Identifier
-
Mp00314:
Integer compositions
—Foata bijection⟶
Integer compositions
St000766: Integer compositions ⟶ ℤ
Values
=>
[1]=>[1]=>0
[1,1]=>[1,1]=>0
[2]=>[2]=>0
[1,1,1]=>[1,1,1]=>0
[1,2]=>[1,2]=>0
[2,1]=>[2,1]=>1
[3]=>[3]=>0
[1,1,1,1]=>[1,1,1,1]=>0
[1,1,2]=>[1,1,2]=>0
[1,2,1]=>[2,1,1]=>2
[1,3]=>[1,3]=>0
[2,1,1]=>[1,2,1]=>1
[2,2]=>[2,2]=>0
[3,1]=>[3,1]=>1
[4]=>[4]=>0
[1,1,1,1,1]=>[1,1,1,1,1]=>0
[1,1,1,2]=>[1,1,1,2]=>0
[1,1,2,1]=>[2,1,1,1]=>3
[1,1,3]=>[1,1,3]=>0
[1,2,1,1]=>[1,2,1,1]=>2
[1,2,2]=>[1,2,2]=>0
[1,3,1]=>[3,1,1]=>2
[1,4]=>[1,4]=>0
[2,1,1,1]=>[1,1,2,1]=>1
[2,1,2]=>[2,1,2]=>1
[2,2,1]=>[2,2,1]=>2
[2,3]=>[2,3]=>0
[3,1,1]=>[1,3,1]=>1
[3,2]=>[3,2]=>1
[4,1]=>[4,1]=>1
[5]=>[5]=>0
[1,1,1,1,1,1]=>[1,1,1,1,1,1]=>0
[1,1,1,1,2]=>[1,1,1,1,2]=>0
[1,1,1,2,1]=>[2,1,1,1,1]=>4
[1,1,1,3]=>[1,1,1,3]=>0
[1,1,2,1,1]=>[1,2,1,1,1]=>3
[1,1,2,2]=>[1,1,2,2]=>0
[1,1,3,1]=>[3,1,1,1]=>3
[1,1,4]=>[1,1,4]=>0
[1,2,1,1,1]=>[1,1,2,1,1]=>2
[1,2,1,2]=>[2,1,1,2]=>2
[1,2,2,1]=>[2,1,2,1]=>3
[1,2,3]=>[1,2,3]=>0
[1,3,1,1]=>[1,3,1,1]=>2
[1,3,2]=>[3,1,2]=>2
[1,4,1]=>[4,1,1]=>2
[1,5]=>[1,5]=>0
[2,1,1,1,1]=>[1,1,1,2,1]=>1
[2,1,1,2]=>[1,2,1,2]=>1
[2,1,2,1]=>[2,2,1,1]=>4
[2,1,3]=>[2,1,3]=>1
[2,2,1,1]=>[1,2,2,1]=>2
[2,2,2]=>[2,2,2]=>0
[2,3,1]=>[2,3,1]=>2
[2,4]=>[2,4]=>0
[3,1,1,1]=>[1,1,3,1]=>1
[3,1,2]=>[1,3,2]=>1
[3,2,1]=>[3,2,1]=>3
[3,3]=>[3,3]=>0
[4,1,1]=>[1,4,1]=>1
[4,2]=>[4,2]=>1
[5,1]=>[5,1]=>1
[6]=>[6]=>0
[1,1,1,1,1,1,1]=>[1,1,1,1,1,1,1]=>0
[1,1,1,1,1,2]=>[1,1,1,1,1,2]=>0
[1,1,1,1,2,1]=>[2,1,1,1,1,1]=>5
[1,1,1,1,3]=>[1,1,1,1,3]=>0
[1,1,1,2,1,1]=>[1,2,1,1,1,1]=>4
[1,1,1,2,2]=>[1,1,1,2,2]=>0
[1,1,1,3,1]=>[3,1,1,1,1]=>4
[1,1,1,4]=>[1,1,1,4]=>0
[1,1,2,1,1,1]=>[1,1,2,1,1,1]=>3
[1,1,2,1,2]=>[2,1,1,1,2]=>3
[1,1,2,2,1]=>[2,1,1,2,1]=>4
[1,1,2,3]=>[1,1,2,3]=>0
[1,1,3,1,1]=>[1,3,1,1,1]=>3
[1,1,3,2]=>[3,1,1,2]=>3
[1,1,4,1]=>[4,1,1,1]=>3
[1,1,5]=>[1,1,5]=>0
[1,2,1,1,1,1]=>[1,1,1,2,1,1]=>2
[1,2,1,1,2]=>[1,2,1,1,2]=>2
[1,2,1,2,1]=>[2,2,1,1,1]=>6
[1,2,1,3]=>[2,1,1,3]=>2
[1,2,2,1,1]=>[1,2,1,2,1]=>3
[1,2,2,2]=>[1,2,2,2]=>0
[1,2,3,1]=>[2,1,3,1]=>3
[1,2,4]=>[1,2,4]=>0
[1,3,1,1,1]=>[1,1,3,1,1]=>2
[1,3,1,2]=>[1,3,1,2]=>2
[1,3,2,1]=>[3,2,1,1]=>5
[1,3,3]=>[1,3,3]=>0
[1,4,1,1]=>[1,4,1,1]=>2
[1,4,2]=>[4,1,2]=>2
[1,5,1]=>[5,1,1]=>2
[1,6]=>[1,6]=>0
[2,1,1,1,1,1]=>[1,1,1,1,2,1]=>1
[2,1,1,1,2]=>[1,1,2,1,2]=>1
[2,1,1,2,1]=>[2,1,2,1,1]=>5
[2,1,1,3]=>[1,2,1,3]=>1
[2,1,2,1,1]=>[1,2,2,1,1]=>4
[2,1,2,2]=>[2,1,2,2]=>1
[2,1,3,1]=>[2,3,1,1]=>4
[2,1,4]=>[2,1,4]=>1
[2,2,1,1,1]=>[1,1,2,2,1]=>2
[2,2,1,2]=>[2,2,1,2]=>2
[2,2,2,1]=>[2,2,2,1]=>3
[2,2,3]=>[2,2,3]=>0
[2,3,1,1]=>[1,2,3,1]=>2
[2,3,2]=>[3,2,2]=>2
[2,4,1]=>[2,4,1]=>2
[2,5]=>[2,5]=>0
[3,1,1,1,1]=>[1,1,1,3,1]=>1
[3,1,1,2]=>[1,1,3,2]=>1
[3,1,2,1]=>[3,1,2,1]=>4
[3,1,3]=>[3,1,3]=>1
[3,2,1,1]=>[1,3,2,1]=>3
[3,2,2]=>[2,3,2]=>1
[3,3,1]=>[3,3,1]=>2
[3,4]=>[3,4]=>0
[4,1,1,1]=>[1,1,4,1]=>1
[4,1,2]=>[1,4,2]=>1
[4,2,1]=>[4,2,1]=>3
[4,3]=>[4,3]=>1
[5,1,1]=>[1,5,1]=>1
[5,2]=>[5,2]=>1
[6,1]=>[6,1]=>1
[7]=>[7]=>0
[1,1,1,1,1,1,1,1]=>[1,1,1,1,1,1,1,1]=>0
[1,1,1,1,1,1,2]=>[1,1,1,1,1,1,2]=>0
[1,1,1,1,1,2,1]=>[2,1,1,1,1,1,1]=>6
[1,1,1,1,1,3]=>[1,1,1,1,1,3]=>0
[1,1,1,1,2,1,1]=>[1,2,1,1,1,1,1]=>5
[1,1,1,1,2,2]=>[1,1,1,1,2,2]=>0
[1,1,1,1,3,1]=>[3,1,1,1,1,1]=>5
[1,1,1,1,4]=>[1,1,1,1,4]=>0
[1,1,1,2,1,1,1]=>[1,1,2,1,1,1,1]=>4
[1,1,1,2,1,2]=>[2,1,1,1,1,2]=>4
[1,1,1,2,2,1]=>[2,1,1,1,2,1]=>5
[1,1,1,2,3]=>[1,1,1,2,3]=>0
[1,1,1,3,1,1]=>[1,3,1,1,1,1]=>4
[1,1,1,3,2]=>[3,1,1,1,2]=>4
[1,1,1,4,1]=>[4,1,1,1,1]=>4
[1,1,1,5]=>[1,1,1,5]=>0
[1,1,2,1,1,1,1]=>[1,1,1,2,1,1,1]=>3
[1,1,2,1,1,2]=>[1,2,1,1,1,2]=>3
[1,1,2,1,2,1]=>[2,2,1,1,1,1]=>8
[1,1,2,1,3]=>[2,1,1,1,3]=>3
[1,1,2,2,1,1]=>[1,2,1,1,2,1]=>4
[1,1,2,2,2]=>[1,1,2,2,2]=>0
[1,1,2,3,1]=>[2,1,1,3,1]=>4
[1,1,2,4]=>[1,1,2,4]=>0
[1,1,3,1,1,1]=>[1,1,3,1,1,1]=>3
[1,1,3,1,2]=>[1,3,1,1,2]=>3
[1,1,3,2,1]=>[3,2,1,1,1]=>7
[1,1,3,3]=>[1,1,3,3]=>0
[1,1,4,1,1]=>[1,4,1,1,1]=>3
[1,1,4,2]=>[4,1,1,2]=>3
[1,1,5,1]=>[5,1,1,1]=>3
[1,1,6]=>[1,1,6]=>0
[1,2,1,1,1,1,1]=>[1,1,1,1,2,1,1]=>2
[1,2,1,1,1,2]=>[1,1,2,1,1,2]=>2
[1,2,1,1,2,1]=>[2,1,2,1,1,1]=>7
[1,2,1,1,3]=>[1,2,1,1,3]=>2
[1,2,1,2,1,1]=>[1,2,2,1,1,1]=>6
[1,2,1,2,2]=>[2,1,1,2,2]=>2
[1,2,1,3,1]=>[2,3,1,1,1]=>6
[1,2,1,4]=>[2,1,1,4]=>2
[1,2,2,1,1,1]=>[1,1,2,1,2,1]=>3
[1,2,2,1,2]=>[2,1,2,1,2]=>3
[1,2,2,2,1]=>[2,1,2,2,1]=>4
[1,2,2,3]=>[1,2,2,3]=>0
[1,2,3,1,1]=>[1,2,1,3,1]=>3
[1,2,3,2]=>[3,1,2,2]=>3
[1,2,4,1]=>[2,1,4,1]=>3
[1,2,5]=>[1,2,5]=>0
[1,3,1,1,1,1]=>[1,1,1,3,1,1]=>2
[1,3,1,1,2]=>[1,1,3,1,2]=>2
[1,3,1,2,1]=>[3,1,2,1,1]=>6
[1,3,1,3]=>[3,1,1,3]=>2
[1,3,2,1,1]=>[1,3,2,1,1]=>5
[1,3,2,2]=>[1,3,2,2]=>2
[1,3,3,1]=>[3,1,3,1]=>3
[1,3,4]=>[1,3,4]=>0
[1,4,1,1,1]=>[1,1,4,1,1]=>2
[1,4,1,2]=>[1,4,1,2]=>2
[1,4,2,1]=>[4,2,1,1]=>5
[1,4,3]=>[4,1,3]=>2
[1,5,1,1]=>[1,5,1,1]=>2
[1,5,2]=>[5,1,2]=>2
[1,6,1]=>[6,1,1]=>2
[1,7]=>[1,7]=>0
[2,1,1,1,1,1,1]=>[1,1,1,1,1,2,1]=>1
[2,1,1,1,1,2]=>[1,1,1,2,1,2]=>1
[2,1,1,1,2,1]=>[2,1,1,2,1,1]=>6
[2,1,1,1,3]=>[1,1,2,1,3]=>1
[2,1,1,2,1,1]=>[1,2,1,2,1,1]=>5
[2,1,1,2,2]=>[1,2,1,2,2]=>1
[2,1,1,3,1]=>[2,1,3,1,1]=>5
[2,1,1,4]=>[1,2,1,4]=>1
[2,1,2,1,1,1]=>[1,1,2,2,1,1]=>4
[2,1,2,1,2]=>[2,2,1,1,2]=>4
[2,1,2,2,1]=>[2,2,1,2,1]=>5
[2,1,2,3]=>[2,1,2,3]=>1
[2,1,3,1,1]=>[1,2,3,1,1]=>4
[2,1,3,2]=>[3,2,1,2]=>4
[2,1,4,1]=>[2,4,1,1]=>4
[2,1,5]=>[2,1,5]=>1
[2,2,1,1,1,1]=>[1,1,1,2,2,1]=>2
[2,2,1,1,2]=>[1,2,2,1,2]=>2
[2,2,1,2,1]=>[2,2,2,1,1]=>6
[2,2,1,3]=>[2,2,1,3]=>2
[2,2,2,1,1]=>[1,2,2,2,1]=>3
[2,2,2,2]=>[2,2,2,2]=>0
[2,2,3,1]=>[2,2,3,1]=>3
[2,2,4]=>[2,2,4]=>0
[2,3,1,1,1]=>[1,1,2,3,1]=>2
[2,3,1,2]=>[2,1,3,2]=>2
[2,3,2,1]=>[3,2,2,1]=>5
[2,3,3]=>[2,3,3]=>0
[2,4,1,1]=>[1,2,4,1]=>2
[2,4,2]=>[4,2,2]=>2
[2,5,1]=>[2,5,1]=>2
[2,6]=>[2,6]=>0
[3,1,1,1,1,1]=>[1,1,1,1,3,1]=>1
[3,1,1,1,2]=>[1,1,1,3,2]=>1
[3,1,1,2,1]=>[3,1,1,2,1]=>5
[3,1,1,3]=>[1,3,1,3]=>1
[3,1,2,1,1]=>[1,3,1,2,1]=>4
[3,1,2,2]=>[1,2,3,2]=>1
[3,1,3,1]=>[3,3,1,1]=>4
[3,1,4]=>[3,1,4]=>1
[3,2,1,1,1]=>[1,1,3,2,1]=>3
[3,2,1,2]=>[2,3,1,2]=>3
[3,2,2,1]=>[2,3,2,1]=>4
[3,2,3]=>[3,2,3]=>1
[3,3,1,1]=>[1,3,3,1]=>2
[3,3,2]=>[3,3,2]=>2
[3,4,1]=>[3,4,1]=>2
[3,5]=>[3,5]=>0
[4,1,1,1,1]=>[1,1,1,4,1]=>1
[4,1,1,2]=>[1,1,4,2]=>1
[4,1,2,1]=>[4,1,2,1]=>4
[4,1,3]=>[1,4,3]=>1
[4,2,1,1]=>[1,4,2,1]=>3
[4,2,2]=>[2,4,2]=>1
[4,3,1]=>[4,3,1]=>3
[4,4]=>[4,4]=>0
[5,1,1,1]=>[1,1,5,1]=>1
[5,1,2]=>[1,5,2]=>1
[5,2,1]=>[5,2,1]=>3
[5,3]=>[5,3]=>1
[6,1,1]=>[1,6,1]=>1
[6,2]=>[6,2]=>1
[7,1]=>[7,1]=>1
[8]=>[8]=>0
[1,1,1,1,1,1,1,1,1]=>[1,1,1,1,1,1,1,1,1]=>0
[1,1,1,1,1,1,1,2]=>[1,1,1,1,1,1,1,2]=>0
[1,1,1,1,1,1,2,1]=>[2,1,1,1,1,1,1,1]=>7
[1,1,1,1,1,1,3]=>[1,1,1,1,1,1,3]=>0
[1,1,1,1,1,2,1,1]=>[1,2,1,1,1,1,1,1]=>6
[1,1,1,1,1,2,2]=>[1,1,1,1,1,2,2]=>0
[1,1,1,1,1,3,1]=>[3,1,1,1,1,1,1]=>6
[1,1,1,1,1,4]=>[1,1,1,1,1,4]=>0
[1,1,1,1,2,1,1,1]=>[1,1,2,1,1,1,1,1]=>5
[1,1,1,1,2,1,2]=>[2,1,1,1,1,1,2]=>5
[1,1,1,1,2,2,1]=>[2,1,1,1,1,2,1]=>6
[1,1,1,1,2,3]=>[1,1,1,1,2,3]=>0
[1,1,1,1,3,1,1]=>[1,3,1,1,1,1,1]=>5
[1,1,1,1,3,2]=>[3,1,1,1,1,2]=>5
[1,1,1,1,4,1]=>[4,1,1,1,1,1]=>5
[1,1,1,1,5]=>[1,1,1,1,5]=>0
[1,1,1,2,1,1,1,1]=>[1,1,1,2,1,1,1,1]=>4
[1,1,1,2,1,1,2]=>[1,2,1,1,1,1,2]=>4
[1,1,1,2,1,2,1]=>[2,2,1,1,1,1,1]=>10
[1,1,1,2,1,3]=>[2,1,1,1,1,3]=>4
[1,1,1,2,2,1,1]=>[1,2,1,1,1,2,1]=>5
[1,1,1,2,2,2]=>[1,1,1,2,2,2]=>0
[1,1,1,2,3,1]=>[2,1,1,1,3,1]=>5
[1,1,1,2,4]=>[1,1,1,2,4]=>0
[1,1,1,3,1,1,1]=>[1,1,3,1,1,1,1]=>4
[1,1,1,3,1,2]=>[1,3,1,1,1,2]=>4
[1,1,1,3,2,1]=>[3,2,1,1,1,1]=>9
[1,1,1,3,3]=>[1,1,1,3,3]=>0
[1,1,1,4,1,1]=>[1,4,1,1,1,1]=>4
[1,1,1,4,2]=>[4,1,1,1,2]=>4
[1,1,1,5,1]=>[5,1,1,1,1]=>4
[1,1,1,6]=>[1,1,1,6]=>0
[1,1,2,1,1,1,1,1]=>[1,1,1,1,2,1,1,1]=>3
[1,1,2,1,1,1,2]=>[1,1,2,1,1,1,2]=>3
[1,1,2,1,1,2,1]=>[2,1,2,1,1,1,1]=>9
[1,1,2,1,1,3]=>[1,2,1,1,1,3]=>3
[1,1,2,1,2,1,1]=>[1,2,2,1,1,1,1]=>8
[1,1,2,1,2,2]=>[2,1,1,1,2,2]=>3
[1,1,2,1,3,1]=>[2,3,1,1,1,1]=>8
[1,1,2,1,4]=>[2,1,1,1,4]=>3
[1,1,2,2,1,1,1]=>[1,1,2,1,1,2,1]=>4
[1,1,2,2,1,2]=>[2,1,1,2,1,2]=>4
[1,1,2,2,2,1]=>[2,1,1,2,2,1]=>5
[1,1,2,2,3]=>[1,1,2,2,3]=>0
[1,1,2,3,1,1]=>[1,2,1,1,3,1]=>4
[1,1,2,3,2]=>[3,1,1,2,2]=>4
[1,1,2,4,1]=>[2,1,1,4,1]=>4
[1,1,2,5]=>[1,1,2,5]=>0
[1,1,3,1,1,1,1]=>[1,1,1,3,1,1,1]=>3
[1,1,3,1,1,2]=>[1,1,3,1,1,2]=>3
[1,1,3,1,2,1]=>[3,1,2,1,1,1]=>8
[1,1,3,1,3]=>[3,1,1,1,3]=>3
[1,1,3,2,1,1]=>[1,3,2,1,1,1]=>7
[1,1,3,2,2]=>[1,3,1,2,2]=>3
[1,1,3,3,1]=>[3,1,1,3,1]=>4
[1,1,3,4]=>[1,1,3,4]=>0
[1,1,4,1,1,1]=>[1,1,4,1,1,1]=>3
[1,1,4,1,2]=>[1,4,1,1,2]=>3
[1,1,4,2,1]=>[4,2,1,1,1]=>7
[1,1,4,3]=>[4,1,1,3]=>3
[1,1,5,1,1]=>[1,5,1,1,1]=>3
[1,1,5,2]=>[5,1,1,2]=>3
[1,1,6,1]=>[6,1,1,1]=>3
[1,1,7]=>[1,1,7]=>0
[1,2,1,1,1,1,1,1]=>[1,1,1,1,1,2,1,1]=>2
[1,2,1,1,1,1,2]=>[1,1,1,2,1,1,2]=>2
[1,2,1,1,1,2,1]=>[2,1,1,2,1,1,1]=>8
[1,2,1,1,1,3]=>[1,1,2,1,1,3]=>2
[1,2,1,1,2,1,1]=>[1,2,1,2,1,1,1]=>7
[1,2,1,1,2,2]=>[1,2,1,1,2,2]=>2
[1,2,1,1,3,1]=>[2,1,3,1,1,1]=>7
[1,2,1,1,4]=>[1,2,1,1,4]=>2
[1,2,1,2,1,1,1]=>[1,1,2,2,1,1,1]=>6
[1,2,1,2,1,2]=>[2,2,1,1,1,2]=>6
[1,2,1,2,2,1]=>[2,2,1,1,2,1]=>7
[1,2,1,2,3]=>[2,1,1,2,3]=>2
[1,2,1,3,1,1]=>[1,2,3,1,1,1]=>6
[1,2,1,3,2]=>[3,2,1,1,2]=>6
[1,2,1,4,1]=>[2,4,1,1,1]=>6
[1,2,1,5]=>[2,1,1,5]=>2
[1,2,2,1,1,1,1]=>[1,1,1,2,1,2,1]=>3
[1,2,2,1,1,2]=>[1,2,1,2,1,2]=>3
[1,2,2,1,2,1]=>[2,2,1,2,1,1]=>8
[1,2,2,1,3]=>[2,1,2,1,3]=>3
[1,2,2,2,1,1]=>[1,2,1,2,2,1]=>4
[1,2,2,2,2]=>[1,2,2,2,2]=>0
[1,2,2,3,1]=>[2,1,2,3,1]=>4
[1,2,2,4]=>[1,2,2,4]=>0
[1,2,3,1,1,1]=>[1,1,2,1,3,1]=>3
[1,2,3,1,2]=>[2,1,1,3,2]=>3
[1,2,3,2,1]=>[3,2,1,2,1]=>7
[1,2,3,3]=>[1,2,3,3]=>0
[1,2,4,1,1]=>[1,2,1,4,1]=>3
[1,2,4,2]=>[4,1,2,2]=>3
[1,2,5,1]=>[2,1,5,1]=>3
[1,2,6]=>[1,2,6]=>0
[1,3,1,1,1,1,1]=>[1,1,1,1,3,1,1]=>2
[1,3,1,1,1,2]=>[1,1,1,3,1,2]=>2
[1,3,1,1,2,1]=>[3,1,1,2,1,1]=>7
[1,3,1,1,3]=>[1,3,1,1,3]=>2
[1,3,1,2,1,1]=>[1,3,1,2,1,1]=>6
[1,3,1,2,2]=>[1,1,3,2,2]=>2
[1,3,1,3,1]=>[3,3,1,1,1]=>6
[1,3,1,4]=>[3,1,1,4]=>2
[1,3,2,1,1,1]=>[1,1,3,2,1,1]=>5
[1,3,2,1,2]=>[2,3,1,1,2]=>5
[1,3,2,2,1]=>[3,1,2,2,1]=>6
[1,3,2,3]=>[3,1,2,3]=>2
[1,3,3,1,1]=>[1,3,1,3,1]=>3
[1,3,3,2]=>[3,1,3,2]=>3
[1,3,4,1]=>[3,1,4,1]=>3
[1,3,5]=>[1,3,5]=>0
[1,4,1,1,1,1]=>[1,1,1,4,1,1]=>2
[1,4,1,1,2]=>[1,1,4,1,2]=>2
[1,4,1,2,1]=>[4,1,2,1,1]=>6
[1,4,1,3]=>[1,4,1,3]=>2
[1,4,2,1,1]=>[1,4,2,1,1]=>5
[1,4,2,2]=>[1,4,2,2]=>2
[1,4,3,1]=>[4,3,1,1]=>5
[1,4,4]=>[1,4,4]=>0
[1,5,1,1,1]=>[1,1,5,1,1]=>2
[1,5,1,2]=>[1,5,1,2]=>2
[1,5,2,1]=>[5,2,1,1]=>5
[1,5,3]=>[5,1,3]=>2
[1,6,1,1]=>[1,6,1,1]=>2
[1,6,2]=>[6,1,2]=>2
[1,7,1]=>[7,1,1]=>2
[1,8]=>[1,8]=>0
[2,1,1,1,1,1,1,1]=>[1,1,1,1,1,1,2,1]=>1
[2,1,1,1,1,1,2]=>[1,1,1,1,2,1,2]=>1
[2,1,1,1,1,2,1]=>[2,1,1,1,2,1,1]=>7
[2,1,1,1,1,3]=>[1,1,1,2,1,3]=>1
[2,1,1,1,2,1,1]=>[1,2,1,1,2,1,1]=>6
[2,1,1,1,2,2]=>[1,1,2,1,2,2]=>1
[2,1,1,1,3,1]=>[2,1,1,3,1,1]=>6
[2,1,1,1,4]=>[1,1,2,1,4]=>1
[2,1,1,2,1,1,1]=>[1,1,2,1,2,1,1]=>5
[2,1,1,2,1,2]=>[2,1,2,1,1,2]=>5
[2,1,1,2,2,1]=>[2,1,2,1,2,1]=>6
[2,1,1,2,3]=>[1,2,1,2,3]=>1
[2,1,1,3,1,1]=>[1,2,1,3,1,1]=>5
[2,1,1,3,2]=>[3,1,2,1,2]=>5
[2,1,1,4,1]=>[2,1,4,1,1]=>5
[2,1,1,5]=>[1,2,1,5]=>1
[2,1,2,1,1,1,1]=>[1,1,1,2,2,1,1]=>4
[2,1,2,1,1,2]=>[1,2,2,1,1,2]=>4
[2,1,2,1,2,1]=>[2,2,2,1,1,1]=>9
[2,1,2,1,3]=>[2,2,1,1,3]=>4
[2,1,2,2,1,1]=>[1,2,2,1,2,1]=>5
[2,1,2,2,2]=>[2,1,2,2,2]=>1
[2,1,2,3,1]=>[2,2,1,3,1]=>5
[2,1,2,4]=>[2,1,2,4]=>1
[2,1,3,1,1,1]=>[1,1,2,3,1,1]=>4
[2,1,3,1,2]=>[2,1,3,1,2]=>4
[2,1,3,2,1]=>[3,2,2,1,1]=>8
[2,1,3,3]=>[2,1,3,3]=>1
[2,1,4,1,1]=>[1,2,4,1,1]=>4
[2,1,4,2]=>[4,2,1,2]=>4
[2,1,5,1]=>[2,5,1,1]=>4
[2,1,6]=>[2,1,6]=>1
[2,2,1,1,1,1,1]=>[1,1,1,1,2,2,1]=>2
[2,2,1,1,1,2]=>[1,1,2,2,1,2]=>2
[2,2,1,1,2,1]=>[2,1,2,2,1,1]=>7
[2,2,1,1,3]=>[1,2,2,1,3]=>2
[2,2,1,2,1,1]=>[1,2,2,2,1,1]=>6
[2,2,1,2,2]=>[2,2,1,2,2]=>2
[2,2,1,3,1]=>[2,2,3,1,1]=>6
[2,2,1,4]=>[2,2,1,4]=>2
[2,2,2,1,1,1]=>[1,1,2,2,2,1]=>3
[2,2,2,1,2]=>[2,2,2,1,2]=>3
[2,2,2,2,1]=>[2,2,2,2,1]=>4
[2,2,2,3]=>[2,2,2,3]=>0
[2,2,3,1,1]=>[1,2,2,3,1]=>3
[2,2,3,2]=>[3,2,2,2]=>3
[2,2,4,1]=>[2,2,4,1]=>3
[2,2,5]=>[2,2,5]=>0
[2,3,1,1,1,1]=>[1,1,1,2,3,1]=>2
[2,3,1,1,2]=>[1,2,1,3,2]=>2
[2,3,1,2,1]=>[2,3,1,2,1]=>6
[2,3,1,3]=>[2,3,1,3]=>2
[2,3,2,1,1]=>[1,3,2,2,1]=>5
[2,3,2,2]=>[2,3,2,2]=>2
[2,3,3,1]=>[2,3,3,1]=>3
[2,3,4]=>[2,3,4]=>0
[2,4,1,1,1]=>[1,1,2,4,1]=>2
[2,4,1,2]=>[2,1,4,2]=>2
[2,4,2,1]=>[4,2,2,1]=>5
[2,4,3]=>[4,2,3]=>2
[2,5,1,1]=>[1,2,5,1]=>2
[2,5,2]=>[5,2,2]=>2
[2,6,1]=>[2,6,1]=>2
[2,7]=>[2,7]=>0
[3,1,1,1,1,1,1]=>[1,1,1,1,1,3,1]=>1
[3,1,1,1,1,2]=>[1,1,1,1,3,2]=>1
[3,1,1,1,2,1]=>[3,1,1,1,2,1]=>6
[3,1,1,1,3]=>[1,1,3,1,3]=>1
[3,1,1,2,1,1]=>[1,3,1,1,2,1]=>5
[3,1,1,2,2]=>[1,1,2,3,2]=>1
[3,1,1,3,1]=>[3,1,3,1,1]=>5
[3,1,1,4]=>[1,3,1,4]=>1
[3,1,2,1,1,1]=>[1,1,3,1,2,1]=>4
[3,1,2,1,2]=>[1,3,2,1,2]=>4
[3,1,2,2,1]=>[2,1,3,2,1]=>5
[3,1,2,3]=>[1,3,2,3]=>1
[3,1,3,1,1]=>[1,3,3,1,1]=>4
[3,1,3,2]=>[3,3,1,2]=>4
[3,1,4,1]=>[3,4,1,1]=>4
[3,1,5]=>[3,1,5]=>1
[3,2,1,1,1,1]=>[1,1,1,3,2,1]=>3
[3,2,1,1,2]=>[1,2,3,1,2]=>3
[3,2,1,2,1]=>[2,3,2,1,1]=>7
[3,2,1,3]=>[3,2,1,3]=>3
[3,2,2,1,1]=>[1,2,3,2,1]=>4
[3,2,2,2]=>[2,2,3,2]=>1
[3,2,3,1]=>[3,2,3,1]=>4
[3,2,4]=>[3,2,4]=>1
[3,3,1,1,1]=>[1,1,3,3,1]=>2
[3,3,1,2]=>[1,3,3,2]=>2
[3,3,2,1]=>[3,3,2,1]=>5
[3,3,3]=>[3,3,3]=>0
[3,4,1,1]=>[1,3,4,1]=>2
[3,4,2]=>[3,4,2]=>2
[3,5,1]=>[3,5,1]=>2
[3,6]=>[3,6]=>0
[4,1,1,1,1,1]=>[1,1,1,1,4,1]=>1
[4,1,1,1,2]=>[1,1,1,4,2]=>1
[4,1,1,2,1]=>[4,1,1,2,1]=>5
[4,1,1,3]=>[1,1,4,3]=>1
[4,1,2,1,1]=>[1,4,1,2,1]=>4
[4,1,2,2]=>[1,2,4,2]=>1
[4,1,3,1]=>[4,1,3,1]=>4
[4,1,4]=>[4,1,4]=>1
[4,2,1,1,1]=>[1,1,4,2,1]=>3
[4,2,1,2]=>[2,4,1,2]=>3
[4,2,2,1]=>[2,4,2,1]=>4
[4,2,3]=>[2,4,3]=>1
[4,3,1,1]=>[1,4,3,1]=>3
[4,3,2]=>[4,3,2]=>3
[4,4,1]=>[4,4,1]=>2
[4,5]=>[4,5]=>0
[5,1,1,1,1]=>[1,1,1,5,1]=>1
[5,1,1,2]=>[1,1,5,2]=>1
[5,1,2,1]=>[5,1,2,1]=>4
[5,1,3]=>[1,5,3]=>1
[5,2,1,1]=>[1,5,2,1]=>3
[5,2,2]=>[2,5,2]=>1
[5,3,1]=>[5,3,1]=>3
[5,4]=>[5,4]=>1
[6,1,1,1]=>[1,1,6,1]=>1
[6,1,2]=>[1,6,2]=>1
[6,2,1]=>[6,2,1]=>3
[6,3]=>[6,3]=>1
[7,1,1]=>[1,7,1]=>1
[7,2]=>[7,2]=>1
[8,1]=>[8,1]=>1
[9]=>[9]=>0
[1,1,1,1,1,1,1,1,1,1]=>[1,1,1,1,1,1,1,1,1,1]=>0
[1,1,1,1,1,1,2,2]=>[1,1,1,1,1,1,2,2]=>0
[1,1,1,1,1,2,1,2]=>[2,1,1,1,1,1,1,2]=>6
[1,1,1,1,2,1,2,1]=>[2,2,1,1,1,1,1,1]=>12
[1,1,1,1,3,3]=>[1,1,1,1,3,3]=>0
[1,1,1,2,1,1,1,2]=>[1,1,2,1,1,1,1,2]=>4
[1,1,1,3,1,3]=>[3,1,1,1,1,3]=>4
[1,1,1,5,1,1]=>[1,5,1,1,1,1]=>4
[1,1,2,1,1,1,2,1]=>[2,1,1,2,1,1,1,1]=>10
[1,1,2,1,2,1,1,1]=>[1,1,2,2,1,1,1,1]=>8
[1,1,2,1,2,3]=>[2,1,1,1,2,3]=>3
[1,1,2,1,3,2]=>[3,2,1,1,1,2]=>8
[1,1,2,2,2,2]=>[1,1,2,2,2,2]=>0
[1,1,2,4,1,1]=>[1,2,1,1,4,1]=>4
[1,1,3,1,3,1]=>[3,3,1,1,1,1]=>8
[1,1,3,3,1,1]=>[1,3,1,1,3,1]=>4
[1,1,4,4]=>[1,1,4,4]=>0
[1,2,1,1,1,1,1,2]=>[1,1,1,1,2,1,1,2]=>2
[1,2,1,2,2,2]=>[2,1,1,2,2,2]=>2
[1,2,2,2,1,2]=>[2,1,2,2,1,2]=>4
[1,2,6,1]=>[2,1,6,1]=>3
[1,3,1,1,1,3]=>[1,1,3,1,1,3]=>2
[1,3,2,4]=>[3,1,2,4]=>2
[1,4,1,4]=>[4,1,1,4]=>2
[1,4,3,2]=>[4,3,1,2]=>5
[1,6,1,2]=>[1,6,1,2]=>2
[1,7,1,1]=>[1,7,1,1]=>2
[1,8,1]=>[8,1,1]=>2
[1,9]=>[1,9]=>0
[2,1,1,1,1,1,2,1]=>[2,1,1,1,1,2,1,1]=>8
[2,1,1,1,2,1,1,1]=>[1,1,2,1,1,2,1,1]=>6
[2,1,1,1,2,3]=>[1,1,2,1,2,3]=>1
[2,1,1,1,3,2]=>[3,1,1,2,1,2]=>6
[2,1,1,2,1,3]=>[2,1,2,1,1,3]=>5
[2,1,1,3,2,1]=>[3,2,1,2,1,1]=>10
[2,1,2,1,1,1,1,1]=>[1,1,1,1,2,2,1,1]=>4
[2,1,2,1,2,2]=>[2,2,1,1,2,2]=>4
[2,1,3,4]=>[2,1,3,4]=>1
[2,1,4,3]=>[4,2,1,3]=>4
[2,2,1,1,3,1]=>[2,1,2,3,1,1]=>7
[2,2,1,2,1,2]=>[2,2,2,1,1,2]=>6
[2,2,2,1,2,1]=>[2,2,2,2,1,1]=>8
[2,2,3,3]=>[2,2,3,3]=>0
[2,3,2,3]=>[3,2,2,3]=>2
[2,6,1,1]=>[1,2,6,1]=>2
[3,1,1,1,3,1]=>[3,1,1,3,1,1]=>6
[3,1,2,1,1,2]=>[1,1,3,2,1,2]=>4
[3,1,3,1,1,1]=>[1,1,3,3,1,1]=>4
[3,2,3,2]=>[3,3,2,2]=>4
[3,5,1,1]=>[1,3,5,1]=>2
[4,1,1,2,1,1]=>[1,4,1,1,2,1]=>5
[4,1,4,1]=>[4,4,1,1]=>4
[4,4,1,1]=>[1,4,4,1]=>2
[5,1,1,1,1,1]=>[1,1,1,1,5,1]=>1
[5,3,1,1]=>[1,5,3,1]=>3
[5,5]=>[5,5]=>0
[6,2,1,1]=>[1,6,2,1]=>3
[7,1,1,1]=>[1,1,7,1]=>1
[8,1,1]=>[1,8,1]=>1
[9,1]=>[9,1]=>1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of inversions of an integer composition.
This is the number of pairs $(i,j)$ such that $i < j$ and $c_i > c_j$.
This is the number of pairs $(i,j)$ such that $i < j$ and $c_i > c_j$.
Map
Foata bijection
Description
The Foata bijection for compositions.
The Foata bijection $\phi$ is a bijection on the set of words whose letters are positive integers. It can be defined by induction on the size of the word:
Given a word $w_1 w_2 ... w_n$, compute the image inductively by starting with $\phi(w_1) = w_1$.
At the $i$-th step, if $\phi(w_1 w_2 ... w_i) = v_1 v_2 ... v_i$, define $\phi(w_1 w_2 ... w_i w_{i+1})$ by placing $w_{i+1}$ on the end of the word $v_1 v_2 ... v_i$ and breaking the word up into blocks as follows.
To compute $\phi([1,4,2,5,3])$, the sequence of words is
This bijection sends the major index St000769The major index of a composition regarded as a word. to the number of inversions St000766The number of inversions of an integer composition..
The Foata bijection $\phi$ is a bijection on the set of words whose letters are positive integers. It can be defined by induction on the size of the word:
Given a word $w_1 w_2 ... w_n$, compute the image inductively by starting with $\phi(w_1) = w_1$.
At the $i$-th step, if $\phi(w_1 w_2 ... w_i) = v_1 v_2 ... v_i$, define $\phi(w_1 w_2 ... w_i w_{i+1})$ by placing $w_{i+1}$ on the end of the word $v_1 v_2 ... v_i$ and breaking the word up into blocks as follows.
- If $w_{i+1} \geq v_i$, place a vertical line to the right of each $v_k$ for which $w_{i+1} \geq v_k$.
- If $w_{i+1} < v_i$, place a vertical line to the right of each $v_k$ for which $w_{i+1} < v_k$.
To compute $\phi([1,4,2,5,3])$, the sequence of words is
- $1$
- $|1|4 \to 14$
- $|14|2 \to 412$
- $|4|1|2|5 \to 4125$
- $|4|125|3 \to 45123.$
This bijection sends the major index St000769The major index of a composition regarded as a word. to the number of inversions St000766The number of inversions of an integer composition..
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!