Identifier
Values
[1] => [[1]] => [1] => [1] => 0
[2] => [[1,2]] => [2] => [2] => 0
[1,1] => [[1],[2]] => [1,1] => [1,1] => 0
[3] => [[1,2,3]] => [3] => [3] => 0
[2,1] => [[1,2],[3]] => [2,1] => [2,1] => 1
[1,1,1] => [[1],[2],[3]] => [1,1,1] => [1,1,1] => 0
[4] => [[1,2,3,4]] => [4] => [4] => 0
[3,1] => [[1,2,3],[4]] => [3,1] => [3,1] => 1
[2,2] => [[1,2],[3,4]] => [2,2] => [2,2] => 0
[2,1,1] => [[1,2],[3],[4]] => [2,1,1] => [1,2,1] => 2
[1,1,1,1] => [[1],[2],[3],[4]] => [1,1,1,1] => [1,1,1,1] => 0
[5] => [[1,2,3,4,5]] => [5] => [5] => 0
[4,1] => [[1,2,3,4],[5]] => [4,1] => [4,1] => 1
[3,2] => [[1,2,3],[4,5]] => [3,2] => [3,2] => 1
[3,1,1] => [[1,2,3],[4],[5]] => [3,1,1] => [1,3,1] => 2
[2,2,1] => [[1,2],[3,4],[5]] => [2,2,1] => [2,2,1] => 2
[2,1,1,1] => [[1,2],[3],[4],[5]] => [2,1,1,1] => [1,1,2,1] => 3
[1,1,1,1,1] => [[1],[2],[3],[4],[5]] => [1,1,1,1,1] => [1,1,1,1,1] => 0
[6] => [[1,2,3,4,5,6]] => [6] => [6] => 0
[5,1] => [[1,2,3,4,5],[6]] => [5,1] => [5,1] => 1
[4,2] => [[1,2,3,4],[5,6]] => [4,2] => [4,2] => 1
[4,1,1] => [[1,2,3,4],[5],[6]] => [4,1,1] => [1,4,1] => 2
[3,3] => [[1,2,3],[4,5,6]] => [3,3] => [3,3] => 0
[3,2,1] => [[1,2,3],[4,5],[6]] => [3,2,1] => [3,2,1] => 3
[3,1,1,1] => [[1,2,3],[4],[5],[6]] => [3,1,1,1] => [1,1,3,1] => 3
[2,2,2] => [[1,2],[3,4],[5,6]] => [2,2,2] => [2,2,2] => 0
[2,2,1,1] => [[1,2],[3,4],[5],[6]] => [2,2,1,1] => [2,1,2,1] => 4
[2,1,1,1,1] => [[1,2],[3],[4],[5],[6]] => [2,1,1,1,1] => [1,1,1,2,1] => 4
[1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6]] => [1,1,1,1,1,1] => [1,1,1,1,1,1] => 0
[7] => [[1,2,3,4,5,6,7]] => [7] => [7] => 0
[6,1] => [[1,2,3,4,5,6],[7]] => [6,1] => [6,1] => 1
[5,2] => [[1,2,3,4,5],[6,7]] => [5,2] => [5,2] => 1
[5,1,1] => [[1,2,3,4,5],[6],[7]] => [5,1,1] => [1,5,1] => 2
[4,3] => [[1,2,3,4],[5,6,7]] => [4,3] => [4,3] => 1
[4,2,1] => [[1,2,3,4],[5,6],[7]] => [4,2,1] => [4,2,1] => 3
[4,1,1,1] => [[1,2,3,4],[5],[6],[7]] => [4,1,1,1] => [1,1,4,1] => 3
[3,3,1] => [[1,2,3],[4,5,6],[7]] => [3,3,1] => [3,3,1] => 2
[3,2,2] => [[1,2,3],[4,5],[6,7]] => [3,2,2] => [2,3,2] => 2
[3,2,1,1] => [[1,2,3],[4,5],[6],[7]] => [3,2,1,1] => [1,3,2,1] => 5
[3,1,1,1,1] => [[1,2,3],[4],[5],[6],[7]] => [3,1,1,1,1] => [1,1,1,3,1] => 4
[2,2,2,1] => [[1,2],[3,4],[5,6],[7]] => [2,2,2,1] => [2,2,2,1] => 3
[2,2,1,1,1] => [[1,2],[3,4],[5],[6],[7]] => [2,2,1,1,1] => [1,2,1,2,1] => 6
[2,1,1,1,1,1] => [[1,2],[3],[4],[5],[6],[7]] => [2,1,1,1,1,1] => [1,1,1,1,2,1] => 5
[1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7]] => [1,1,1,1,1,1,1] => [1,1,1,1,1,1,1] => 0
[8] => [[1,2,3,4,5,6,7,8]] => [8] => [8] => 0
[7,1] => [[1,2,3,4,5,6,7],[8]] => [7,1] => [7,1] => 1
[6,2] => [[1,2,3,4,5,6],[7,8]] => [6,2] => [6,2] => 1
[6,1,1] => [[1,2,3,4,5,6],[7],[8]] => [6,1,1] => [1,6,1] => 2
[5,3] => [[1,2,3,4,5],[6,7,8]] => [5,3] => [5,3] => 1
[5,2,1] => [[1,2,3,4,5],[6,7],[8]] => [5,2,1] => [5,2,1] => 3
[5,1,1,1] => [[1,2,3,4,5],[6],[7],[8]] => [5,1,1,1] => [1,1,5,1] => 3
[4,4] => [[1,2,3,4],[5,6,7,8]] => [4,4] => [4,4] => 0
[4,3,1] => [[1,2,3,4],[5,6,7],[8]] => [4,3,1] => [4,3,1] => 3
[4,2,2] => [[1,2,3,4],[5,6],[7,8]] => [4,2,2] => [2,4,2] => 2
[4,2,1,1] => [[1,2,3,4],[5,6],[7],[8]] => [4,2,1,1] => [1,4,2,1] => 5
[4,1,1,1,1] => [[1,2,3,4],[5],[6],[7],[8]] => [4,1,1,1,1] => [1,1,1,4,1] => 4
[3,3,2] => [[1,2,3],[4,5,6],[7,8]] => [3,3,2] => [3,3,2] => 2
[3,3,1,1] => [[1,2,3],[4,5,6],[7],[8]] => [3,3,1,1] => [3,1,3,1] => 4
[3,2,2,1] => [[1,2,3],[4,5],[6,7],[8]] => [3,2,2,1] => [2,3,2,1] => 5
[3,2,1,1,1] => [[1,2,3],[4,5],[6],[7],[8]] => [3,2,1,1,1] => [1,1,3,2,1] => 7
[3,1,1,1,1,1] => [[1,2,3],[4],[5],[6],[7],[8]] => [3,1,1,1,1,1] => [1,1,1,1,3,1] => 5
[2,2,2,2] => [[1,2],[3,4],[5,6],[7,8]] => [2,2,2,2] => [2,2,2,2] => 0
[2,2,2,1,1] => [[1,2],[3,4],[5,6],[7],[8]] => [2,2,2,1,1] => [2,2,1,2,1] => 6
[2,2,1,1,1,1] => [[1,2],[3,4],[5],[6],[7],[8]] => [2,2,1,1,1,1] => [1,1,2,1,2,1] => 8
[2,1,1,1,1,1,1] => [[1,2],[3],[4],[5],[6],[7],[8]] => [2,1,1,1,1,1,1] => [1,1,1,1,1,2,1] => 6
[1,1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7],[8]] => [1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1] => 0
[9] => [[1,2,3,4,5,6,7,8,9]] => [9] => [9] => 0
[8,1] => [[1,2,3,4,5,6,7,8],[9]] => [8,1] => [8,1] => 1
[7,2] => [[1,2,3,4,5,6,7],[8,9]] => [7,2] => [7,2] => 1
[7,1,1] => [[1,2,3,4,5,6,7],[8],[9]] => [7,1,1] => [1,7,1] => 2
[6,3] => [[1,2,3,4,5,6],[7,8,9]] => [6,3] => [6,3] => 1
[6,2,1] => [[1,2,3,4,5,6],[7,8],[9]] => [6,2,1] => [6,2,1] => 3
[6,1,1,1] => [[1,2,3,4,5,6],[7],[8],[9]] => [6,1,1,1] => [1,1,6,1] => 3
[5,4] => [[1,2,3,4,5],[6,7,8,9]] => [5,4] => [5,4] => 1
[5,3,1] => [[1,2,3,4,5],[6,7,8],[9]] => [5,3,1] => [5,3,1] => 3
[5,2,2] => [[1,2,3,4,5],[6,7],[8,9]] => [5,2,2] => [2,5,2] => 2
[5,2,1,1] => [[1,2,3,4,5],[6,7],[8],[9]] => [5,2,1,1] => [1,5,2,1] => 5
[5,1,1,1,1] => [[1,2,3,4,5],[6],[7],[8],[9]] => [5,1,1,1,1] => [1,1,1,5,1] => 4
[4,4,1] => [[1,2,3,4],[5,6,7,8],[9]] => [4,4,1] => [4,4,1] => 2
[4,3,2] => [[1,2,3,4],[5,6,7],[8,9]] => [4,3,2] => [4,3,2] => 3
[4,3,1,1] => [[1,2,3,4],[5,6,7],[8],[9]] => [4,3,1,1] => [1,4,3,1] => 5
[4,2,2,1] => [[1,2,3,4],[5,6],[7,8],[9]] => [4,2,2,1] => [2,4,2,1] => 5
[4,2,1,1,1] => [[1,2,3,4],[5,6],[7],[8],[9]] => [4,2,1,1,1] => [1,1,4,2,1] => 7
[4,1,1,1,1,1] => [[1,2,3,4],[5],[6],[7],[8],[9]] => [4,1,1,1,1,1] => [1,1,1,1,4,1] => 5
[3,3,3] => [[1,2,3],[4,5,6],[7,8,9]] => [3,3,3] => [3,3,3] => 0
[3,3,2,1] => [[1,2,3],[4,5,6],[7,8],[9]] => [3,3,2,1] => [3,3,2,1] => 5
[3,3,1,1,1] => [[1,2,3],[4,5,6],[7],[8],[9]] => [3,3,1,1,1] => [1,3,1,3,1] => 6
[3,2,2,2] => [[1,2,3],[4,5],[6,7],[8,9]] => [3,2,2,2] => [2,2,3,2] => 3
[3,2,2,1,1] => [[1,2,3],[4,5],[6,7],[8],[9]] => [3,2,2,1,1] => [2,1,3,2,1] => 8
[3,2,1,1,1,1] => [[1,2,3],[4,5],[6],[7],[8],[9]] => [3,2,1,1,1,1] => [1,1,1,3,2,1] => 9
[3,1,1,1,1,1,1] => [[1,2,3],[4],[5],[6],[7],[8],[9]] => [3,1,1,1,1,1,1] => [1,1,1,1,1,3,1] => 6
[2,2,2,2,1] => [[1,2],[3,4],[5,6],[7,8],[9]] => [2,2,2,2,1] => [2,2,2,2,1] => 4
[2,2,2,1,1,1] => [[1,2],[3,4],[5,6],[7],[8],[9]] => [2,2,2,1,1,1] => [2,1,2,1,2,1] => 9
[2,2,1,1,1,1,1] => [[1,2],[3,4],[5],[6],[7],[8],[9]] => [2,2,1,1,1,1,1] => [1,1,1,2,1,2,1] => 10
[2,1,1,1,1,1,1,1] => [[1,2],[3],[4],[5],[6],[7],[8],[9]] => [2,1,1,1,1,1,1,1] => [1,1,1,1,1,1,2,1] => 7
[1,1,1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7],[8],[9]] => [1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1] => 0
[10] => [[1,2,3,4,5,6,7,8,9,10]] => [10] => [10] => 0
[9,1] => [[1,2,3,4,5,6,7,8,9],[10]] => [9,1] => [9,1] => 1
[8,2] => [[1,2,3,4,5,6,7,8],[9,10]] => [8,2] => [8,2] => 1
[8,1,1] => [[1,2,3,4,5,6,7,8],[9],[10]] => [8,1,1] => [1,8,1] => 2
[7,3] => [[1,2,3,4,5,6,7],[8,9,10]] => [7,3] => [7,3] => 1
>>> Load all 117 entries. <<<
[7,2,1] => [[1,2,3,4,5,6,7],[8,9],[10]] => [7,2,1] => [7,2,1] => 3
[7,1,1,1] => [[1,2,3,4,5,6,7],[8],[9],[10]] => [7,1,1,1] => [1,1,7,1] => 3
[6,4] => [[1,2,3,4,5,6],[7,8,9,10]] => [6,4] => [6,4] => 1
[6,3,1] => [[1,2,3,4,5,6],[7,8,9],[10]] => [6,3,1] => [6,3,1] => 3
[6,2,1,1] => [[1,2,3,4,5,6],[7,8],[9],[10]] => [6,2,1,1] => [1,6,2,1] => 5
[5,5] => [[1,2,3,4,5],[6,7,8,9,10]] => [5,5] => [5,5] => 0
[5,4,1] => [[1,2,3,4,5],[6,7,8,9],[10]] => [5,4,1] => [5,4,1] => 3
[5,3,2] => [[1,2,3,4,5],[6,7,8],[9,10]] => [5,3,2] => [5,3,2] => 3
[5,3,1,1] => [[1,2,3,4,5],[6,7,8],[9],[10]] => [5,3,1,1] => [1,5,3,1] => 5
[5,1,1,1,1,1] => [[1,2,3,4,5],[6],[7],[8],[9],[10]] => [5,1,1,1,1,1] => [1,1,1,1,5,1] => 5
[4,4,2] => [[1,2,3,4],[5,6,7,8],[9,10]] => [4,4,2] => [4,4,2] => 2
[4,3,2,1] => [[1,2,3,4],[5,6,7],[8,9],[10]] => [4,3,2,1] => [4,3,2,1] => 6
[3,3,3,1] => [[1,2,3],[4,5,6],[7,8,9],[10]] => [3,3,3,1] => [3,3,3,1] => 3
[2,2,2,2,2] => [[1,2],[3,4],[5,6],[7,8],[9,10]] => [2,2,2,2,2] => [2,2,2,2,2] => 0
[2,2,2,2,1,1] => [[1,2],[3,4],[5,6],[7,8],[9],[10]] => [2,2,2,2,1,1] => [2,2,2,1,2,1] => 8
[1,1,1,1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10]] => [1,1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1,1] => 0
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The major index of a composition regarded as a word.
This is the sum of the positions of the descents of the composition.
For the statistic which interprets the composition as a descent set, see St000008The major index of the composition..
Map
inverse Foata bijection
Description
The inverse of Foata's bijection.
See Mp00314Foata bijection.
Map
initial tableau
Description
Sends an integer partition to the standard tableau obtained by filling the numbers $1$ through $n$ row by row.
Map
horizontal strip sizes
Description
The composition of horizontal strip sizes.
We associate to a standard Young tableau $T$ the composition $(c_1,\dots,c_k)$, such that $k$ is minimal and the numbers $c_1+\dots+c_i + 1,\dots,c_1+\dots+c_{i+1}$ form a horizontal strip in $T$ for all $i$.