Identifier
-
Mp00156:
Graphs
—line graph⟶
Graphs
Mp00324: Graphs —chromatic difference sequence⟶ Integer compositions
St000758: Integer compositions ⟶ ℤ
Values
([(0,1)],2) => ([],1) => [1] => 1
([(1,2)],3) => ([],1) => [1] => 1
([(0,2),(1,2)],3) => ([(0,1)],2) => [1,1] => 1
([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [1,1,1] => 1
([(2,3)],4) => ([],1) => [1] => 1
([(1,3),(2,3)],4) => ([(0,1)],2) => [1,1] => 1
([(0,3),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => [1,1,1] => 1
([(0,3),(1,2)],4) => ([],2) => [2] => 1
([(0,3),(1,2),(2,3)],4) => ([(0,2),(1,2)],3) => [2,1] => 1
([(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => [1,1,1] => 1
([(0,3),(1,2),(1,3),(2,3)],4) => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [2,1,1] => 1
([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,2),(0,3),(1,2),(1,3)],4) => [2,2] => 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => [2,2,1] => 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => [2,2,2] => 2
([(3,4)],5) => ([],1) => [1] => 1
([(2,4),(3,4)],5) => ([(0,1)],2) => [1,1] => 1
([(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => [1,1,1] => 1
([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [1,1,1,1] => 1
([(1,4),(2,3)],5) => ([],2) => [2] => 1
([(1,4),(2,3),(3,4)],5) => ([(0,2),(1,2)],3) => [2,1] => 1
([(0,1),(2,4),(3,4)],5) => ([(1,2)],3) => [2,1] => 1
([(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => [1,1,1] => 1
([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,3),(1,2),(1,3),(2,3)],4) => [2,1,1] => 1
([(1,4),(2,3),(2,4),(3,4)],5) => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [2,1,1] => 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [2,1,1,1] => 1
([(1,3),(1,4),(2,3),(2,4)],5) => ([(0,2),(0,3),(1,2),(1,3)],4) => [2,2] => 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => [2,2,1] => 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => [2,2,1] => 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => [2,2,1] => 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,2,1,1] => 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6) => [2,2,2] => 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [2,2,2,1] => 2
([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,3),(1,2),(2,3)],4) => [2,2] => 2
([(0,1),(2,3),(2,4),(3,4)],5) => ([(1,2),(1,3),(2,3)],4) => [2,1,1] => 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => [2,2,1] => 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,2,1,1] => 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [2,2,1] => 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [2,2,2] => 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,2,1] => 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [2,2,2] => 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => [2,2,2] => 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [2,2,2,1] => 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => ([(0,1),(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(5,6)],7) => [2,2,2,1] => 2
([(4,5)],6) => ([],1) => [1] => 1
([(3,5),(4,5)],6) => ([(0,1)],2) => [1,1] => 1
([(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => [1,1,1] => 1
([(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [1,1,1,1] => 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [1,1,1,1,1] => 1
([(2,5),(3,4)],6) => ([],2) => [2] => 1
([(2,5),(3,4),(4,5)],6) => ([(0,2),(1,2)],3) => [2,1] => 1
([(1,2),(3,5),(4,5)],6) => ([(1,2)],3) => [2,1] => 1
([(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => [1,1,1] => 1
([(1,5),(2,5),(3,4),(4,5)],6) => ([(0,3),(1,2),(1,3),(2,3)],4) => [2,1,1] => 1
([(0,1),(2,5),(3,5),(4,5)],6) => ([(1,2),(1,3),(2,3)],4) => [2,1,1] => 1
([(2,5),(3,4),(3,5),(4,5)],6) => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [2,1,1] => 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [2,1,1,1] => 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [2,1,1,1] => 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,1,1,1,1] => 1
([(2,4),(2,5),(3,4),(3,5)],6) => ([(0,2),(0,3),(1,2),(1,3)],4) => [2,2] => 2
([(0,5),(1,5),(2,4),(3,4)],6) => ([(0,3),(1,2)],4) => [2,2] => 2
([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => [2,2,1] => 2
([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => [2,2,1] => 2
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => [2,2,1] => 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => [2,2,1] => 2
([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => [2,2,1] => 2
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,2,1,1] => 2
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,2,1,1] => 2
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,2,1,1] => 2
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,1,1,1] => 2
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6) => [2,2,2] => 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6) => [2,2,2] => 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1),(0,2),(0,6),(1,2),(1,5),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,2,1] => 2
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [2,2,2,1] => 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,2,1] => 2
([(0,5),(1,4),(2,3)],6) => ([],3) => [3] => 1
([(1,5),(2,4),(3,4),(3,5)],6) => ([(0,3),(1,2),(2,3)],4) => [2,2] => 2
([(0,1),(2,5),(3,4),(4,5)],6) => ([(1,3),(2,3)],4) => [3,1] => 1
([(1,2),(3,4),(3,5),(4,5)],6) => ([(1,2),(1,3),(2,3)],4) => [2,1,1] => 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => [3,1,1] => 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => [2,2,1] => 2
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [3,1,1] => 1
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => 1
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,2,1,1] => 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => 1
([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [2,2,1] => 2
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => [3,2,1] => 2
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [2,2,2] => 2
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [3,2,1] => 2
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [2,2,2] => 2
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [3,1,2] => 2
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,5),(1,4),(1,5),(1,6),(2,3),(2,4),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [3,2,1,1] => 2
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,2,1,1] => 2
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,2,1] => 2
([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => ([(0,4),(1,3),(2,3),(2,4)],5) => [3,2] => 2
([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => ([(1,3),(1,4),(2,3),(2,4)],5) => [3,2] => 2
([(0,5),(1,5),(2,3),(2,4),(3,4)],6) => ([(0,1),(2,3),(2,4),(3,4)],5) => [2,2,1] => 2
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => [3,2,1] => 2
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6) => ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6) => [3,2,1] => 2
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => [3,2,1] => 2
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => [3,2,1] => 2
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [2,2,2] => 2
>>> Load all 265 entries. <<<
search for individual values
searching the database for the individual values of this statistic
Description
The length of the longest staircase fitting into an integer composition.
For a given composition c1,…,cn, this is the maximal number ℓ such that there are indices i1<⋯<iℓ with cik≥k, see [def.3.1, 1]
For a given composition c1,…,cn, this is the maximal number ℓ such that there are indices i1<⋯<iℓ with cik≥k, see [def.3.1, 1]
Map
chromatic difference sequence
Description
The chromatic difference sequence of a graph.
Let G be a simple graph with chromatic number κ. Let αm be the maximum number of vertices in a m-colorable subgraph of G. Set δm=αm−αm−1. The sequence δ1,δ2,…δκ is the chromatic difference sequence of G.
All entries of the chromatic difference sequence are positive: αm>αm−1 for m<κ, because we can assign any uncolored vertex of a partial coloring with m−1 colors the color m. Therefore, the chromatic difference sequence is a composition of the number of vertices of G into κ parts.
Let G be a simple graph with chromatic number κ. Let αm be the maximum number of vertices in a m-colorable subgraph of G. Set δm=αm−αm−1. The sequence δ1,δ2,…δκ is the chromatic difference sequence of G.
All entries of the chromatic difference sequence are positive: αm>αm−1 for m<κ, because we can assign any uncolored vertex of a partial coloring with m−1 colors the color m. Therefore, the chromatic difference sequence is a composition of the number of vertices of G into κ parts.
Map
line graph
Description
The line graph of a graph.
Let G be a graph with edge set E. Then its line graph is the graph with vertex set E, such that two vertices e and f are adjacent if and only if they are incident to a common vertex in G.
Let G be a graph with edge set E. Then its line graph is the graph with vertex set E, such that two vertices e and f are adjacent if and only if they are incident to a common vertex in G.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!