Identifier
-
Mp00042:
Integer partitions
—initial tableau⟶
Standard tableaux
Mp00207: Standard tableaux —horizontal strip sizes⟶ Integer compositions
Mp00315: Integer compositions —inverse Foata bijection⟶ Integer compositions
St000769: Integer compositions ⟶ ℤ
Values
[1] => [[1]] => [1] => [1] => 0
[2] => [[1,2]] => [2] => [2] => 0
[1,1] => [[1],[2]] => [1,1] => [1,1] => 0
[3] => [[1,2,3]] => [3] => [3] => 0
[2,1] => [[1,2],[3]] => [2,1] => [2,1] => 1
[1,1,1] => [[1],[2],[3]] => [1,1,1] => [1,1,1] => 0
[4] => [[1,2,3,4]] => [4] => [4] => 0
[3,1] => [[1,2,3],[4]] => [3,1] => [3,1] => 1
[2,2] => [[1,2],[3,4]] => [2,2] => [2,2] => 0
[2,1,1] => [[1,2],[3],[4]] => [2,1,1] => [1,2,1] => 2
[1,1,1,1] => [[1],[2],[3],[4]] => [1,1,1,1] => [1,1,1,1] => 0
[5] => [[1,2,3,4,5]] => [5] => [5] => 0
[4,1] => [[1,2,3,4],[5]] => [4,1] => [4,1] => 1
[3,2] => [[1,2,3],[4,5]] => [3,2] => [3,2] => 1
[3,1,1] => [[1,2,3],[4],[5]] => [3,1,1] => [1,3,1] => 2
[2,2,1] => [[1,2],[3,4],[5]] => [2,2,1] => [2,2,1] => 2
[2,1,1,1] => [[1,2],[3],[4],[5]] => [2,1,1,1] => [1,1,2,1] => 3
[1,1,1,1,1] => [[1],[2],[3],[4],[5]] => [1,1,1,1,1] => [1,1,1,1,1] => 0
[6] => [[1,2,3,4,5,6]] => [6] => [6] => 0
[5,1] => [[1,2,3,4,5],[6]] => [5,1] => [5,1] => 1
[4,2] => [[1,2,3,4],[5,6]] => [4,2] => [4,2] => 1
[4,1,1] => [[1,2,3,4],[5],[6]] => [4,1,1] => [1,4,1] => 2
[3,3] => [[1,2,3],[4,5,6]] => [3,3] => [3,3] => 0
[3,2,1] => [[1,2,3],[4,5],[6]] => [3,2,1] => [3,2,1] => 3
[3,1,1,1] => [[1,2,3],[4],[5],[6]] => [3,1,1,1] => [1,1,3,1] => 3
[2,2,2] => [[1,2],[3,4],[5,6]] => [2,2,2] => [2,2,2] => 0
[2,2,1,1] => [[1,2],[3,4],[5],[6]] => [2,2,1,1] => [2,1,2,1] => 4
[2,1,1,1,1] => [[1,2],[3],[4],[5],[6]] => [2,1,1,1,1] => [1,1,1,2,1] => 4
[1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6]] => [1,1,1,1,1,1] => [1,1,1,1,1,1] => 0
[7] => [[1,2,3,4,5,6,7]] => [7] => [7] => 0
[6,1] => [[1,2,3,4,5,6],[7]] => [6,1] => [6,1] => 1
[5,2] => [[1,2,3,4,5],[6,7]] => [5,2] => [5,2] => 1
[5,1,1] => [[1,2,3,4,5],[6],[7]] => [5,1,1] => [1,5,1] => 2
[4,3] => [[1,2,3,4],[5,6,7]] => [4,3] => [4,3] => 1
[4,2,1] => [[1,2,3,4],[5,6],[7]] => [4,2,1] => [4,2,1] => 3
[4,1,1,1] => [[1,2,3,4],[5],[6],[7]] => [4,1,1,1] => [1,1,4,1] => 3
[3,3,1] => [[1,2,3],[4,5,6],[7]] => [3,3,1] => [3,3,1] => 2
[3,2,2] => [[1,2,3],[4,5],[6,7]] => [3,2,2] => [2,3,2] => 2
[3,2,1,1] => [[1,2,3],[4,5],[6],[7]] => [3,2,1,1] => [1,3,2,1] => 5
[3,1,1,1,1] => [[1,2,3],[4],[5],[6],[7]] => [3,1,1,1,1] => [1,1,1,3,1] => 4
[2,2,2,1] => [[1,2],[3,4],[5,6],[7]] => [2,2,2,1] => [2,2,2,1] => 3
[2,2,1,1,1] => [[1,2],[3,4],[5],[6],[7]] => [2,2,1,1,1] => [1,2,1,2,1] => 6
[2,1,1,1,1,1] => [[1,2],[3],[4],[5],[6],[7]] => [2,1,1,1,1,1] => [1,1,1,1,2,1] => 5
[1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7]] => [1,1,1,1,1,1,1] => [1,1,1,1,1,1,1] => 0
[8] => [[1,2,3,4,5,6,7,8]] => [8] => [8] => 0
[7,1] => [[1,2,3,4,5,6,7],[8]] => [7,1] => [7,1] => 1
[6,2] => [[1,2,3,4,5,6],[7,8]] => [6,2] => [6,2] => 1
[6,1,1] => [[1,2,3,4,5,6],[7],[8]] => [6,1,1] => [1,6,1] => 2
[5,3] => [[1,2,3,4,5],[6,7,8]] => [5,3] => [5,3] => 1
[5,2,1] => [[1,2,3,4,5],[6,7],[8]] => [5,2,1] => [5,2,1] => 3
[5,1,1,1] => [[1,2,3,4,5],[6],[7],[8]] => [5,1,1,1] => [1,1,5,1] => 3
[4,4] => [[1,2,3,4],[5,6,7,8]] => [4,4] => [4,4] => 0
[4,3,1] => [[1,2,3,4],[5,6,7],[8]] => [4,3,1] => [4,3,1] => 3
[4,2,2] => [[1,2,3,4],[5,6],[7,8]] => [4,2,2] => [2,4,2] => 2
[4,2,1,1] => [[1,2,3,4],[5,6],[7],[8]] => [4,2,1,1] => [1,4,2,1] => 5
[4,1,1,1,1] => [[1,2,3,4],[5],[6],[7],[8]] => [4,1,1,1,1] => [1,1,1,4,1] => 4
[3,3,2] => [[1,2,3],[4,5,6],[7,8]] => [3,3,2] => [3,3,2] => 2
[3,3,1,1] => [[1,2,3],[4,5,6],[7],[8]] => [3,3,1,1] => [3,1,3,1] => 4
[3,2,2,1] => [[1,2,3],[4,5],[6,7],[8]] => [3,2,2,1] => [2,3,2,1] => 5
[3,2,1,1,1] => [[1,2,3],[4,5],[6],[7],[8]] => [3,2,1,1,1] => [1,1,3,2,1] => 7
[3,1,1,1,1,1] => [[1,2,3],[4],[5],[6],[7],[8]] => [3,1,1,1,1,1] => [1,1,1,1,3,1] => 5
[2,2,2,2] => [[1,2],[3,4],[5,6],[7,8]] => [2,2,2,2] => [2,2,2,2] => 0
[2,2,2,1,1] => [[1,2],[3,4],[5,6],[7],[8]] => [2,2,2,1,1] => [2,2,1,2,1] => 6
[2,2,1,1,1,1] => [[1,2],[3,4],[5],[6],[7],[8]] => [2,2,1,1,1,1] => [1,1,2,1,2,1] => 8
[2,1,1,1,1,1,1] => [[1,2],[3],[4],[5],[6],[7],[8]] => [2,1,1,1,1,1,1] => [1,1,1,1,1,2,1] => 6
[1,1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7],[8]] => [1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1] => 0
[9] => [[1,2,3,4,5,6,7,8,9]] => [9] => [9] => 0
[8,1] => [[1,2,3,4,5,6,7,8],[9]] => [8,1] => [8,1] => 1
[7,2] => [[1,2,3,4,5,6,7],[8,9]] => [7,2] => [7,2] => 1
[7,1,1] => [[1,2,3,4,5,6,7],[8],[9]] => [7,1,1] => [1,7,1] => 2
[6,3] => [[1,2,3,4,5,6],[7,8,9]] => [6,3] => [6,3] => 1
[6,2,1] => [[1,2,3,4,5,6],[7,8],[9]] => [6,2,1] => [6,2,1] => 3
[6,1,1,1] => [[1,2,3,4,5,6],[7],[8],[9]] => [6,1,1,1] => [1,1,6,1] => 3
[5,4] => [[1,2,3,4,5],[6,7,8,9]] => [5,4] => [5,4] => 1
[5,3,1] => [[1,2,3,4,5],[6,7,8],[9]] => [5,3,1] => [5,3,1] => 3
[5,2,2] => [[1,2,3,4,5],[6,7],[8,9]] => [5,2,2] => [2,5,2] => 2
[5,2,1,1] => [[1,2,3,4,5],[6,7],[8],[9]] => [5,2,1,1] => [1,5,2,1] => 5
[5,1,1,1,1] => [[1,2,3,4,5],[6],[7],[8],[9]] => [5,1,1,1,1] => [1,1,1,5,1] => 4
[4,4,1] => [[1,2,3,4],[5,6,7,8],[9]] => [4,4,1] => [4,4,1] => 2
[4,3,2] => [[1,2,3,4],[5,6,7],[8,9]] => [4,3,2] => [4,3,2] => 3
[4,3,1,1] => [[1,2,3,4],[5,6,7],[8],[9]] => [4,3,1,1] => [1,4,3,1] => 5
[4,2,2,1] => [[1,2,3,4],[5,6],[7,8],[9]] => [4,2,2,1] => [2,4,2,1] => 5
[4,2,1,1,1] => [[1,2,3,4],[5,6],[7],[8],[9]] => [4,2,1,1,1] => [1,1,4,2,1] => 7
[4,1,1,1,1,1] => [[1,2,3,4],[5],[6],[7],[8],[9]] => [4,1,1,1,1,1] => [1,1,1,1,4,1] => 5
[3,3,3] => [[1,2,3],[4,5,6],[7,8,9]] => [3,3,3] => [3,3,3] => 0
[3,3,2,1] => [[1,2,3],[4,5,6],[7,8],[9]] => [3,3,2,1] => [3,3,2,1] => 5
[3,3,1,1,1] => [[1,2,3],[4,5,6],[7],[8],[9]] => [3,3,1,1,1] => [1,3,1,3,1] => 6
[3,2,2,2] => [[1,2,3],[4,5],[6,7],[8,9]] => [3,2,2,2] => [2,2,3,2] => 3
[3,2,2,1,1] => [[1,2,3],[4,5],[6,7],[8],[9]] => [3,2,2,1,1] => [2,1,3,2,1] => 8
[3,2,1,1,1,1] => [[1,2,3],[4,5],[6],[7],[8],[9]] => [3,2,1,1,1,1] => [1,1,1,3,2,1] => 9
[3,1,1,1,1,1,1] => [[1,2,3],[4],[5],[6],[7],[8],[9]] => [3,1,1,1,1,1,1] => [1,1,1,1,1,3,1] => 6
[2,2,2,2,1] => [[1,2],[3,4],[5,6],[7,8],[9]] => [2,2,2,2,1] => [2,2,2,2,1] => 4
[2,2,2,1,1,1] => [[1,2],[3,4],[5,6],[7],[8],[9]] => [2,2,2,1,1,1] => [2,1,2,1,2,1] => 9
[2,2,1,1,1,1,1] => [[1,2],[3,4],[5],[6],[7],[8],[9]] => [2,2,1,1,1,1,1] => [1,1,1,2,1,2,1] => 10
[2,1,1,1,1,1,1,1] => [[1,2],[3],[4],[5],[6],[7],[8],[9]] => [2,1,1,1,1,1,1,1] => [1,1,1,1,1,1,2,1] => 7
[1,1,1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7],[8],[9]] => [1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1] => 0
[10] => [[1,2,3,4,5,6,7,8,9,10]] => [10] => [10] => 0
[9,1] => [[1,2,3,4,5,6,7,8,9],[10]] => [9,1] => [9,1] => 1
[8,2] => [[1,2,3,4,5,6,7,8],[9,10]] => [8,2] => [8,2] => 1
[8,1,1] => [[1,2,3,4,5,6,7,8],[9],[10]] => [8,1,1] => [1,8,1] => 2
[7,3] => [[1,2,3,4,5,6,7],[8,9,10]] => [7,3] => [7,3] => 1
>>> Load all 117 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The major index of a composition regarded as a word.
This is the sum of the positions of the descents of the composition.
For the statistic which interprets the composition as a descent set, see St000008The major index of the composition..
This is the sum of the positions of the descents of the composition.
For the statistic which interprets the composition as a descent set, see St000008The major index of the composition..
Map
horizontal strip sizes
Description
The composition of horizontal strip sizes.
We associate to a standard Young tableau $T$ the composition $(c_1,\dots,c_k)$, such that $k$ is minimal and the numbers $c_1+\dots+c_i + 1,\dots,c_1+\dots+c_{i+1}$ form a horizontal strip in $T$ for all $i$.
We associate to a standard Young tableau $T$ the composition $(c_1,\dots,c_k)$, such that $k$ is minimal and the numbers $c_1+\dots+c_i + 1,\dots,c_1+\dots+c_{i+1}$ form a horizontal strip in $T$ for all $i$.
Map
inverse Foata bijection
Description
The inverse of Foata's bijection.
See Mp00314Foata bijection.
See Mp00314Foata bijection.
Map
initial tableau
Description
Sends an integer partition to the standard tableau obtained by filling the numbers $1$ through $n$ row by row.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!