Identifier
-
Mp00042:
Integer partitions
—initial tableau⟶
Standard tableaux
Mp00207: Standard tableaux —horizontal strip sizes⟶ Integer compositions
St000766: Integer compositions ⟶ ℤ
Values
[1] => [[1]] => [1] => 0
[2] => [[1,2]] => [2] => 0
[1,1] => [[1],[2]] => [1,1] => 0
[3] => [[1,2,3]] => [3] => 0
[2,1] => [[1,2],[3]] => [2,1] => 1
[1,1,1] => [[1],[2],[3]] => [1,1,1] => 0
[4] => [[1,2,3,4]] => [4] => 0
[3,1] => [[1,2,3],[4]] => [3,1] => 1
[2,2] => [[1,2],[3,4]] => [2,2] => 0
[2,1,1] => [[1,2],[3],[4]] => [2,1,1] => 2
[1,1,1,1] => [[1],[2],[3],[4]] => [1,1,1,1] => 0
[5] => [[1,2,3,4,5]] => [5] => 0
[4,1] => [[1,2,3,4],[5]] => [4,1] => 1
[3,2] => [[1,2,3],[4,5]] => [3,2] => 1
[3,1,1] => [[1,2,3],[4],[5]] => [3,1,1] => 2
[2,2,1] => [[1,2],[3,4],[5]] => [2,2,1] => 2
[2,1,1,1] => [[1,2],[3],[4],[5]] => [2,1,1,1] => 3
[1,1,1,1,1] => [[1],[2],[3],[4],[5]] => [1,1,1,1,1] => 0
[6] => [[1,2,3,4,5,6]] => [6] => 0
[5,1] => [[1,2,3,4,5],[6]] => [5,1] => 1
[4,2] => [[1,2,3,4],[5,6]] => [4,2] => 1
[4,1,1] => [[1,2,3,4],[5],[6]] => [4,1,1] => 2
[3,3] => [[1,2,3],[4,5,6]] => [3,3] => 0
[3,2,1] => [[1,2,3],[4,5],[6]] => [3,2,1] => 3
[3,1,1,1] => [[1,2,3],[4],[5],[6]] => [3,1,1,1] => 3
[2,2,2] => [[1,2],[3,4],[5,6]] => [2,2,2] => 0
[2,2,1,1] => [[1,2],[3,4],[5],[6]] => [2,2,1,1] => 4
[2,1,1,1,1] => [[1,2],[3],[4],[5],[6]] => [2,1,1,1,1] => 4
[1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6]] => [1,1,1,1,1,1] => 0
[7] => [[1,2,3,4,5,6,7]] => [7] => 0
[6,1] => [[1,2,3,4,5,6],[7]] => [6,1] => 1
[5,2] => [[1,2,3,4,5],[6,7]] => [5,2] => 1
[5,1,1] => [[1,2,3,4,5],[6],[7]] => [5,1,1] => 2
[4,3] => [[1,2,3,4],[5,6,7]] => [4,3] => 1
[4,2,1] => [[1,2,3,4],[5,6],[7]] => [4,2,1] => 3
[4,1,1,1] => [[1,2,3,4],[5],[6],[7]] => [4,1,1,1] => 3
[3,3,1] => [[1,2,3],[4,5,6],[7]] => [3,3,1] => 2
[3,2,2] => [[1,2,3],[4,5],[6,7]] => [3,2,2] => 2
[3,2,1,1] => [[1,2,3],[4,5],[6],[7]] => [3,2,1,1] => 5
[3,1,1,1,1] => [[1,2,3],[4],[5],[6],[7]] => [3,1,1,1,1] => 4
[2,2,2,1] => [[1,2],[3,4],[5,6],[7]] => [2,2,2,1] => 3
[2,2,1,1,1] => [[1,2],[3,4],[5],[6],[7]] => [2,2,1,1,1] => 6
[2,1,1,1,1,1] => [[1,2],[3],[4],[5],[6],[7]] => [2,1,1,1,1,1] => 5
[1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7]] => [1,1,1,1,1,1,1] => 0
[8] => [[1,2,3,4,5,6,7,8]] => [8] => 0
[7,1] => [[1,2,3,4,5,6,7],[8]] => [7,1] => 1
[6,2] => [[1,2,3,4,5,6],[7,8]] => [6,2] => 1
[6,1,1] => [[1,2,3,4,5,6],[7],[8]] => [6,1,1] => 2
[5,3] => [[1,2,3,4,5],[6,7,8]] => [5,3] => 1
[5,2,1] => [[1,2,3,4,5],[6,7],[8]] => [5,2,1] => 3
[5,1,1,1] => [[1,2,3,4,5],[6],[7],[8]] => [5,1,1,1] => 3
[4,4] => [[1,2,3,4],[5,6,7,8]] => [4,4] => 0
[4,3,1] => [[1,2,3,4],[5,6,7],[8]] => [4,3,1] => 3
[4,2,2] => [[1,2,3,4],[5,6],[7,8]] => [4,2,2] => 2
[4,2,1,1] => [[1,2,3,4],[5,6],[7],[8]] => [4,2,1,1] => 5
[4,1,1,1,1] => [[1,2,3,4],[5],[6],[7],[8]] => [4,1,1,1,1] => 4
[3,3,2] => [[1,2,3],[4,5,6],[7,8]] => [3,3,2] => 2
[3,3,1,1] => [[1,2,3],[4,5,6],[7],[8]] => [3,3,1,1] => 4
[3,2,2,1] => [[1,2,3],[4,5],[6,7],[8]] => [3,2,2,1] => 5
[3,2,1,1,1] => [[1,2,3],[4,5],[6],[7],[8]] => [3,2,1,1,1] => 7
[3,1,1,1,1,1] => [[1,2,3],[4],[5],[6],[7],[8]] => [3,1,1,1,1,1] => 5
[2,2,2,2] => [[1,2],[3,4],[5,6],[7,8]] => [2,2,2,2] => 0
[2,2,2,1,1] => [[1,2],[3,4],[5,6],[7],[8]] => [2,2,2,1,1] => 6
[2,2,1,1,1,1] => [[1,2],[3,4],[5],[6],[7],[8]] => [2,2,1,1,1,1] => 8
[2,1,1,1,1,1,1] => [[1,2],[3],[4],[5],[6],[7],[8]] => [2,1,1,1,1,1,1] => 6
[1,1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7],[8]] => [1,1,1,1,1,1,1,1] => 0
[9] => [[1,2,3,4,5,6,7,8,9]] => [9] => 0
[8,1] => [[1,2,3,4,5,6,7,8],[9]] => [8,1] => 1
[7,2] => [[1,2,3,4,5,6,7],[8,9]] => [7,2] => 1
[7,1,1] => [[1,2,3,4,5,6,7],[8],[9]] => [7,1,1] => 2
[6,3] => [[1,2,3,4,5,6],[7,8,9]] => [6,3] => 1
[6,2,1] => [[1,2,3,4,5,6],[7,8],[9]] => [6,2,1] => 3
[6,1,1,1] => [[1,2,3,4,5,6],[7],[8],[9]] => [6,1,1,1] => 3
[5,4] => [[1,2,3,4,5],[6,7,8,9]] => [5,4] => 1
[5,3,1] => [[1,2,3,4,5],[6,7,8],[9]] => [5,3,1] => 3
[5,2,2] => [[1,2,3,4,5],[6,7],[8,9]] => [5,2,2] => 2
[5,2,1,1] => [[1,2,3,4,5],[6,7],[8],[9]] => [5,2,1,1] => 5
[5,1,1,1,1] => [[1,2,3,4,5],[6],[7],[8],[9]] => [5,1,1,1,1] => 4
[4,4,1] => [[1,2,3,4],[5,6,7,8],[9]] => [4,4,1] => 2
[4,3,2] => [[1,2,3,4],[5,6,7],[8,9]] => [4,3,2] => 3
[4,3,1,1] => [[1,2,3,4],[5,6,7],[8],[9]] => [4,3,1,1] => 5
[4,2,2,1] => [[1,2,3,4],[5,6],[7,8],[9]] => [4,2,2,1] => 5
[4,2,1,1,1] => [[1,2,3,4],[5,6],[7],[8],[9]] => [4,2,1,1,1] => 7
[4,1,1,1,1,1] => [[1,2,3,4],[5],[6],[7],[8],[9]] => [4,1,1,1,1,1] => 5
[3,3,3] => [[1,2,3],[4,5,6],[7,8,9]] => [3,3,3] => 0
[3,3,2,1] => [[1,2,3],[4,5,6],[7,8],[9]] => [3,3,2,1] => 5
[3,3,1,1,1] => [[1,2,3],[4,5,6],[7],[8],[9]] => [3,3,1,1,1] => 6
[3,2,2,2] => [[1,2,3],[4,5],[6,7],[8,9]] => [3,2,2,2] => 3
[3,2,2,1,1] => [[1,2,3],[4,5],[6,7],[8],[9]] => [3,2,2,1,1] => 8
[3,2,1,1,1,1] => [[1,2,3],[4,5],[6],[7],[8],[9]] => [3,2,1,1,1,1] => 9
[3,1,1,1,1,1,1] => [[1,2,3],[4],[5],[6],[7],[8],[9]] => [3,1,1,1,1,1,1] => 6
[2,2,2,2,1] => [[1,2],[3,4],[5,6],[7,8],[9]] => [2,2,2,2,1] => 4
[2,2,2,1,1,1] => [[1,2],[3,4],[5,6],[7],[8],[9]] => [2,2,2,1,1,1] => 9
[2,2,1,1,1,1,1] => [[1,2],[3,4],[5],[6],[7],[8],[9]] => [2,2,1,1,1,1,1] => 10
[2,1,1,1,1,1,1,1] => [[1,2],[3],[4],[5],[6],[7],[8],[9]] => [2,1,1,1,1,1,1,1] => 7
[1,1,1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7],[8],[9]] => [1,1,1,1,1,1,1,1,1] => 0
[9,1] => [[1,2,3,4,5,6,7,8,9],[10]] => [9,1] => 1
[8,1,1] => [[1,2,3,4,5,6,7,8],[9],[10]] => [8,1,1] => 2
[5,5] => [[1,2,3,4,5],[6,7,8,9,10]] => [5,5] => 0
[4,4,1,1] => [[1,2,3,4],[5,6,7,8],[9],[10]] => [4,4,1,1] => 4
[3,3,2,2] => [[1,2,3],[4,5,6],[7,8],[9,10]] => [3,3,2,2] => 4
>>> Load all 110 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of inversions of an integer composition.
This is the number of pairs (i,j) such that i<j and ci>cj.
This is the number of pairs (i,j) such that i<j and ci>cj.
Map
initial tableau
Description
Sends an integer partition to the standard tableau obtained by filling the numbers 1 through n row by row.
Map
horizontal strip sizes
Description
The composition of horizontal strip sizes.
We associate to a standard Young tableau T the composition (c1,…,ck), such that k is minimal and the numbers c1+⋯+ci+1,…,c1+⋯+ci+1 form a horizontal strip in T for all i.
We associate to a standard Young tableau T the composition (c1,…,ck), such that k is minimal and the numbers c1+⋯+ci+1,…,c1+⋯+ci+1 form a horizontal strip in T for all i.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!