Identifier
-
Mp00313:
Integer partitions
—Glaisher-Franklin inverse⟶
Integer partitions
St000755: Integer partitions ⟶ ℤ
Values
[1] => [1] => 1
[2] => [1,1] => 1
[1,1] => [2] => 2
[3] => [3] => 1
[2,1] => [1,1,1] => 1
[1,1,1] => [2,1] => 2
[4] => [1,1,1,1] => 1
[3,1] => [3,1] => 1
[2,2] => [4] => 2
[2,1,1] => [2,1,1] => 2
[1,1,1,1] => [2,2] => 2
[5] => [5] => 1
[4,1] => [1,1,1,1,1] => 1
[3,2] => [3,1,1] => 1
[3,1,1] => [3,2] => 1
[2,2,1] => [4,1] => 2
[2,1,1,1] => [2,1,1,1] => 2
[1,1,1,1,1] => [2,2,1] => 2
[6] => [3,3] => 1
[5,1] => [5,1] => 1
[4,2] => [1,1,1,1,1,1] => 1
[4,1,1] => [2,1,1,1,1] => 2
[3,3] => [6] => 2
[3,2,1] => [3,1,1,1] => 1
[3,1,1,1] => [3,2,1] => 1
[2,2,2] => [4,1,1] => 2
[2,2,1,1] => [4,2] => 2
[2,1,1,1,1] => [2,2,1,1] => 2
[1,1,1,1,1,1] => [2,2,2] => 2
[7] => [7] => 1
[6,1] => [3,3,1] => 1
[5,2] => [5,1,1] => 1
[5,1,1] => [5,2] => 1
[4,3] => [3,1,1,1,1] => 1
[4,2,1] => [1,1,1,1,1,1,1] => 1
[4,1,1,1] => [2,1,1,1,1,1] => 2
[3,3,1] => [6,1] => 2
[3,2,2] => [4,3] => 2
[3,2,1,1] => [3,2,1,1] => 1
[3,1,1,1,1] => [3,2,2] => 3
[2,2,2,1] => [4,1,1,1] => 2
[2,2,1,1,1] => [4,2,1] => 2
[2,1,1,1,1,1] => [2,2,1,1,1] => 2
[1,1,1,1,1,1,1] => [2,2,2,1] => 2
[8] => [1,1,1,1,1,1,1,1] => 1
[7,1] => [7,1] => 1
[6,2] => [3,3,1,1] => 1
[6,1,1] => [3,3,2] => 1
[5,3] => [5,3] => 1
[5,2,1] => [5,1,1,1] => 1
[5,1,1,1] => [5,2,1] => 1
[4,4] => [8] => 2
[4,3,1] => [3,1,1,1,1,1] => 1
[4,2,2] => [4,1,1,1,1] => 2
[4,2,1,1] => [2,1,1,1,1,1,1] => 2
[4,1,1,1,1] => [2,2,1,1,1,1] => 2
[3,3,2] => [6,1,1] => 2
[3,3,1,1] => [6,2] => 2
[3,2,2,1] => [4,3,1] => 2
[3,2,1,1,1] => [3,2,1,1,1] => 1
[3,1,1,1,1,1] => [3,2,2,1] => 1
[2,2,2,2] => [4,4] => 2
[2,2,2,1,1] => [4,2,1,1] => 2
[2,2,1,1,1,1] => [4,2,2] => 2
[2,1,1,1,1,1,1] => [2,2,2,1,1] => 2
[1,1,1,1,1,1,1,1] => [2,2,2,2] => 2
[9] => [9] => 1
[8,1] => [1,1,1,1,1,1,1,1,1] => 1
[7,2] => [7,1,1] => 1
[7,1,1] => [7,2] => 1
[6,3] => [3,3,3] => 1
[6,2,1] => [3,3,1,1,1] => 1
[6,1,1,1] => [3,3,2,1] => 1
[5,4] => [5,1,1,1,1] => 1
[5,3,1] => [5,3,1] => 1
[5,2,2] => [5,4] => 1
[5,2,1,1] => [5,2,1,1] => 1
[5,1,1,1,1] => [5,2,2] => 3
[4,4,1] => [8,1] => 2
[4,3,2] => [3,1,1,1,1,1,1] => 1
[4,3,1,1] => [3,2,1,1,1,1] => 1
[4,2,2,1] => [4,1,1,1,1,1] => 2
[4,2,1,1,1] => [2,1,1,1,1,1,1,1] => 2
[4,1,1,1,1,1] => [2,2,1,1,1,1,1] => 2
[3,3,3] => [6,3] => 2
[3,3,2,1] => [6,1,1,1] => 2
[3,3,1,1,1] => [6,2,1] => 2
[3,2,2,2] => [4,3,1,1] => 2
[3,2,2,1,1] => [4,3,2] => 2
[3,2,1,1,1,1] => [3,2,2,1,1] => 1
[3,1,1,1,1,1,1] => [3,2,2,2] => 3
[2,2,2,2,1] => [4,4,1] => 2
[2,2,2,1,1,1] => [4,2,1,1,1] => 2
[2,2,1,1,1,1,1] => [4,2,2,1] => 2
[2,1,1,1,1,1,1,1] => [2,2,2,1,1,1] => 2
[1,1,1,1,1,1,1,1,1] => [2,2,2,2,1] => 2
[10] => [5,5] => 1
[9,1] => [9,1] => 1
[8,2] => [1,1,1,1,1,1,1,1,1,1] => 1
[8,1,1] => [2,1,1,1,1,1,1,1,1] => 2
[7,3] => [7,3] => 1
>>> Load all 287 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of real roots of the characteristic polynomial of a linear recurrence associated with an integer partition.
Consider the recurrence $$f(n)=\sum_{p\in\lambda} f(n-p).$$ This statistic returns the number of distinct real roots of the associated characteristic polynomial.
For example, the partition $(2,1)$ corresponds to the recurrence $f(n)=f(n-1)+f(n-2)$ with associated characteristic polynomial $x^2-x-1$, which has two real roots.
Consider the recurrence $$f(n)=\sum_{p\in\lambda} f(n-p).$$ This statistic returns the number of distinct real roots of the associated characteristic polynomial.
For example, the partition $(2,1)$ corresponds to the recurrence $f(n)=f(n-1)+f(n-2)$ with associated characteristic polynomial $x^2-x-1$, which has two real roots.
Map
Glaisher-Franklin inverse
Description
The Glaisher-Franklin bijection on integer partitions.
This map sends the number of distinct repeated part sizes to the number of distinct even part sizes, see [1, 3.3.1].
This map sends the number of distinct repeated part sizes to the number of distinct even part sizes, see [1, 3.3.1].
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!