,3),(4,6),(5,8),(7,9)]         => 8
[(1,10),(2,4),(3,6),(5,8),(7,9)]         => 13
[(1,9),(2,4),(3,6),(5,8),(7,10)]         => 13
[(1,8),(2,4),(3,6),(5,9),(7,10)]         => 9
[(1,7),(2,4),(3,6),(5,9),(8,10)]         => 8
[(1,6),(2,4),(3,7),(5,9),(8,10)]         => 4
[(1,5),(2,4),(3,7),(6,9),(8,10)]         => 4
[(1,4),(2,5),(3,7),(6,9),(8,10)]         => 1
[(1,3),(2,5),(4,7),(6,9),(8,10)]         => 1
[(1,2),(3,5),(4,7),(6,9),(8,10)]         => 1
[(1,2),(3,6),(4,7),(5,9),(8,10)]         => 1
[(1,3),(2,6),(4,7),(5,9),(8,10)]         => 1
[(1,4),(2,6),(3,7),(5,9),(8,10)]         => 1
[(1,5),(2,6),(3,7),(4,9),(8,10)]         => 1
[(1,6),(2,5),(3,7),(4,9),(8,10)]         => 4
[(1,7),(2,5),(3,6),(4,9),(8,10)]         => 8
[(1,8),(2,5),(3,6),(4,9),(7,10)]         => 9
[(1,9),(2,5),(3,6),(4,8),(7,10)]         => 14
[(1,10),(2,5),(3,6),(4,8),(7,9)]         => 16
[(1,10),(2,6),(3,5),(4,8),(7,9)]         => 14
[(1,9),(2,6),(3,5),(4,8),(7,10)]         => 16
[(1,8),(2,6),(3,5),(4,9),(7,10)]         => 14
[(1,7),(2,6),(3,5),(4,9),(8,10)]         => 11
[(1,6),(2,7),(3,5),(4,9),(8,10)]         => 8
[(1,5),(2,7),(3,6),(4,9),(8,10)]         => 4
[(1,4),(2,7),(3,6),(5,9),(8,10)]         => 4
[(1,3),(2,7),(4,6),(5,9),(8,10)]         => 4
[(1,2),(3,7),(4,6),(5,9),(8,10)]         => 3
[(1,2),(3,8),(4,6),(5,9),(7,10)]         => 3
[(1,3),(2,8),(4,6),(5,9),(7,10)]         => 4
[(1,4),(2,8),(3,6),(5,9),(7,10)]         => 4
[(1,5),(2,8),(3,6),(4,9),(7,10)]         => 4
[(1,6),(2,8),(3,5),(4,9),(7,10)]         => 9
[(1,7),(2,8),(3,5),(4,9),(6,10)]         => 9
[(1,8),(2,7),(3,5),(4,9),(6,10)]         => 15
[(1,9),(2,7),(3,5),(4,8),(6,10)]         => 19
[(1,10),(2,7),(3,5),(4,8),(6,9)]         => 19
[(1,10),(2,8),(3,5),(4,7),(6,9)]         => 15
[(1,9),(2,8),(3,5),(4,7),(6,10)]         => 19
[(1,8),(2,9),(3,5),(4,7),(6,10)]         => 19
[(1,7),(2,9),(3,5),(4,8),(6,10)]         => 15
[(1,6),(2,9),(3,5),(4,8),(7,10)]         => 14
[(1,5),(2,9),(3,6),(4,8),(7,10)]         => 9
[(1,4),(2,9),(3,6),(5,8),(7,10)]         => 9
[(1,3),(2,9),(4,6),(5,8),(7,10)]         => 8
[(1,2),(3,9),(4,6),(5,8),(7,10)]         => 5
[(1,2),(3,10),(4,6),(5,8),(7,9)]         => 5
[(1,3),(2,10),(4,6),(5,8),(7,9)]         => 10
[(1,4),(2,10),(3,6),(5,8),(7,9)]         => 13
[(1,5),(2,10),(3,6),(4,8),(7,9)]         => 14
[(1,6),(2,10),(3,5),(4,8),(7,9)]         => 16
[(1,7),(2,10),(3,5),(4,8),(6,9)]         => 19
[(1,8),(2,10),(3,5),(4,7),(6,9)]         => 19
[(1,9),(2,10),(3,5),(4,7),(6,8)]         => 15
[(1,10),(2,9),(3,5),(4,7),(6,8)]         => 9
[(1,10),(2,9),(3,4),(5,7),(6,8)]         => 4
[(1,9),(2,10),(3,4),(5,7),(6,8)]         => 9
[(1,8),(2,10),(3,4),(5,7),(6,9)]         => 14
[(1,7),(2,10),(3,4),(5,8),(6,9)]         => 16
[(1,6),(2,10),(3,4),(5,8),(7,9)]         => 13
[(1,5),(2,10),(3,4),(6,8),(7,9)]         => 8
[(1,4),(2,10),(3,5),(6,8),(7,9)]         => 10
[(1,3),(2,10),(4,5),(6,8),(7,9)]         => 7
[(1,2),(3,10),(4,5),(6,8),(7,9)]         => 3
[(1,2),(3,9),(4,5),(6,8),(7,10)]         => 4
[(1,3),(2,9),(4,5),(6,8),(7,10)]         => 7
[(1,4),(2,9),(3,5),(6,8),(7,10)]         => 8
[(1,5),(2,9),(3,4),(6,8),(7,10)]         => 10
[(1,6),(2,9),(3,4),(5,8),(7,10)]         => 13
[(1,7),(2,9),(3,4),(5,8),(6,10)]         => 14
[(1,8),(2,9),(3,4),(5,7),(6,10)]         => 16
[(1,9),(2,8),(3,4),(5,7),(6,10)]         => 14
[(1,10),(2,8),(3,4),(5,7),(6,9)]         => 9
[(1,10),(2,7),(3,4),(5,8),(6,9)]         => 14
[(1,9),(2,7),(3,4),(5,8),(6,10)]         => 16
[(1,8),(2,7),(3,4),(5,9),(6,10)]         => 14
[(1,7),(2,8),(3,4),(5,9),(6,10)]         => 9
[(1,6),(2,8),(3,4),(5,9),(7,10)]         => 9
[(1,5),(2,8),(3,4),(6,9),(7,10)]         => 8
[(1,4),(2,8),(3,5),(6,9),(7,10)]         => 4
[(1,3),(2,8),(4,5),(6,9),(7,10)]         => 4
[(1,2),(3,8),(4,5),(6,9),(7,10)]         => 3
[(1,2),(3,7),(4,5),(6,9),(8,10)]         => 3
[(1,3),(2,7),(4,5),(6,9),(8,10)]         => 4
[(1,4),(2,7),(3,5),(6,9),(8,10)]         => 4
[(1,5),(2,7),(3,4),(6,9),(8,10)]         => 7
[(1,6),(2,7),(3,4),(5,9),(8,10)]         => 8
[(1,7),(2,6),(3,4),(5,9),(8,10)]         => 10
[(1,8),(2,6),(3,4),(5,9),(7,10)]         => 13
[(1,9),(2,6),(3,4),(5,8),(7,10)]         => 13
[(1,10),(2,6),(3,4),(5,8),(7,9)]         => 9
[(1,10),(2,5),(3,4),(6,8),(7,9)]         => 4
[(1,9),(2,5),(3,4),(6,8),(7,10)]         => 8
[(1,8),(2,5),(3,4),(6,9),(7,10)]         => 10
[(1,7),(2,5),(3,4),(6,9),(8,10)]         => 7
[(1,6),(2,5),(3,4),(7,9),(8,10)]         => 3
[(1,5),(2,6),(3,4),(7,9),(8,10)]         => 4
[(1,4),(2,6),(3,5),(7,9),(8,10)]         => 3
[(1,3),(2,6),(4,5),(7,9),(8,10)]         => 3
[(1,2),(3,6),(4,5),(7,9),(8,10)]         => 2
[(1,2),(3,5),(4,6),(7,9),(8,10)]         => 1
[(1,3),(2,5),(4,6),(7,9),(8,10)]         => 1
[(1,4),(2,5),(3,6),(7,9),(8,10)]         => 1
[(1,5),(2,4),(3,6),(7,9),(8,10)]         => 3
[(1,6),(2,4),(3,5),(7,9),(8,10)]         => 4
[(1,7),(2,4),(3,5),(6,9),(8,10)]         => 7
[(1,8),(2,4),(3,5),(6,9),(7,10)]         => 8
[(1,9),(2,4),(3,5),(6,8),(7,10)]         => 10
[(1,10),(2,4),(3,5),(6,8),(7,9)]         => 8
[(1,10),(2,3),(4,5),(6,8),(7,9)]         => 4
[(1,9),(2,3),(4,5),(6,8),(7,10)]         => 7
[(1,8),(2,3),(4,5),(6,9),(7,10)]         => 7
[(1,7),(2,3),(4,5),(6,9),(8,10)]         => 6
[(1,6),(2,3),(4,5),(7,9),(8,10)]         => 3
[(1,5),(2,3),(4,6),(7,9),(8,10)]         => 3
[(1,4),(2,3),(5,6),(7,9),(8,10)]         => 2
[(1,3),(2,4),(5,6),(7,9),(8,10)]         => 1
[(1,2),(3,4),(5,6),(7,9),(8,10)]         => 1
[(1,2),(3,4),(5,6),(7,10),(8,9)]         => 1
[(1,3),(2,4),(5,6),(7,10),(8,9)]         => 2
[(1,4),(2,3),(5,6),(7,10),(8,9)]         => 1
[(1,5),(2,3),(4,6),(7,10),(8,9)]         => 3
[(1,6),(2,3),(4,5),(7,10),(8,9)]         => 1
[(1,7),(2,3),(4,5),(6,10),(8,9)]         => 4
[(1,8),(2,3),(4,5),(6,10),(7,9)]         => 7
[(1,9),(2,3),(4,5),(6,10),(7,8)]         => 4
[(1,10),(2,3),(4,5),(6,9),(7,8)]         => 1
[(1,10),(2,4),(3,5),(6,9),(7,8)]         => 4
[(1,9),(2,4),(3,5),(6,10),(7,8)]         => 8
[(1,8),(2,4),(3,5),(6,10),(7,9)]         => 10
[(1,7),(2,4),(3,5),(6,10),(8,9)]         => 7
[(1,6),(2,4),(3,5),(7,10),(8,9)]         => 3
[(1,5),(2,4),(3,6),(7,10),(8,9)]         => 4
[(1,4),(2,5),(3,6),(7,10),(8,9)]         => 3
[(1,3),(2,5),(4,6),(7,10),(8,9)]         => 3
[(1,2),(3,5),(4,6),(7,10),(8,9)]         => 2
[(1,2),(3,6),(4,5),(7,10),(8,9)]         => 1
[(1,3),(2,6),(4,5),(7,10),(8,9)]         => 3
[(1,4),(2,6),(3,5),(7,10),(8,9)]         => 4
[(1,5),(2,6),(3,4),(7,10),(8,9)]         => 3
[(1,6),(2,5),(3,4),(7,10),(8,9)]         => 1
[(1,7),(2,5),(3,4),(6,10),(8,9)]         => 4
[(1,8),(2,5),(3,4),(6,10),(7,9)]         => 8
[(1,9),(2,5),(3,4),(6,10),(7,8)]         => 4
[(1,10),(2,5),(3,4),(6,9),(7,8)]         => 1
[(1,10),(2,6),(3,4),(5,9),(7,8)]         => 4
[(1,9),(2,6),(3,4),(5,10),(7,8)]         => 9
[(1,8),(2,6),(3,4),(5,10),(7,9)]         => 13
[(1,7),(2,6),(3,4),(5,10),(8,9)]         => 8
[(1,6),(2,7),(3,4),(5,10),(8,9)]         => 10
[(1,5),(2,7),(3,4),(6,10),(8,9)]         => 7
[(1,4),(2,7),(3,5),(6,10),(8,9)]         => 7
[(1,3),(2,7),(4,5),(6,10),(8,9)]         => 6
[(1,2),(3,7),(4,5),(6,10),(8,9)]         => 3
[(1,2),(3,8),(4,5),(6,10),(7,9)]         => 4
[(1,3),(2,8),(4,5),(6,10),(7,9)]         => 7
[(1,4),(2,8),(3,5),(6,10),(7,9)]         => 8
[(1,5),(2,8),(3,4),(6,10),(7,9)]         => 10
[(1,6),(2,8),(3,4),(5,10),(7,9)]         => 13
[(1,7),(2,8),(3,4),(5,10),(6,9)]         => 14
[(1,8),(2,7),(3,4),(5,10),(6,9)]         => 16
[(1,9),(2,7),(3,4),(5,10),(6,8)]         => 14
[(1,10),(2,7),(3,4),(5,9),(6,8)]         => 9
[(1,10),(2,8),(3,4),(5,9),(6,7)]         => 4
[(1,9),(2,8),(3,4),(5,10),(6,7)]         => 9
[(1,8),(2,9),(3,4),(5,10),(6,7)]         => 14
[(1,7),(2,9),(3,4),(5,10),(6,8)]         => 16
[(1,6),(2,9),(3,4),(5,10),(7,8)]         => 13
[(1,5),(2,9),(3,4),(6,10),(7,8)]         => 8
[(1,4),(2,9),(3,5),(6,10),(7,8)]         => 10
[(1,3),(2,9),(4,5),(6,10),(7,8)]         => 7
[(1,2),(3,9),(4,5),(6,10),(7,8)]         => 3
[(1,2),(3,10),(4,5),(6,9),(7,8)]         => 1
[(1,3),(2,10),(4,5),(6,9),(7,8)]         => 4
[(1,4),(2,10),(3,5),(6,9),(7,8)]         => 8
[(1,5),(2,10),(3,4),(6,9),(7,8)]         => 4
[(1,6),(2,10),(3,4),(5,9),(7,8)]         => 9
[(1,7),(2,10),(3,4),(5,9),(6,8)]         => 14
[(1,8),(2,10),(3,4),(5,9),(6,7)]         => 9
[(1,9),(2,10),(3,4),(5,8),(6,7)]         => 4
[(1,10),(2,9),(3,4),(5,8),(6,7)]         => 1
[(1,10),(2,9),(3,5),(4,8),(6,7)]         => 4
[(1,9),(2,10),(3,5),(4,8),(6,7)]         => 9
[(1,8),(2,10),(3,5),(4,9),(6,7)]         => 15
[(1,7),(2,10),(3,5),(4,9),(6,8)]         => 19
[(1,6),(2,10),(3,5),(4,9),(7,8)]         => 14
[(1,5),(2,10),(3,6),(4,9),(7,8)]         => 16
[(1,4),(2,10),(3,6),(5,9),(7,8)]         => 13
[(1,3),(2,10),(4,6),(5,9),(7,8)]         => 8
[(1,2),(3,10),(4,6),(5,9),(7,8)]         => 3
[(1,2),(3,9),(4,6),(5,10),(7,8)]         => 5
[(1,3),(2,9),(4,6),(5,10),(7,8)]         => 10
[(1,4),(2,9),(3,6),(5,10),(7,8)]         => 13
[(1,5),(2,9),(3,6),(4,10),(7,8)]         => 14
[(1,6),(2,9),(3,5),(4,10),(7,8)]         => 16
[(1,7),(2,9),(3,5),(4,10),(6,8)]         => 19
[(1,8),(2,9),(3,5),(4,10),(6,7)]         => 19
[(1,9),(2,8),(3,5),(4,10),(6,7)]         => 15
[(1,10),(2,8),(3,5),(4,9),(6,7)]         => 9
[(1,10),(2,7),(3,5),(4,9),(6,8)]         => 15
[(1,9),(2,7),(3,5),(4,10),(6,8)]         => 19
[(1,8),(2,7),(3,5),(4,10),(6,9)]         => 19
[(1,7),(2,8),(3,5),(4,10),(6,9)]         => 15
[(1,6),(2,8),(3,5),(4,10),(7,9)]         => 14
[(1,5),(2,8),(3,6),(4,10),(7,9)]         => 9
[(1,4),(2,8),(3,6),(5,10),(7,9)]         => 9
[(1,3),(2,8),(4,6),(5,10),(7,9)]         => 8
[(1,2),(3,8),(4,6),(5,10),(7,9)]         => 5
[(1,2),(3,7),(4,6),(5,10),(8,9)]         => 4
[(1,3),(2,7),(4,6),(5,10),(8,9)]         => 7
[(1,4),(2,7),(3,6),(5,10),(8,9)]         => 8
[(1,5),(2,7),(3,6),(4,10),(8,9)]         => 8
[(1,6),(2,7),(3,5),(4,10),(8,9)]         => 11
[(1,7),(2,6),(3,5),(4,10),(8,9)]         => 11
[(1,8),(2,6),(3,5),(4,10),(7,9)]         => 16
[(1,9),(2,6),(3,5),(4,10),(7,8)]         => 14
[(1,10),(2,6),(3,5),(4,9),(7,8)]         => 9
[(1,10),(2,5),(3,6),(4,9),(7,8)]         => 14
[(1,9),(2,5),(3,6),(4,10),(7,8)]         => 16
[(1,8),(2,5),(3,6),(4,10),(7,9)]         => 14
[(1,7),(2,5),(3,6),(4,10),(8,9)]         => 11
[(1,6),(2,5),(3,7),(4,10),(8,9)]         => 8
[(1,5),(2,6),(3,7),(4,10),(8,9)]         => 4
[(1,4),(2,6),(3,7),(5,10),(8,9)]         => 4
[(1,3),(2,6),(4,7),(5,10),(8,9)]         => 4
[(1,2),(3,6),(4,7),(5,10),(8,9)]         => 3
[(1,2),(3,5),(4,7),(6,10),(8,9)]         => 3
[(1,3),(2,5),(4,7),(6,10),(8,9)]         => 4
[(1,4),(2,5),(3,7),(6,10),(8,9)]         => 4
[(1,5),(2,4),(3,7),(6,10),(8,9)]         => 7
[(1,6),(2,4),(3,7),(5,10),(8,9)]         => 8
[(1,7),(2,4),(3,6),(5,10),(8,9)]         => 10
[(1,8),(2,4),(3,6),(5,10),(7,9)]         => 13
[(1,9),(2,4),(3,6),(5,10),(7,8)]         => 13
[(1,10),(2,4),(3,6),(5,9),(7,8)]         => 9
[(1,10),(2,3),(4,6),(5,9),(7,8)]         => 4
[(1,9),(2,3),(4,6),(5,10),(7,8)]         => 8
[(1,8),(2,3),(4,6),(5,10),(7,9)]         => 10
[(1,7),(2,3),(4,6),(5,10),(8,9)]         => 7
[(1,6),(2,3),(4,7),(5,10),(8,9)]         => 7
[(1,5),(2,3),(4,7),(6,10),(8,9)]         => 6
[(1,4),(2,3),(5,7),(6,10),(8,9)]         => 3
[(1,3),(2,4),(5,7),(6,10),(8,9)]         => 3
[(1,2),(3,4),(5,7),(6,10),(8,9)]         => 2
[(1,2),(3,4),(5,8),(6,10),(7,9)]         => 2
[(1,3),(2,4),(5,8),(6,10),(7,9)]         => 3
[(1,4),(2,3),(5,8),(6,10),(7,9)]         => 4
[(1,5),(2,3),(4,8),(6,10),(7,9)]         => 7
[(1,6),(2,3),(4,8),(5,10),(7,9)]         => 8
[(1,7),(2,3),(4,8),(5,10),(6,9)]         => 8
[(1,8),(2,3),(4,7),(5,10),(6,9)]         => 11
[(1,9),(2,3),(4,7),(5,10),(6,8)]         => 11
[(1,10),(2,3),(4,7),(5,9),(6,8)]         => 8
[(1,10),(2,4),(3,7),(5,9),(6,8)]         => 14
[(1,9),(2,4),(3,7),(5,10),(6,8)]         => 16
[(1,8),(2,4),(3,7),(5,10),(6,9)]         => 14
[(1,7),(2,4),(3,8),(5,10),(6,9)]         => 9
[(1,6),(2,4),(3,8),(5,10),(7,9)]         => 9
[(1,5),(2,4),(3,8),(6,10),(7,9)]         => 8
[(1,4),(2,5),(3,8),(6,10),(7,9)]         => 4
[(1,3),(2,5),(4,8),(6,10),(7,9)]         => 4
[(1,2),(3,5),(4,8),(6,10),(7,9)]         => 3
[(1,2),(3,6),(4,8),(5,10),(7,9)]         => 3
[(1,3),(2,6),(4,8),(5,10),(7,9)]         => 4
[(1,4),(2,6),(3,8),(5,10),(7,9)]         => 4
[(1,5),(2,6),(3,8),(4,10),(7,9)]         => 4
[(1,6),(2,5),(3,8),(4,10),(7,9)]         => 9
[(1,7),(2,5),(3,8),(4,10),(6,9)]         => 9
[(1,8),(2,5),(3,7),(4,10),(6,9)]         => 15
[(1,9),(2,5),(3,7),(4,10),(6,8)]         => 19
[(1,10),(2,5),(3,7),(4,9),(6,8)]         => 19
[(1,10),(2,6),(3,7),(4,9),(5,8)]         => 22
[(1,9),(2,6),(3,7),(4,10),(5,8)]         => 20
[(1,8),(2,6),(3,7),(4,10),(5,9)]         => 15
[(1,7),(2,6),(3,8),(4,10),(5,9)]         => 9
[(1,6),(2,7),(3,8),(4,10),(5,9)]         => 4
[(1,5),(2,7),(3,8),(4,10),(6,9)]         => 4
[(1,4),(2,7),(3,8),(5,10),(6,9)]         => 4
[(1,3),(2,7),(4,8),(5,10),(6,9)]         => 4
[(1,2),(3,7),(4,8),(5,10),(6,9)]         => 3
[(1,2),(3,8),(4,7),(5,10),(6,9)]         => 5
[(1,3),(2,8),(4,7),(5,10),(6,9)]         => 8
[(1,4),(2,8),(3,7),(5,10),(6,9)]         => 9
[(1,5),(2,8),(3,7),(4,10),(6,9)]         => 9
[(1,6),(2,8),(3,7),(4,10),(5,9)]         => 9
[(1,7),(2,8),(3,6),(4,10),(5,9)]         => 15
[(1,8),(2,7),(3,6),(4,10),(5,9)]         => 20
[(1,9),(2,7),(3,6),(4,10),(5,8)]         => 22
[(1,10),(2,7),(3,6),(4,9),(5,8)]         => 20
[(1,10),(2,8),(3,6),(4,9),(5,7)]         => 15
[(1,9),(2,8),(3,6),(4,10),(5,7)]         => 20
[(1,8),(2,9),(3,6),(4,10),(5,7)]         => 22
[(1,7),(2,9),(3,6),(4,10),(5,8)]         => 20
[(1,6),(2,9),(3,7),(4,10),(5,8)]         => 15
[(1,5),(2,9),(3,7),(4,10),(6,8)]         => 15
[(1,4),(2,9),(3,7),(5,10),(6,8)]         => 14
[(1,3),(2,9),(4,7),(5,10),(6,8)]         => 11
[(1,2),(3,9),(4,7),(5,10),(6,8)]         => 6
[(1,2),(3,10),(4,7),(5,9),(6,8)]         => 5
[(1,3),(2,10),(4,7),(5,9),(6,8)]         => 11
[(1,4),(2,10),(3,7),(5,9),(6,8)]         => 16
[(1,5),(2,10),(3,7),(4,9),(6,8)]         => 19
[(1,6),(2,10),(3,7),(4,9),(5,8)]         => 20
[(1,7),(2,10),(3,6),(4,9),(5,8)]         => 22
[(1,8),(2,10),(3,6),(4,9),(5,7)]         => 20
[(1,9),(2,10),(3,6),(4,8),(5,7)]         => 15
[(1,10),(2,9),(3,6),(4,8),(5,7)]         => 9
[(1,10),(2,9),(3,7),(4,8),(5,6)]         => 4
[(1,9),(2,10),(3,7),(4,8),(5,6)]         => 9
[(1,8),(2,10),(3,7),(4,9),(5,6)]         => 15
[(1,7),(2,10),(3,8),(4,9),(5,6)]         => 20
[(1,6),(2,10),(3,8),(4,9),(5,7)]         => 22
[(1,5),(2,10),(3,8),(4,9),(6,7)]         => 19
[(1,4),(2,10),(3,8),(5,9),(6,7)]         => 14
[(1,3),(2,10),(4,8),(5,9),(6,7)]         => 8
[(1,2),(3,10),(4,8),(5,9),(6,7)]         => 3
[(1,2),(3,9),(4,8),(5,10),(6,7)]         => 5
[(1,3),(2,9),(4,8),(5,10),(6,7)]         => 11
[(1,4),(2,9),(3,8),(5,10),(6,7)]         => 16
[(1,5),(2,9),(3,8),(4,10),(6,7)]         => 19
[(1,6),(2,9),(3,8),(4,10),(5,7)]         => 20
[(1,7),(2,9),(3,8),(4,10),(5,6)]         => 22
[(1,8),(2,9),(3,7),(4,10),(5,6)]         => 20
[(1,9),(2,8),(3,7),(4,10),(5,6)]         => 15
[(1,10),(2,8),(3,7),(4,9),(5,6)]         => 9
[(1,10),(2,7),(3,8),(4,9),(5,6)]         => 15
[(1,9),(2,7),(3,8),(4,10),(5,6)]         => 20
[(1,8),(2,7),(3,9),(4,10),(5,6)]         => 22
[(1,7),(2,8),(3,9),(4,10),(5,6)]         => 20
[(1,6),(2,8),(3,9),(4,10),(5,7)]         => 15
[(1,5),(2,8),(3,9),(4,10),(6,7)]         => 15
[(1,4),(2,8),(3,9),(5,10),(6,7)]         => 14
[(1,3),(2,8),(4,9),(5,10),(6,7)]         => 11
[(1,2),(3,8),(4,9),(5,10),(6,7)]         => 6
[(1,2),(3,7),(4,9),(5,10),(6,8)]         => 5
[(1,3),(2,7),(4,9),(5,10),(6,8)]         => 8
[(1,4),(2,7),(3,9),(5,10),(6,8)]         => 9
[(1,5),(2,7),(3,9),(4,10),(6,8)]         => 9
[(1,6),(2,7),(3,9),(4,10),(5,8)]         => 9
[(1,7),(2,6),(3,9),(4,10),(5,8)]         => 15
[(1,8),(2,6),(3,9),(4,10),(5,7)]         => 20
[(1,9),(2,6),(3,8),(4,10),(5,7)]         => 22
[(1,10),(2,6),(3,8),(4,9),(5,7)]         => 20
[(1,10),(2,5),(3,8),(4,9),(6,7)]         => 15
[(1,9),(2,5),(3,8),(4,10),(6,7)]         => 19
[(1,8),(2,5),(3,9),(4,10),(6,7)]         => 19
[(1,7),(2,5),(3,9),(4,10),(6,8)]         => 15
[(1,6),(2,5),(3,9),(4,10),(7,8)]         => 14
[(1,5),(2,6),(3,9),(4,10),(7,8)]         => 9
[(1,4),(2,6),(3,9),(5,10),(7,8)]         => 9
[(1,3),(2,6),(4,9),(5,10),(7,8)]         => 8
[(1,2),(3,6),(4,9),(5,10),(7,8)]         => 5
[(1,2),(3,5),(4,9),(6,10),(7,8)]         => 4
[(1,3),(2,5),(4,9),(6,10),(7,8)]         => 7
[(1,4),(2,5),(3,9),(6,10),(7,8)]         => 8
[(1,5),(2,4),(3,9),(6,10),(7,8)]         => 10
[(1,6),(2,4),(3,9),(5,10),(7,8)]         => 13
[(1,7),(2,4),(3,9),(5,10),(6,8)]         => 14
[(1,8),(2,4),(3,9),(5,10),(6,7)]         => 16
[(1,9),(2,4),(3,8),(5,10),(6,7)]         => 14
[(1,10),(2,4),(3,8),(5,9),(6,7)]         => 9
[(1,10),(2,3),(4,8),(5,9),(6,7)]         => 4
[(1,9),(2,3),(4,8),(5,10),(6,7)]         => 8
[(1,8),(2,3),(4,9),(5,10),(6,7)]         => 11
[(1,7),(2,3),(4,9),(5,10),(6,8)]         => 11
[(1,6),(2,3),(4,9),(5,10),(7,8)]         => 10
[(1,5),(2,3),(4,9),(6,10),(7,8)]         => 7
[(1,4),(2,3),(5,9),(6,10),(7,8)]         => 3
[(1,3),(2,4),(5,9),(6,10),(7,8)]         => 4
[(1,2),(3,4),(5,9),(6,10),(7,8)]         => 2
[(1,2),(3,4),(5,10),(6,9),(7,8)]         => 1
[(1,3),(2,4),(5,10),(6,9),(7,8)]         => 3
[(1,4),(2,3),(5,10),(6,9),(7,8)]         => 1
[(1,5),(2,3),(4,10),(6,9),(7,8)]         => 4
[(1,6),(2,3),(4,10),(5,9),(7,8)]         => 8
[(1,7),(2,3),(4,10),(5,9),(6,8)]         => 11
[(1,8),(2,3),(4,10),(5,9),(6,7)]         => 8
[(1,9),(2,3),(4,10),(5,8),(6,7)]         => 4
[(1,10),(2,3),(4,9),(5,8),(6,7)]         => 1
[(1,10),(2,4),(3,9),(5,8),(6,7)]         => 4
[(1,9),(2,4),(3,10),(5,8),(6,7)]         => 9
[(1,8),(2,4),(3,10),(5,9),(6,7)]         => 14
[(1,7),(2,4),(3,10),(5,9),(6,8)]         => 16
[(1,6),(2,4),(3,10),(5,9),(7,8)]         => 13
[(1,5),(2,4),(3,10),(6,9),(7,8)]         => 8
[(1,4),(2,5),(3,10),(6,9),(7,8)]         => 10
[(1,3),(2,5),(4,10),(6,9),(7,8)]         => 7
[(1,2),(3,5),(4,10),(6,9),(7,8)]         => 3
[(1,2),(3,6),(4,10),(5,9),(7,8)]         => 5
[(1,3),(2,6),(4,10),(5,9),(7,8)]         => 10
[(1,4),(2,6),(3,10),(5,9),(7,8)]         => 13
[(1,5),(2,6),(3,10),(4,9),(7,8)]         => 14
[(1,6),(2,5),(3,10),(4,9),(7,8)]         => 16
[(1,7),(2,5),(3,10),(4,9),(6,8)]         => 19
[(1,8),(2,5),(3,10),(4,9),(6,7)]         => 19
[(1,9),(2,5),(3,10),(4,8),(6,7)]         => 15
[(1,10),(2,5),(3,9),(4,8),(6,7)]         => 9
[(1,10),(2,6),(3,9),(4,8),(5,7)]         => 15
[(1,9),(2,6),(3,10),(4,8),(5,7)]         => 20
[(1,8),(2,6),(3,10),(4,9),(5,7)]         => 22
[(1,7),(2,6),(3,10),(4,9),(5,8)]         => 20
[(1,6),(2,7),(3,10),(4,9),(5,8)]         => 15
[(1,5),(2,7),(3,10),(4,9),(6,8)]         => 15
[(1,4),(2,7),(3,10),(5,9),(6,8)]         => 14
[(1,3),(2,7),(4,10),(5,9),(6,8)]         => 11
[(1,2),(3,7),(4,10),(5,9),(6,8)]         => 6
[(1,2),(3,8),(4,10),(5,9),(6,7)]         => 5
[(1,3),(2,8),(4,10),(5,9),(6,7)]         => 11
[(1,4),(2,8),(3,10),(5,9),(6,7)]         => 16
[(1,5),(2,8),(3,10),(4,9),(6,7)]         => 19
[(1,6),(2,8),(3,10),(4,9),(5,7)]         => 20
[(1,7),(2,8),(3,10),(4,9),(5,6)]         => 22
[(1,8),(2,7),(3,10),(4,9),(5,6)]         => 20
[(1,9),(2,7),(3,10),(4,8),(5,6)]         => 15
[(1,10),(2,7),(3,9),(4,8),(5,6)]         => 9
[(1,10),(2,8),(3,9),(4,7),(5,6)]         => 4
[(1,9),(2,8),(3,10),(4,7),(5,6)]         => 9
[(1,8),(2,9),(3,10),(4,7),(5,6)]         => 15
[(1,7),(2,9),(3,10),(4,8),(5,6)]         => 20
[(1,6),(2,9),(3,10),(4,8),(5,7)]         => 22
[(1,5),(2,9),(3,10),(4,8),(6,7)]         => 19
[(1,4),(2,9),(3,10),(5,8),(6,7)]         => 14
[(1,3),(2,9),(4,10),(5,8),(6,7)]         => 8
[(1,2),(3,9),(4,10),(5,8),(6,7)]         => 3
[(1,2),(3,10),(4,9),(5,8),(6,7)]         => 1
[(1,3),(2,10),(4,9),(5,8),(6,7)]         => 4
[(1,4),(2,10),(3,9),(5,8),(6,7)]         => 9
[(1,5),(2,10),(3,9),(4,8),(6,7)]         => 15
[(1,6),(2,10),(3,9),(4,8),(5,7)]         => 20
[(1,7),(2,10),(3,9),(4,8),(5,6)]         => 15
[(1,8),(2,10),(3,9),(4,7),(5,6)]         => 9
[(1,9),(2,10),(3,8),(4,7),(5,6)]         => 4
[(1,10),(2,9),(3,8),(4,7),(5,6)]         => 1
[(1,2),(3,4),(5,8),(6,7),(9,10),(11,12)] => 1
[(1,2),(3,4),(5,8),(6,7),(9,12),(10,11)] => 1
[(1,2),(3,4),(5,10),(6,7),(8,9),(11,12)] => 1
[(1,2),(3,4),(5,12),(6,7),(8,9),(10,11)] => 1
[(1,2),(3,4),(5,12),(6,7),(8,11),(9,10)] => 1
[(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)] => 1
[(1,2),(3,4),(5,6),(7,8),(9,12),(10,11)] => 1
[(1,2),(3,4),(5,10),(6,9),(7,8),(11,12)] => 1
[(1,2),(3,4),(5,12),(6,9),(7,8),(10,11)] => 1
[(1,2),(3,4),(5,12),(6,11),(7,8),(9,10)] => 1
[(1,2),(3,4),(5,6),(7,10),(8,9),(11,12)] => 1
[(1,2),(3,4),(5,6),(7,12),(8,9),(10,11)] => 1
[(1,2),(3,4),(5,6),(7,12),(8,11),(9,10)] => 1
[(1,2),(3,4),(5,12),(6,11),(7,10),(8,9)] => 1
[(1,2),(3,4),(5,6),(7,8),(9,11),(10,12)] => 1
[(1,2),(3,4),(5,6),(7,9),(8,10),(11,12)] => 1
[(1,2),(3,4),(5,6),(7,9),(8,11),(10,12)] => 1
[(1,2),(3,4),(5,6),(7,10),(8,11),(9,12)] => 1
[(1,2),(3,4),(5,7),(6,8),(9,10),(11,12)] => 1
[(1,2),(3,4),(5,7),(6,8),(9,11),(10,12)] => 1
[(1,2),(3,4),(5,7),(6,9),(8,10),(11,12)] => 1
[(1,2),(3,4),(5,7),(6,9),(8,11),(10,12)] => 1
[(1,2),(3,4),(5,7),(6,10),(8,11),(9,12)] => 1
[(1,2),(3,4),(5,8),(6,9),(7,10),(11,12)] => 1
[(1,2),(3,4),(5,8),(6,9),(7,11),(10,12)] => 1
[(1,2),(3,4),(5,8),(6,10),(7,11),(9,12)] => 1
[(1,2),(3,4),(5,9),(6,10),(7,11),(8,12)] => 1
[(1,2),(3,5),(4,6),(7,8),(9,10),(11,12)] => 1
[(1,2),(3,5),(4,6),(7,8),(9,11),(10,12)] => 1
[(1,2),(3,5),(4,6),(7,9),(8,10),(11,12)] => 1
[(1,2),(3,5),(4,6),(7,9),(8,11),(10,12)] => 1
[(1,2),(3,5),(4,6),(7,10),(8,11),(9,12)] => 1
[(1,2),(3,5),(4,7),(6,8),(9,10),(11,12)] => 1
[(1,2),(3,5),(4,7),(6,8),(9,11),(10,12)] => 1
[(1,2),(3,5),(4,7),(6,9),(8,10),(11,12)] => 1
[(1,2),(3,5),(4,7),(6,9),(8,11),(10,12)] => 1
[(1,2),(3,5),(4,7),(6,10),(8,11),(9,12)] => 1
[(1,2),(3,4),(5,6),(7,9),(8,12),(10,11)] => 2
[(1,2),(3,4),(5,6),(7,10),(8,12),(9,11)] => 2
[(1,2),(3,4),(5,6),(7,11),(8,9),(10,12)] => 2
[(1,2),(3,4),(5,6),(7,11),(8,10),(9,12)] => 2
[(1,2),(3,4),(5,6),(7,11),(8,12),(9,10)] => 2
[(1,2),(3,4),(5,6),(7,12),(8,10),(9,11)] => 2
[(1,2),(3,4),(5,7),(6,8),(9,12),(10,11)] => 2
[(1,2),(3,4),(5,7),(6,9),(8,12),(10,11)] => 3
[(1,2),(3,4),(5,7),(6,10),(8,9),(11,12)] => 2
[(1,2),(3,4),(5,7),(6,10),(8,12),(9,11)] => 3
[(1,2),(3,4),(5,7),(6,11),(8,9),(10,12)] => 3
[(1,2),(3,4),(5,7),(6,11),(8,10),(9,12)] => 3
[(1,2),(3,4),(5,7),(6,11),(8,12),(9,10)] => 4
[(1,2),(3,4),(5,7),(6,12),(8,9),(10,11)] => 3
[(1,2),(3,4),(5,7),(6,12),(8,10),(9,11)] => 4
[(1,2),(3,4),(5,7),(6,12),(8,11),(9,10)] => 3
[(1,2),(3,4),(5,8),(6,7),(9,11),(10,12)] => 2
[(1,2),(3,4),(5,8),(6,9),(7,12),(10,11)] => 3
[(1,2),(3,4),(5,8),(6,10),(7,12),(9,11)] => 3
[(1,2),(3,4),(5,8),(6,10),(7,9),(11,12)] => 2
[(1,2),(3,4),(5,8),(6,11),(7,12),(9,10)] => 5
[(1,2),(3,4),(5,8),(6,11),(7,10),(9,12)] => 3
[(1,2),(3,4),(5,8),(6,11),(7,9),(10,12)] => 3
[(1,2),(3,4),(5,8),(6,12),(7,11),(9,10)] => 5
[(1,2),(3,4),(5,8),(6,12),(7,10),(9,11)] => 5
[(1,2),(3,4),(5,8),(6,12),(7,9),(10,11)] => 4
[(1,2),(3,4),(5,9),(6,7),(8,10),(11,12)] => 2
[(1,2),(3,4),(5,9),(6,7),(8,11),(10,12)] => 3
[(1,2),(3,4),(5,9),(6,7),(8,12),(10,11)] => 3
[(1,2),(3,4),(5,9),(6,8),(7,12),(10,11)] => 4
[(1,2),(3,4),(5,9),(6,8),(7,11),(10,12)] => 3
[(1,2),(3,4),(5,9),(6,8),(7,10),(11,12)] => 2
[(1,2),(3,4),(5,9),(6,10),(7,12),(8,11)] => 3
[(1,2),(3,4),(5,9),(6,10),(7,8),(11,12)] => 2
[(1,2),(3,4),(5,9),(6,11),(7,12),(8,10)] => 5
[(1,2),(3,4),(5,9),(6,11),(7,10),(8,12)] => 3
[(1,2),(3,4),(5,9),(6,11),(7,8),(10,12)] => 4
[(1,2),(3,4),(5,9),(6,12),(7,11),(8,10)] => 6
[(1,2),(3,4),(5,9),(6,12),(7,10),(8,11)] => 5
[(1,2),(3,4),(5,9),(6,12),(7,8),(10,11)] => 3
[(1,2),(3,4),(5,10),(6,7),(8,11),(9,12)] => 3
[(1,2),(3,4),(5,10),(6,7),(8,12),(9,11)] => 4
[(1,2),(3,4),(5,10),(6,8),(7,12),(9,11)] => 5
[(1,2),(3,4),(5,10),(6,8),(7,11),(9,12)] => 3
[(1,2),(3,4),(5,10),(6,8),(7,9),(11,12)] => 2
[(1,2),(3,4),(5,10),(6,9),(7,12),(8,11)] => 5
[(1,2),(3,4),(5,10),(6,9),(7,11),(8,12)] => 3
[(1,2),(3,4),(5,10),(6,11),(7,12),(8,9)] => 6
[(1,2),(3,4),(5,10),(6,11),(7,9),(8,12)] => 5
[(1,2),(3,4),(5,10),(6,11),(7,8),(9,12)] => 5
[(1,2),(3,4),(5,10),(6,12),(7,11),(8,9)] => 5
[(1,2),(3,4),(5,10),(6,12),(7,9),(8,11)] => 6
[(1,2),(3,4),(5,10),(6,12),(7,8),(9,11)] => 5
[(1,2),(3,4),(5,11),(6,7),(8,9),(10,12)] => 3
[(1,2),(3,4),(5,11),(6,7),(8,10),(9,12)] => 4
[(1,2),(3,4),(5,11),(6,7),(8,12),(9,10)] => 3
[(1,2),(3,4),(5,11),(6,8),(7,12),(9,10)] => 5
[(1,2),(3,4),(5,11),(6,8),(7,10),(9,12)] => 5
[(1,2),(3,4),(5,11),(6,8),(7,9),(10,12)] => 4
[(1,2),(3,4),(5,11),(6,9),(7,12),(8,10)] => 6
[(1,2),(3,4),(5,11),(6,9),(7,10),(8,12)] => 5
[(1,2),(3,4),(5,11),(6,9),(7,8),(10,12)] => 3
[(1,2),(3,4),(5,11),(6,10),(7,12),(8,9)] => 5
[(1,2),(3,4),(5,11),(6,10),(7,9),(8,12)] => 6
[(1,2),(3,4),(5,11),(6,10),(7,8),(9,12)] => 5
[(1,2),(3,4),(5,11),(6,12),(7,10),(8,9)] => 3
[(1,2),(3,4),(5,11),(6,12),(7,9),(8,10)] => 5
[(1,2),(3,4),(5,11),(6,12),(7,8),(9,10)] => 3
[(1,2),(3,4),(5,12),(6,7),(8,10),(9,11)] => 3
[(1,2),(3,4),(5,12),(6,8),(7,11),(9,10)] => 3
[(1,2),(3,4),(5,12),(6,8),(7,10),(9,11)] => 5
[(1,2),(3,4),(5,12),(6,8),(7,9),(10,11)] => 3
[(1,2),(3,4),(5,12),(6,9),(7,11),(8,10)] => 5
[(1,2),(3,4),(5,12),(6,9),(7,10),(8,11)] => 6
[(1,2),(3,4),(5,12),(6,10),(7,11),(8,9)] => 3
[(1,2),(3,4),(5,12),(6,10),(7,9),(8,11)] => 5
[(1,2),(3,4),(5,12),(6,10),(7,8),(9,11)] => 3
[(1,2),(3,4),(5,12),(6,11),(7,9),(8,10)] => 3
[(1,2),(3,5),(4,6),(7,8),(9,12),(10,11)] => 2
[(1,2),(3,5),(4,6),(7,9),(8,12),(10,11)] => 3
[(1,2),(3,5),(4,6),(7,10),(8,9),(11,12)] => 2
[(1,2),(3,5),(4,6),(7,10),(8,12),(9,11)] => 3
[(1,2),(3,5),(4,6),(7,11),(8,9),(10,12)] => 3
[(1,2),(3,5),(4,6),(7,11),(8,10),(9,12)] => 3
[(1,2),(3,5),(4,6),(7,11),(8,12),(9,10)] => 4
[(1,2),(3,5),(4,6),(7,12),(8,9),(10,11)] => 3
[(1,2),(3,5),(4,6),(7,12),(8,10),(9,11)] => 4
[(1,2),(3,5),(4,6),(7,12),(8,11),(9,10)] => 3
[(1,2),(3,5),(4,7),(6,8),(9,12),(10,11)] => 3
[(1,2),(3,5),(4,7),(6,9),(8,12),(10,11)] => 4
[(1,2),(3,5),(4,7),(6,10),(8,9),(11,12)] => 3
[(1,2),(3,5),(4,7),(6,10),(8,12),(9,11)] => 4
[(1,2),(3,5),(4,7),(6,11),(8,9),(10,12)] => 4
[(1,2),(3,5),(4,7),(6,11),(8,10),(9,12)] => 4

-----------------------------------------------------------------------------
Created: Apr 23, 2017 at 09:06 by Martin Rubey

-----------------------------------------------------------------------------
Last Updated: Apr 23, 2017 at 10:51 by Martin Rubey