Values
([],1) => ([],1) => ([],1) => 1
([],2) => ([],2) => ([(0,1)],2) => 1
([],3) => ([],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(1,2)],3) => ([(1,2)],3) => ([(0,2),(1,2)],3) => 1
([],4) => ([],4) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
([(2,3)],4) => ([(2,3)],4) => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 1
([(1,3),(2,3)],4) => ([(1,2),(1,3),(2,3)],4) => ([(0,3),(1,3),(2,3)],4) => 2
([(0,3),(1,2)],4) => ([(0,3),(1,2)],4) => ([(0,2),(0,3),(1,2),(1,3)],4) => 2
([(1,2),(1,3),(2,3)],4) => ([(1,2),(1,3),(2,3)],4) => ([(0,3),(1,3),(2,3)],4) => 2
([],5) => ([],5) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
([(3,4)],5) => ([(3,4)],5) => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
([(2,4),(3,4)],5) => ([(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
([(1,4),(2,4),(3,4)],5) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => 3
([(1,4),(2,3)],5) => ([(1,4),(2,3)],5) => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => 2
([(1,4),(2,3),(3,4)],5) => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 2
([(0,1),(2,4),(3,4)],5) => ([(0,1),(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => 2
([(2,3),(2,4),(3,4)],5) => ([(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
([(1,4),(2,3),(2,4),(3,4)],5) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => 3
([(1,3),(1,4),(2,3),(2,4)],5) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => 3
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => 3
([(0,1),(2,3),(2,4),(3,4)],5) => ([(0,1),(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => 3
([],6) => ([],6) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
([(4,5)],6) => ([(4,5)],6) => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(3,5),(4,5)],6) => ([(3,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
([(2,5),(3,5),(4,5)],6) => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
([(1,5),(2,5),(3,5),(4,5)],6) => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 4
([(2,5),(3,4)],6) => ([(2,5),(3,4)],6) => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
([(2,5),(3,4),(4,5)],6) => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
([(1,2),(3,5),(4,5)],6) => ([(1,2),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 2
([(3,4),(3,5),(4,5)],6) => ([(3,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
([(1,5),(2,5),(3,4),(4,5)],6) => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
([(0,1),(2,5),(3,5),(4,5)],6) => ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 3
([(2,5),(3,4),(3,5),(4,5)],6) => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 4
([(2,4),(2,5),(3,4),(3,5)],6) => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
([(0,5),(1,5),(2,4),(3,4)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => 4
([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 3
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 3
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 4
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 4
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 4
([(0,5),(1,4),(2,3)],6) => ([(0,5),(1,4),(2,3)],6) => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 3
([(1,5),(2,4),(3,4),(3,5)],6) => ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(0,1),(2,5),(3,4),(4,5)],6) => ([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => 2
([(1,2),(3,4),(3,5),(4,5)],6) => ([(1,2),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 2
([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 3
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 4
([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 4
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 4
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 3
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 4
([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => ([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => 1
([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 3
([(0,5),(1,5),(2,3),(2,4),(3,4)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => 4
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 3
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 4
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 4
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 4
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 4
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 4
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => 4
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 3
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 4
([],7) => ([],7) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 6
([(5,6)],7) => ([(5,6)],7) => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
([(4,6),(5,6)],7) => ([(4,5),(4,6),(5,6)],7) => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
([(3,6),(4,6),(5,6)],7) => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
([(2,6),(3,6),(4,6),(5,6)],7) => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 5
([(3,6),(4,5)],7) => ([(3,6),(4,5)],7) => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
([(3,6),(4,5),(5,6)],7) => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
([(2,3),(4,6),(5,6)],7) => ([(2,3),(4,5),(4,6),(5,6)],7) => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
([(4,5),(4,6),(5,6)],7) => ([(4,5),(4,6),(5,6)],7) => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
([(2,6),(3,6),(4,5),(5,6)],7) => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
([(1,2),(3,6),(4,6),(5,6)],7) => ([(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => 3
([(3,6),(4,5),(4,6),(5,6)],7) => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
([(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
([(0,1),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,1),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 4
([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 5
([(3,5),(3,6),(4,5),(4,6)],7) => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
([(1,6),(2,6),(3,5),(4,5)],7) => ([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7) => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,6),(4,6),(5,6)],7) => 4
([(2,6),(3,4),(3,5),(4,6),(5,6)],7) => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
([(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(1,4),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
([(0,6),(1,6),(2,6),(3,5),(4,5)],7) => ([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => 3
([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
([(2,6),(3,5),(4,5),(4,6),(5,6)],7) => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
([(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => 2
([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 5
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => ([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => 2
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 4
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 4
>>> Load all 270 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The multiplicity of the largest distance Laplacian eigenvalue in a connected graph.
The distance Laplacian of a graph is the (symmetric) matrix with row and column sums 0, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue.
For example, the cycle on four vertices has distance Laplacian
(4−1−2−1−14−1−2−2−14−1−1−2−14).
Its eigenvalues are 0,4,4,6, so the statistic is 1.
The path on four vertices has eigenvalues 0,4.7…,6,9.2… and therefore also statistic 1.
The graphs with statistic n−1, n−2 and n−3 have been characterised, see [1].
The distance Laplacian of a graph is the (symmetric) matrix with row and column sums 0, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue.
For example, the cycle on four vertices has distance Laplacian
(4−1−2−1−14−1−2−2−14−1−1−2−14).
Its eigenvalues are 0,4,4,6, so the statistic is 1.
The path on four vertices has eigenvalues 0,4.7…,6,9.2… and therefore also statistic 1.
The graphs with statistic n−1, n−2 and n−3 have been characterised, see [1].
Map
square
Description
The square of a graph.
For a graph G, the square is the graph on the same set of vertices where two vertices are joined by an edge if there is a path in G of length at most two between the two.
In other words, a vertex gets joint to its 2-neighbourhood in G.
For a graph G, the square is the graph on the same set of vertices where two vertices are joined by an edge if there is a path in G of length at most two between the two.
In other words, a vertex gets joint to its 2-neighbourhood in G.
Map
complement
Description
The complement of a graph.
The complement of a graph has the same vertices, but exactly those edges that are not in the original graph.
The complement of a graph has the same vertices, but exactly those edges that are not in the original graph.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!