Processing math: 100%

Identifier
Values
[1] => [[1]] => [1] => 0
[2] => [[1,2]] => [2] => 0
[1,1] => [[1],[2]] => [1,1] => 0
[3] => [[1,2,3]] => [3] => 0
[2,1] => [[1,2],[3]] => [2,1] => 1
[1,1,1] => [[1],[2],[3]] => [1,1,1] => 0
[4] => [[1,2,3,4]] => [4] => 0
[3,1] => [[1,2,3],[4]] => [3,1] => 1
[2,2] => [[1,2],[3,4]] => [2,2] => 0
[2,1,1] => [[1,2],[3],[4]] => [2,1,1] => 2
[1,1,1,1] => [[1],[2],[3],[4]] => [1,1,1,1] => 0
[5] => [[1,2,3,4,5]] => [5] => 0
[4,1] => [[1,2,3,4],[5]] => [4,1] => 1
[3,2] => [[1,2,3],[4,5]] => [3,2] => 1
[3,1,1] => [[1,2,3],[4],[5]] => [3,1,1] => 2
[2,2,1] => [[1,2],[3,4],[5]] => [2,2,1] => 2
[2,1,1,1] => [[1,2],[3],[4],[5]] => [2,1,1,1] => 3
[1,1,1,1,1] => [[1],[2],[3],[4],[5]] => [1,1,1,1,1] => 0
[6] => [[1,2,3,4,5,6]] => [6] => 0
[5,1] => [[1,2,3,4,5],[6]] => [5,1] => 1
[4,2] => [[1,2,3,4],[5,6]] => [4,2] => 1
[4,1,1] => [[1,2,3,4],[5],[6]] => [4,1,1] => 2
[3,3] => [[1,2,3],[4,5,6]] => [3,3] => 0
[3,2,1] => [[1,2,3],[4,5],[6]] => [3,2,1] => 3
[3,1,1,1] => [[1,2,3],[4],[5],[6]] => [3,1,1,1] => 3
[2,2,2] => [[1,2],[3,4],[5,6]] => [2,2,2] => 0
[2,2,1,1] => [[1,2],[3,4],[5],[6]] => [2,2,1,1] => 4
[2,1,1,1,1] => [[1,2],[3],[4],[5],[6]] => [2,1,1,1,1] => 4
[1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6]] => [1,1,1,1,1,1] => 0
[7] => [[1,2,3,4,5,6,7]] => [7] => 0
[6,1] => [[1,2,3,4,5,6],[7]] => [6,1] => 1
[5,2] => [[1,2,3,4,5],[6,7]] => [5,2] => 1
[5,1,1] => [[1,2,3,4,5],[6],[7]] => [5,1,1] => 2
[4,3] => [[1,2,3,4],[5,6,7]] => [4,3] => 1
[4,2,1] => [[1,2,3,4],[5,6],[7]] => [4,2,1] => 3
[4,1,1,1] => [[1,2,3,4],[5],[6],[7]] => [4,1,1,1] => 3
[3,3,1] => [[1,2,3],[4,5,6],[7]] => [3,3,1] => 2
[3,2,2] => [[1,2,3],[4,5],[6,7]] => [3,2,2] => 2
[3,2,1,1] => [[1,2,3],[4,5],[6],[7]] => [3,2,1,1] => 5
[3,1,1,1,1] => [[1,2,3],[4],[5],[6],[7]] => [3,1,1,1,1] => 4
[2,2,2,1] => [[1,2],[3,4],[5,6],[7]] => [2,2,2,1] => 3
[2,2,1,1,1] => [[1,2],[3,4],[5],[6],[7]] => [2,2,1,1,1] => 6
[2,1,1,1,1,1] => [[1,2],[3],[4],[5],[6],[7]] => [2,1,1,1,1,1] => 5
[1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7]] => [1,1,1,1,1,1,1] => 0
[8] => [[1,2,3,4,5,6,7,8]] => [8] => 0
[7,1] => [[1,2,3,4,5,6,7],[8]] => [7,1] => 1
[6,2] => [[1,2,3,4,5,6],[7,8]] => [6,2] => 1
[6,1,1] => [[1,2,3,4,5,6],[7],[8]] => [6,1,1] => 2
[5,3] => [[1,2,3,4,5],[6,7,8]] => [5,3] => 1
[5,2,1] => [[1,2,3,4,5],[6,7],[8]] => [5,2,1] => 3
[5,1,1,1] => [[1,2,3,4,5],[6],[7],[8]] => [5,1,1,1] => 3
[4,4] => [[1,2,3,4],[5,6,7,8]] => [4,4] => 0
[4,3,1] => [[1,2,3,4],[5,6,7],[8]] => [4,3,1] => 3
[4,2,2] => [[1,2,3,4],[5,6],[7,8]] => [4,2,2] => 2
[4,2,1,1] => [[1,2,3,4],[5,6],[7],[8]] => [4,2,1,1] => 5
[4,1,1,1,1] => [[1,2,3,4],[5],[6],[7],[8]] => [4,1,1,1,1] => 4
[3,3,2] => [[1,2,3],[4,5,6],[7,8]] => [3,3,2] => 2
[3,3,1,1] => [[1,2,3],[4,5,6],[7],[8]] => [3,3,1,1] => 4
[3,2,2,1] => [[1,2,3],[4,5],[6,7],[8]] => [3,2,2,1] => 5
[3,2,1,1,1] => [[1,2,3],[4,5],[6],[7],[8]] => [3,2,1,1,1] => 7
[3,1,1,1,1,1] => [[1,2,3],[4],[5],[6],[7],[8]] => [3,1,1,1,1,1] => 5
[2,2,2,2] => [[1,2],[3,4],[5,6],[7,8]] => [2,2,2,2] => 0
[2,2,2,1,1] => [[1,2],[3,4],[5,6],[7],[8]] => [2,2,2,1,1] => 6
[2,2,1,1,1,1] => [[1,2],[3,4],[5],[6],[7],[8]] => [2,2,1,1,1,1] => 8
[2,1,1,1,1,1,1] => [[1,2],[3],[4],[5],[6],[7],[8]] => [2,1,1,1,1,1,1] => 6
[1,1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7],[8]] => [1,1,1,1,1,1,1,1] => 0
[9] => [[1,2,3,4,5,6,7,8,9]] => [9] => 0
[8,1] => [[1,2,3,4,5,6,7,8],[9]] => [8,1] => 1
[7,2] => [[1,2,3,4,5,6,7],[8,9]] => [7,2] => 1
[7,1,1] => [[1,2,3,4,5,6,7],[8],[9]] => [7,1,1] => 2
[6,3] => [[1,2,3,4,5,6],[7,8,9]] => [6,3] => 1
[6,2,1] => [[1,2,3,4,5,6],[7,8],[9]] => [6,2,1] => 3
[6,1,1,1] => [[1,2,3,4,5,6],[7],[8],[9]] => [6,1,1,1] => 3
[5,4] => [[1,2,3,4,5],[6,7,8,9]] => [5,4] => 1
[5,3,1] => [[1,2,3,4,5],[6,7,8],[9]] => [5,3,1] => 3
[5,2,2] => [[1,2,3,4,5],[6,7],[8,9]] => [5,2,2] => 2
[5,2,1,1] => [[1,2,3,4,5],[6,7],[8],[9]] => [5,2,1,1] => 5
[5,1,1,1,1] => [[1,2,3,4,5],[6],[7],[8],[9]] => [5,1,1,1,1] => 4
[4,4,1] => [[1,2,3,4],[5,6,7,8],[9]] => [4,4,1] => 2
[4,3,2] => [[1,2,3,4],[5,6,7],[8,9]] => [4,3,2] => 3
[4,3,1,1] => [[1,2,3,4],[5,6,7],[8],[9]] => [4,3,1,1] => 5
[4,2,2,1] => [[1,2,3,4],[5,6],[7,8],[9]] => [4,2,2,1] => 5
[4,2,1,1,1] => [[1,2,3,4],[5,6],[7],[8],[9]] => [4,2,1,1,1] => 7
[4,1,1,1,1,1] => [[1,2,3,4],[5],[6],[7],[8],[9]] => [4,1,1,1,1,1] => 5
[3,3,3] => [[1,2,3],[4,5,6],[7,8,9]] => [3,3,3] => 0
[3,3,2,1] => [[1,2,3],[4,5,6],[7,8],[9]] => [3,3,2,1] => 5
[3,3,1,1,1] => [[1,2,3],[4,5,6],[7],[8],[9]] => [3,3,1,1,1] => 6
[3,2,2,2] => [[1,2,3],[4,5],[6,7],[8,9]] => [3,2,2,2] => 3
[3,2,2,1,1] => [[1,2,3],[4,5],[6,7],[8],[9]] => [3,2,2,1,1] => 8
[3,2,1,1,1,1] => [[1,2,3],[4,5],[6],[7],[8],[9]] => [3,2,1,1,1,1] => 9
[3,1,1,1,1,1,1] => [[1,2,3],[4],[5],[6],[7],[8],[9]] => [3,1,1,1,1,1,1] => 6
[2,2,2,2,1] => [[1,2],[3,4],[5,6],[7,8],[9]] => [2,2,2,2,1] => 4
[2,2,2,1,1,1] => [[1,2],[3,4],[5,6],[7],[8],[9]] => [2,2,2,1,1,1] => 9
[2,2,1,1,1,1,1] => [[1,2],[3,4],[5],[6],[7],[8],[9]] => [2,2,1,1,1,1,1] => 10
[2,1,1,1,1,1,1,1] => [[1,2],[3],[4],[5],[6],[7],[8],[9]] => [2,1,1,1,1,1,1,1] => 7
[1,1,1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7],[8],[9]] => [1,1,1,1,1,1,1,1,1] => 0
[9,1] => [[1,2,3,4,5,6,7,8,9],[10]] => [9,1] => 1
[8,1,1] => [[1,2,3,4,5,6,7,8],[9],[10]] => [8,1,1] => 2
[5,5] => [[1,2,3,4,5],[6,7,8,9,10]] => [5,5] => 0
[4,4,1,1] => [[1,2,3,4],[5,6,7,8],[9],[10]] => [4,4,1,1] => 4
[3,3,2,2] => [[1,2,3],[4,5,6],[7,8],[9,10]] => [3,3,2,2] => 4
>>> Load all 110 entries. <<<
[3,3,1,1,1,1] => [[1,2,3],[4,5,6],[7],[8],[9],[10]] => [3,3,1,1,1,1] => 8
[2,2,2,2,1,1] => [[1,2],[3,4],[5,6],[7,8],[9],[10]] => [2,2,2,2,1,1] => 8
[2,2,1,1,1,1,1,1] => [[1,2],[3,4],[5],[6],[7],[8],[9],[10]] => [2,2,1,1,1,1,1,1] => 12
[1,1,1,1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10]] => [1,1,1,1,1,1,1,1,1,1] => 0
[6,6] => [[1,2,3,4,5,6],[7,8,9,10,11,12]] => [6,6] => 0
[4,4,2,2] => [[1,2,3,4],[5,6,7,8],[9,10],[11,12]] => [4,4,2,2] => 4
[3,3,2,2,1,1] => [[1,2,3],[4,5,6],[7,8],[9,10],[11],[12]] => [3,3,2,2,1,1] => 12
[2,2,2,2,2,2] => [[1,2],[3,4],[5,6],[7,8],[9,10],[11,12]] => [2,2,2,2,2,2] => 0
[1,1,1,1,1,1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12]] => [1,1,1,1,1,1,1,1,1,1,1,1] => 0
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of inversions of an integer composition.
This is the number of pairs (i,j) such that i<j and ci>cj.
Map
initial tableau
Description
Sends an integer partition to the standard tableau obtained by filling the numbers 1 through n row by row.
Map
horizontal strip sizes
Description
The composition of horizontal strip sizes.
We associate to a standard Young tableau T the composition (c1,,ck), such that k is minimal and the numbers c1++ci+1,,c1++ci+1 form a horizontal strip in T for all i.